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ABSTRACT 

We calculate the cross section for exciting simple atoms by slowly moving magnetic 

monopoles. Including the effects of the monopole magnetic field on the atomic energy 

levels, we obtain an energy loss per unit density much larger than previous studies. For 

helium l/p dE/dz = 15(@/10e4)(1 - (9.29 X 10-5/~)2)3/2MeVcm2/g for p in 

the range low4 to 10s3. The possibility of using helium as a monopole detector is 

discussed. 
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During the last few years there has been a great deal of theoretical interest in the 

supermassive ( -1O”GeV) magnetic monopoles of grand unified theories. Recently 

Cabrera’ intensified this interest with his report of a possible monopole event in the 

superconducting loop experiment at Stanford. The fact that Cabrera’s apparatus is 

sensitive to monopoles of any speed (,f!?c) together with the absence of monopole events 

in non-induction experiments that are much more sensitive to a flux of fast monopoles 

@I > 10v3) indicates that if C b a rera’s event was caused by a monopole it was moving 

slowly. Theoretical models2 of how supermassive monopoles enter and move in the 

galactic magnetic fields and in the solar system suggest that their velocities at the earth’s 

surface would be of the order of the earth’s orbital velocity about the sun (/3-10m4), and 

in any event no less than the escape velocity from the earth (p-3 X lo-‘). Therefore 

a quantitative understanding of the mechanisms by which slowly moving monopoles lose 

energy when passing through matter is important both for a description of monopole 

interactions in the solar system and for the interpretation and design of non-induction 

experiments. 

In this letter we calculate this energy loss for simple atoms. We find that when 

one includes Zeeman splittings, diamagnetic shifts and crossings of the energy levels 

caused by the interaction of the atomic electrons with the monopole magnetic field, the 

calculated energy loss is larger by an order of magnitude or more than that found in 

previous studies3 which ignored this effect. 

When a monopole passes through matter the time varying pulse of its field can 

excite electrons in (or ionize) nearby atoms and molecules. The monopole’s energy loss 

can be observed in the form of subsequent electromagnetic radiation when the excited 

electrons cascade down to their ground states. For the problem of interest we treat the 

very heavy monopoles classically as moving on straight line trajectories with velocity 

/3. Atoms of size a will “see” the time varying field of the monopole as it traverses as 

a pulse with frequencies am - p/a. Thus excitations of frequencies oZ<wrn will be 

induced in the atom. In the case of very slow passage (p much smaller than the velocity 

of atomic electrons), W m might be too small to excite the atoms; e.g. for ,8-10e4 and 

a -0.5A, wm - 0.4eV. We would then expect the adiabatic approximation to be valid 

and the resulting excitation probability for atoms with wz greater than a few eV to be 

exponentially small. 
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This picture is, however, inadequate for very slow monopoles because the strength 

of a Dirac magnetic charge4 g = 1/2e is so great that its magnetic field will cause 

very large changes in the energy levels when it passes through an atom. For example, 

the characteristic energy shift for a monopole at distance a from an atomic electron of 

mass m is eg/2ma2 -7eV. Hence, for a monopole passing within the atom substantial 

level mixings and some level crossings will occur, and the adiabatic approximation can 

fail badly. In particular, if the ground state and an initial excited state are shifted 

close together for a monopole near the center of the atom, the two levels will be mixed. 

There will then be a good chance of finding the atom in an excited state after the 

monopole has passed. (The transit time of a monopole through an atom alp-2 X 

lo-l’sec for /?-10m4 is very much shorter than the radiative lifetime of an excited 

atom, r-10D8 - lo-‘sec.) 

The essential features of the atomic problem can be illustrated by considering pas- 

sage of a monopole through the center of a simple loop of radius a around which a spin- 

less electron circulates with angular coordinate 4. When the monopole is far away the 

Hamiltonian is H = L2/2ma2; L = -i(a/a#J) and the eigenvalues and eigenfunctions 

are E = e2/2ma2, where 4! = 0, fl, f2, . . . As the monopole approaches along the 

axis of the loop the doubly degenerate excited states, e # 0, are split by the magnetic 

field. In particular the J! = -1 excited state shifts down and the e = 0 ground state 

up. When the monopole reaches the center of the loop the system is described by the 

Hamiltonian H = J2/2ma2; J = L- eg = L- l/2. The energy levels are all doubly 

degenerate in this case, with eigenvalues E = p2/2ma2 and p = &l/2, f3/2, . . . As 

the monopole goes through the loop the two states originally with e = 0, and -1 croaa 
- i.e. they are not mixed by the perturbing monopole field since [A,, L] = 0. Thus the 

electron on the loop, initially in the e = 0 state, is excited and a current flows. 

In general the monopole will not pass through the center of the loop but will miss 

it by a finite impact parameter b. For a loop whose plane is held Ilxed in space, the 

result will be the same as that above for all impact parameters 6 < a. (This is just a 

model of Cabrera’s superconducting loop.) This is easily generalized to a llxed loop of 

any shape. 

If on the other hand the loop is free to turn, or rotate its plane, the results will 

differ. When 6 # 0, the component of angular momentum along the z-axis is no longer 

4 



conserved. If p is small enough, the loop will rotate out of the way of the passing 

monopole and no current will be excited in the loop. In this adiabatic limit there will 

be no energy loss by the monopole. The critical value @wit for this to occur clearly 

depends on the impact parameter b since for b = 0 there is no adiabatic limit - i.e. 

P,it(b = 0) = 0. F or any /3 there is a critical 6, such that for b < 6,g the loop cannot 

adjust and rotate away. This value defines the effective cross section a$ for excitation 

and energy loss by a traversing monopole. 

To see what occurs in an atom when a slow monopole passes through it we consider 

lirst a hydrogen atom5 including the effects due to electron spin. If the monopole 

impinges with zero impact parameter along the z-axis the z-component of angular 

momentum, 

x (j- e;i) + a/z - a/2] 
t (1) 

is conserved; 3 is the electron coordinate relative to the proton j&cd at the origin and iz is 

the unit vector from the monopole to the electron. Since itz changes sign as the monopole 

moves from the far left (fi, = -1) to the far right (hz = +l) the z-component of 

the electron’s angular momentum must change by a compensating amount. Consider 

for example the doubly degenerate ground state of the H atom with principal quantum 

number n = 1 and rni = &l/2 when th e monopole is far away. An electron initially 

with mj = -l/2 will flip spin to mj = +1/2 as the monopole traverses left to 

right, while one with mj = +1/2 will be raised to an excited state with n > 1 and 

mj = +3/2. On the way up, this level will necessarily cross one moving down from 

mi = -3/2 to the ground state with mj = -l/2. 

In order to map out this level crossing we consider the two extremes of the monopole 

at the origin and at large distance from the atom and interpolate by a perturbative 

calculation. As the monopole approaches the atom from a large distance the energy 

levels split in the characteristic Zeeman pattern for a uniform magnetic field. In 

particular three of the excited n- -2 octet of levels start to move down in energy and 

the n=l level with mj = +1/2 starts up toward them. When the monopole is at 

the origin of coordinates the exact non-relativistic eigenvalues and eigenvectors for the 

electron are known.’ The eigenstates of this system are classified in terms of a principal 

quantum number n = 0, 1,2... and a spin j = 0, 1,2.... The singlet -states with 

‘. ,ir ’ 

._’ 
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j= 0 have the same energies as the s-states of the H atom: En = -ma2/2(n + 

l)? For PCJ~ > 0, the states form two sequences with eigenvalues En = 
-ma2/2(n + p)2 and En = -ma2/2(n + JL + 1)2. Thus the energy eigenstates are 

in the following sequence of multiplets starting from the ground state: 1,3,1, 32, 5,1.. 

where the superscript gives the number of such multiplets. The lowest triplet state with 

n =O, j= 1 is the state of most interest to us and has energy -ma2/4. 

When the monopole is near the origin, its effect can be found using the multipole 

expansion about the origin. If the monopole is at a distance small compared to the 

atomic size, the terms higher than dipole can be neglected and we can treat the dipole 

with first order perturbation theory. The results of this calculation can be joined to the 

Zeeman shifted levels for large separation of the monopole. The solid lines in Fig. lgive 

the energy levels for the lowest relevant states for arbitrary separation of a stationary 

monopole along the z axis. The energy levels actually croaa as the monopole “passes” 

through the origin because they have different eigenvalues of Jz. 

The energy level diagram for a stationary monopole along a path of non-zero impact 

parameter b can be obtained in a similar manner. This is also displayed in Fig. 1 

and follows the solid lines except near the point of closest approach for which the 

dotted lines are applicable. In this case the symmetry axis rotates as the monopole 

approaches the atom. Hence Jz is not conserved, and the levels mix and do not cross. 

The minimum interval between them, W,i,, increases with increasing values of b. For 

sufficiently large impact parameters and slow enough monopole velocities, such that 

VW) < urnin( the adiabatic approximation is applicable and the electron would 

just follow these levels. Then an electron in either of the two degenerate ground states 

would remain in the ground state. For smaller values of b there will be level mixing, 

the adiabatic approximation will break down, and the electron will be excited. The 

region of the monopole’s trajectory where the probability of level transition is greatest 

occurs when the monopole is closest to the origin where the interval between the energy 

levels is the smallest. In this region we can model the effects of a monopole by using the 

dipole approximation and First order degenerate perturbation theory amongst the triplet 

of levels obtained with the monopole at the origin. The time-dependent Schroedinger 

equation for this system is given by 



where ci( t) is the amplitude for the electron to be in eigenstate i in a Jz - diagonal basis 

and 7 = (2 - fi) < rV3 >j=l /4m = m(r2/4(4 - fi)~o where a0 is the Bohr 

radius. These coupled differential equations can be solved7 in terms of Weber functions. 

Starting with the initial condition Icl(t+ - oo)12 = 1, we find for large positive 

times Iq(oo)j2 = x2, ICONS = 2z(l - z) and Ic-~(oo)~~ = (1 - Z)~ where 

z-ezp[-3b2/2$] and 6; = 3p/w7. The large b limit of lc-112+1 corresponds 

to the adiabatic approximation of no energy loss. The b-0 limit coincides with the 

sudden approximation for the non-excitation probability: lc-112 CC b4. Integrating over 

aI] impact parameters we obtain for the cross section for exciting the electron to an 

n = 2 level 

an=:! = (l/2) / db 2wb( lq12 + lcoj2) = n6;/2 (3) 

where the factor l/2 recognizes that 50% of the time the electron is initially in the 

state with nrj = -l/2 that is not excited by the monopole as shown in Fig. 1. The 

corresponding energy loss per atom 8 is AE = (3/8)m(u20,,2. 

The peak contribution to the cross section occurs when b = 0.706~ N 
0.095(p/10-4)‘~2 < r >j=l where < r >j=l (Z 2.7~) is the radius of the 

triplet state of the H-atom with the monopole at the center. We therefore expect the 

dipole expansion to be a reasonable approximation up to p-1 X 10D3. The process has 

a threshold at ,8 = 1.47 X 10B4 due to recoil of the H atom. On account of recoil, the 

values of ,8 and b when the energy level transfers are taking place are different from the 

asymptotic values. Taking this into account, we find that Eq. (3) should be corrected 

by a recoil factor (@0/j3)~ where th e subscript 0 refers to quantities when the pole is at 

the atomic center. This correction factor is obtained by introducing PO and 60 and for 

p and b in Eq. (2) an d using angular momentum conservation, j3obo = ,Bb. Expressing 

,& in terms of the energy when the levels cross, l/2 MP$ + AEo = l/2 Mp2, we can 

write a threshold corrected formula 

a,=:! = (3P/Q)(l- 82/P2)3’2 C (4) 
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with PC = dm = 1.20 X 10W4. The energy loss per unit density is 

37(p/10v4)( l-pz/p2)3/2 MeVem2/g. C om arison is made with previous calculations3 p 

in Fig. 2. 

Atomic helium is of interest as a practical substance for a non-induction experiment 

that is also amenable to analysis in terms of simple calculations. The energy level 

diagram for He is also shown in Fig. 1 including the shielding effects between the two 

electrons. The level mixing for a monopole trajectory with non-zero impact parameter 

can be calculated in the same way as for H except that in Eq. (2), 7 a: < rm3 >j=l, is 

changed as a result of shielding due to the presence of a second electron. This change can 

be calculated by standard variational techniques leading to 7-Z$/7 where Ze.1 N 

1.33 for this state. Furthermore, the factor l/2 appearing in Eq. (3) and (4) should 

be omitted. This yields the value 5 X 10 -18 (P/10W4)(1 - j3z/j32)3/2 cm2 for the 

excitation cross section. Here ,& = 9.29 X 10v5 and the threshold values of p X lo4 

are 1.06 and 1.03 for n = 2 3P and 3S excitations respectively. The energy loss per 

unit density is 15(p/10-4)( 1 - ,f3z/p2)3/2 M V e cm2/g and the relative populations of 

3P to 3S is approximately 1:2. 

The fact that the excitation cross-section in He is large and exclusively to the triplet 

n = 2 levels should provide a unique signature for the passage of the monopole. The 3P 

state will decay to 3S with emission of a 1.15 eV photon, which is not self absorbed, but 

which may be difficult to detect efficiently. For pure He the metastable 3S states are 

likely to remain excited until the atoms reach the walls of the He container, where the 

electron ejection is likely to occur. The 3S states may be rendered optically active by 

the addition of Ne, which is readily excited to the nearby resonant 4s levels by collision 

with the metastable He atoms. There are also a large variety of additives which will 

be collisionally ionized, producing electrons and ions which could be collected. Some of 

the uniqueness of signature, which may be lost as the result of the additives, may be 

regained by the use of timing measurements. 

Analogous effects are likely to occur in other atomic and molecular systems. Of 

particular interest are spherically symmetric systems such as higher Z noble gas atoms. 

When a monopole passes through the precise center of such a system it must leave 

the atom with Z units of angular momentum, a circumstance which implies multiple 

electron excitations likely to decay by auteionising Auger processes and to involve 



large excitation energies. However, there are also likely to be excitation inducing level 

crossings for non-zero impact parameter, which can lead to smaller angular momentum 

transfer, smaller excitation energies, and single electron excitations. The situation 

is complex and our analysis is in the most preliminary stage, but the likelihood of 

substantial energy loss and observable excitation appears to us to be high. Provided 

that the probability of single electron excitation is substantial the kinematic constraint 

is less severe than for He with thresholds below p = 5 X lo-‘. 

We have also considered some molecular systems in a preliminary way. The H2 
molecule is clearly the simplest case. There are two positions on the molecular axis, 

outside the pair of protons, at which the monopole causes a crossing of the singlet 

(bonding) and triplet (anti-bonding) states. Thus passage of the monopole near these 

points will induce a substantial fraction of transitions which cause the dissociation of 

H2 into ground state atoms. The cross section for this process is likely to be comparable 

to those estimated above. There is also the probability of a dissociation which produces 

one excited atom, a process which is caused when a monopoles which passes through the 

molecule nearly parallel to the molecular axis, but we have not estimated the size of this 

effect. Organic molecules of the sort used in scintillators as well as scintillating inorganic 

crystals also have intriguing possibilities, which are being investigated. The ?r electrons 

on benzene rings, whose excitation is crucial for the functioning of organic scintillators 

such as polystyrene plastic, are similar in many ways to electrons on the simple spatially 

fixed loops discussed above except that angular momentum can be transferred to the 

benzene ring in integral multiples of 6 Ii. Unknown matrix elements for multi-electron 

transitions of this kind have so far eluded a quantitative calculation. 

We would like to thank our theoretical and experimential colleagues for many 

enlightening discussions. N.K., S.P. and M.R. also thank the Aspen Center for Physics. 
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FIGURE CAPTIONS 

1. The energy levels for atomic hydrogen and helium. 

2. The energy loss verses velocity for a Dirac monopole. The curves for atomic hydrogen 

and helium are the results of this calculation including recoil effects. 
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