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INTRODUCTION 

The output power from each of the 244 high power pulsed klystrons at 

SLAC is routinely measured using thermistor bridge power meters and a 

sampled signal from a modified Bethe hole directional coupler. These 

couplers are located in the waveguide coming from each klystron before 

the four-way power split to each accelerator feed. Adequate low pass 

filtering has been required since we are primarily interested in the 

power to the accelerator at its operating frequency of 2856 MHz. 

Furthermore, one of the properties of the type of directional coupler 

being used is that there is stronger coupling to higher order modes at 

higher spurious and harmonically related frequencies. Significant 

measurement error of the fUnddKtenta1 would result unless low pass 

filtering is used. 

Recently there has been renewed interest at SLAC in the harmonic 

content of the klystrons. The velocity modulated electron beam within 

klystron is typically rich in second and third harmonic rf current 
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components. The induced current in the output cavity at these 

frequencies, however, remains weak compared to the fundamental 

component. There is a reasonably good theory to predict the harmonic rf 

components of current in the klystron electron beam. These components 

can typically be 150, 71 and 32 percent for the fundamental, second and 

third harmonics, respectively, of the dc beam current. Calculating the 

rf currents induced in the output cavity and subsequent power output at 

the harmonics is quite difficult, because the output circuit must 

include parts of the collector and tube body as well, since these 

chambers are above cutoff as waveguides and suitable boundary conditions 

for a model cannot be established. 

Attempts to calibrate the directional coupler at the lower order 

harmonics of this operating frequently is useless since there are five 

propagating modes at the second harmonic and eleven propagating modes at 

the third harmonic. The degree to which the harmonic (and/or spurious 

frequency) energy is divided up into the various modes depends both on 

how the excitation or the initial launching into the waveguide system 

occurs. It also depends upon mode conversion that takes place due to 

obstacles and discontinuities such as bends, windows, or vacuum pumpouts 

ahead of the location that a measurement might be made. 

In 1958, M. Forrer and K. Tomiyasu’ described a movable probe 

assembly which was used to sample the magnitude and phase of the 

electric field along both the broad and narrow walls of a pressurized 

S-band waveguide. The complex field profile was sampled at two 

different waveguide cross sections. A Fourier analysis on these data by 

computer enabled the power to be calculated for the various propagating 
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modes at each frequency. This was done at a power level of 4.7 NW from 

an S-band magnetron. 

Later, V. G. Price2 made similar measurements using an array of fixed 

electric probes which were calibrated. Using a computational method 

similar to Forrer and Tomiyasu, the power in each propagating mode was 

determined. He shows that, in general, the minimum number of probes 

required to obtain enough information to determine the power in each 

mode is slightly greater than the number of modes which can propagate at 

a given frequency. The accuracy of the measurement is increased if the 

number of probes is increased beyond the minimum number. This method 

therefore can be done at has the advantage that it is arc free and 

higher peak power levels. 

About the same time, D. J. Lewis3 deve 

of mode couplers were designed; each coup 

loped a method where a series 

ler selectively coupling a 

single mode and discriminating against other modes. This method was 

useful for measuring second harmonic power where perhaps four or five 

modes exist, but was impractical for higher frequencies where a large 

number of modes could propagate. 

A few years later, E. 0. Sharp and E.M.T. Jones’ developed a method 

where the various modes in a large multimode waveguide were 

discriminately sorted into several smaller dominant mode waveguide arms. 

This method does not require a computer, but does require an elaborate 

waveguide discriminator device and must be used where only a limited 

number of higher order modes can exist. The experimental error is 

somewhere between t2 and 25 db. 
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The next year J. J. TaubS described a method where the power to be 

measured was fed through a waveguide taper into a much larger, overmoded 

waveguide and into a large multimode load. The oversized waveguide has 

an array of 40 or so probes and a line-stretcher ahead of the taper. He 

shows that the higher mode energy from the standard size waveguide is 

converted to an approximate plane wave in the overized waveguide. Using 

filters, the line stretcher, and signals sampled from the various 

probes, the approximation allows one to determine the total energy at a 

given frequency to within about tl db without knowing how the energy is 

divided into the various propagating modes. 

For our purpose9 the movable probe assembly was ruled out because of 

our high peak power and high vacuum requirements. 

The large number of modes at the third harmonic discourage the use of 

mode selective couplers or the smaller waveguide arms method. 

The oversized waveguide method may have been suitable for our 

purpose, but it required the construction of more elaborate equipment 

and the purchase of other equipment. 

The multiprobe method used by Price seemed the most suitable approach 

in our situation since much of the required equipment was on hand and 

the computer capability required (once considered a drawback several 

years ago) was readily available. 

It was decided to confine our investigation to the second and third 

harmonics of 2856 MHz. To cover the eleven propagating modes at the 

third harmonic a minimum of eleven probes was required. Price points 

out that the minimum number of probes required at each broad wall cross 

section is equal to the highest m-index to occur for a propagating mode. 
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Since the TEt,o mode can propagate there will be four probes across the 

broad wall. The highest n-index determines the number of probes on the 

narrow wall at each cross section. All the n-indexes are either zero or 

one, so a single probe at each cross section is adequate. The number of 

broad wall cross sections required is 1 + N,,,(l) = 2. The number of 

narrow wall cross sections is 1 + M,,,(ll = 4. N,,,(l) is the maximum 

n-index to occur where the m-index is unity and Plllax(l) is the maximum 

m-index to occur for a mode whose n-index is unity. 

Four equally spaced probes across the 7.21 cm broad wall placed a 

constraint on the type of high vacuum rf feedthrough connectors that 

could be used. The spacing between probe feedthrough connectors and 

hence the maximum diameter had to be less than about 1.4 cm. This space 

limitation precluded the use of type N or GR connectors. 

The connector/feedthrough assembly chosen was made from a Ceramaseal 

high vacuum grounded shield connector with a SHA coaxial connector. The 

feedthrough was brazed into a cupro-nickel cup supplied by us to the 

manufacturer. This assembly was, in turn, welded into a stainless steel 

cup which had been brazed into the copper S-band waveguide at the 

appropriate location. Detail of this feedthrough assembly is shown in 

Fig. 1. Eleven identical RG 223 double shielded cables connected the 

somewhat fragile SNA feedthrough probes to a sturdy steel panel with 

type N bulkhead feedthrough connectors. This panel was securely bolted 

to a bracket brazed to the copper waveguide assembly. The probe 

sampling package is shown in Fig. 2. 
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1. AMPLITUDE AND PHASE CALIBRATION OF PROBE ASSEMBLY 

The objective in the probe calibration procedure is to relate the 

signal measured into a 50R termination at the bulkhead panel to the 

total electric field in the waveguide at the corresponding probe for a 

given frequency irrespective of the mode. Since it is customary to deal 

with power ratios in db, further clarification is required. 

A pure TElo mode is launched at each harmonic frequency at which the 

calibration is made. For example, the third harmonic of 2856 MHz is 

initially launched into WR 90 (standard X-band) waveguide where only the 

TElo mode can exist and gradually tapered over about ten feet up to WR 

284 (standard S-band) waveguide. The power level of the launched wave 

is measured using a 20 db directional coupler in the X-band waveguide 

ahead of the taper. The ratio of the power from the i-th probe measured 

at the bulkhead is compared with the launched TEle power giving: 

Pi 
ki =- . 

pTElo (1.1) 

The waveguide probe assembly is terminated with a 1OOW multimode 

waveguide termination during the calibration procedure. 

The maximum electric field in the matched waveguide for the dominant 

TEto mode is related to power by 

PlO 
GTEIO = = “b Jl - (Xo/2a)z 

IE nlaxTEIOJ t 4n 

where 

a q broad wall dimension, 

b = narrow wall dimension, 

7) = impedance of free space = 3778, 

(1.2) 

A0 = free space wavelength at the frequency of interest. 
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For the dominant TElo mode, the electric field at the i-th probe is 

related to the maximum electric field by 

E naxTElo sin(in/p) (1.3) 

where p is the number of spacing intervals across the waveguide. Thus 

for four probes equally spaced, p = 5. The i-index is 1, 2, 3 or 4. A 

probe inconsistent with the regular array but placed at the center would 

have to be assigned an i-index of 2.5. 

Combining Eqs. (1.11, (1.2) and (1.3) gives 

Pi GTEtOKi 
- = . 
[Eil’ sin2(in/p) (1.4) 

To calibrate the narrow wall probes it was necessary to establish a 

TEol mode using a suitable taper in height but not width from WR 137 

waveguide up to WR 284 waveguide. This mode can propagate at both the 

second and third harmonics of 2856 MHz. Equations (1.11, (1.2) and 

(1.3) now have “01” replacing the subscript “lo”, and “b” replaces “a” 

under the radical in Eq. (1.2). The narrow wall probes have i = 1 and 

P 2. = 

The characteristic impedance of the probe/feedthrough assemblies 

turned out to be a poor match to a 50R system. It was therefore 

necessary to use isolators (a different one for each harmonic frequency) 

in both the probe calibration and the high power measurement. 

The analysis also requires that the phase characteristics of each 

probe and cable assembly be known. If one were able to ensure that the 

phase shift through each assembly were identical, this part of the 

calibration procedure would not be necessary. It was found that the 

calculated phase and the measured phase at the end of each probe cable 

-7- 



varied significantly when the TElo mode was launched for calibration. 

In both the amplitude and phase calibration, the cables were considered 

part of the probe assembly. 

The phase calibration was made using the system shown in Fig. 3. A 

Watkins-Johnson M76C double balance mixer was used as the phase detector 

shown in the figure. Both the second and third harmonics of 2856 are 

well within the frequency operating range of this device. The 

calibration including the so-called “dc offset” is different for each 

frequency. The precision bridge balancing was done using a Hewlett 

Packard J885A phase shifter for the second harmonic and an HP X885A 

phase shifter for the third harmonic. 

A single wideband signal generator was used for the amplitude and 

phase calibration for both harmonics. It was necessary to use traveling 

wave tube amplifiers to obtain adequate calibration signal levels at 

each of the harmonics. 

In principle, it is necessary to know the phase relationship of all 

of the probes with respect to one another. A straightforward 

calculation relates all the broad wall probes to each other in the TElo 

calibration and all the narrow wall probes to each other in the TEcl 

calibration. Of these two probes, however, each have zero field for one 

or the other of these calibrations using the TElo or TEol modes. 

Ideally, one could solve this dilemma by launching a pure mode where the 

phase relationship between the broad and narrow walls is known. Either 

member ‘of the TEll - TM11 degenerate mode pair would be ideally suited 

for this calibration since phase relationship of the electric field 

between the broad and the narrow wall is 180° in the former case and O” 
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in the latter case. An unsuccessful attempt was made to launch either 

of these with reasonably good single mode purity. It was decided to 

assume that the phase shift through each narrow wall probe was the same 

(for the TM11 mode) as the average phase shift of the four broad wall 

probes in the same waveguide cross section. 

2. HIGH POWER MEASUREMENT 

The probe assembly was installed at the output of a SLAC XK-5 

klystron as shown in block diagram in Fig. 4. A high power load with 

reasonably good multimode capability was made by terminating a lo-foot 

long 4 db kanthal coated, water cooled, stainless steel attenuator with 

a standard SLAC high power water load. The kanthal coated attenuator 

was built at SLAC for this measurement. The VSWR of this combination 

load is less than 1.10 for the fundamental mode and less than about 1.6 

for all higher order propagating modes at the second and third 

harmonics. 

The power at the fundamental was measured using a directional coupler 

and a thermistor bridge power meter at the output of the klystron ahead 

of the multiprobe assembly. The harmonic power levels at the bulkhead 

panel were measured using an isolator, appropriate band pass filter 

combinations, and a calibrated HP 8740 broadband crystal detector. 

The relative phase of the total electric field at each probe was 

measured with respect to a constant 10 mw reference which was obtained 

from a reference probe ahead of the multiprobe assembly. Again, 

appropriate band pass filter combinations were used in both the signal 

and reference arms in the phase measurement. 
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The phase bridge uses a Watkins-Johnson M76C double balanced mixer as 

a phase detector. Precision phase shifters and attenuators in the 

waveguide size appropriate to the harmonic being measured are used in 

the reference and signal arms of the bridge. 

After initial setup and checkout, an entire set of amplitude and 

phase data can be taken in less than an hour. Another hour is required 

to input the data to the computer. 

The measured power output at the fundamental, second and third 

harmonics for a typical SLAC high power klystron is shown in Table I. 

The harmonic power is broken down into the various propagating modes. 

In this measurement and analysis the minimum number of probes to 

provide a solution were used. More probes would have reduced the error, 

especially at the third harmonic. In certain situations a small error 

in a probe reading could result in a significant error in the final 

result. In his earlier measurement, Price2 found that his high power 

measurements were repeatable within 21 db in amplitude and +2O in phase. 

The measurement technique and the equipment used in the experiment 

reported herein provided approximately the same repeatability found by 

Price. 

The coupling to the electric field of the probes in the multiprobe 

assembly turned out to be weaker than perhaps the practical optimum. 

The trade-off between high signal to noise on the one hand, and the 

possibility of electrical breakdown and mode conversion on the other, 

was tilted too far in favor of avoiding the latter. If a second 

generation probe assembly is to be built at this facility, the probes 

will have more penetration. 
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Based on the experience of others1*2*3*@*5 and on this measurement, 

the overall accuracy of measuring the power in the various propagating 

modes on SLAC klystrons is about +1.5 db. 

3. THEORY 

The probes will sample the sum of the transverse electric field 

components for all of the propagating modes. The electric field 

distribution for any TE mn or TMmn mode have the general form: 

Ex = Exe COSE] sin[y] 

E, = E,o siriF] cos[y] 
(2.1) 

using the coordinate system shown in Fig. 5. Since on the broad wall y 

is either a or b, then 

(2.2a) 

similarly on the narrow wall 

nny 
EX = ?Exo sin - I 1 b * (2.2b) 

Carrying through the broad wall analysis, the total electric field at 

any given position x is the sum of the modes which have m f 0 

rniTx 
Eyt(x) = 1 E,, sin - 

m I 1 a 

mnx mny =c R,,, sin - + j c I 
m [ I n sin - 

a m [ I 9 
a (2.3) 

where 

EY, =Rm+jIm . 
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The Fourier components R 111 and In are found as follows: Both sides of 

Eq. (2.3) are multipled by sin(Rvy/a) and integrated giving 

/iEytixi sinEI dx = i /IEym sinEI sinEI dx . 
(2.4) 

Letting u = Trx/a one obtains 

a v 

-I 
E,+(x) sinRudu = - E,, sin mu sinRudu 

lr 0 

a C Eym 
-sin(m+R)u sin(m-l)u v 

=- + 
ll 2(m+RI I 2(m-RI 0 

a c E,, sinn(m-RI 
=- 

2ll Cm-R) 

_ sinn(m+a)] . 

(m+R) (2.51 

Since both m and R are integers, the second term in Eq. (2.5) is 0. 

The first term is II for m = R and 0 for all other integers. Therefore, 

a 7i -I Eyt(x) sinRudu q - a 1 Eym 
n 0 2 m 

a 
Z-E YR Cm = RI 

2 

The left-hand side of Eq. (2.4) yields 

J~Eyt~x~ sinEI dx = pI: E,,t(xi) sinEI Axi 

(2.6) 

where 

Xi = ai/p AX i = a/p 

where p represents the number of equally divided segments along the 

(2.7) 

broad wall. 

Equation (2.4) becomes 
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pf: f Ey+[:] siriF] = % E,, 

therefore 

EY, = f Iii Ey+[t] sitiF] . 

Letting 

Eym = Rym + jIym and Eyt = Ryt + jIyt p 

one obtains the Fourier components R,, and I,, 

where 

3 ;fRy.sinE] , 

(2.8al 

(2.8b) 

(2.91 

(2.10) 

(2.11) 

ai mnx 
I,+ - = 1 I,, sin - [1 P m I 1 . 

a (2.12) 

For a solution to exist, it is necessary that m/p < 1. Therefore, 

p L 1 + Mmax. The larger the value of p, the greater 

we set p = 1 + Mmax where Mmax is equal to the number 

the broad wall at a cross section, we have the follow 

Eyt[:] = lEyt[:] exp(j$yt) = R,t + jI,t 

where 

I,t 
tan+,+ = - 

R,t 

the accuracy. If 

of probes across 

ing equat ions 

(2.13) 
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and E,t(ai/p) and #Yt are measured quantities. The Fourier quantities 

IEy,I and #ym are determined from 

IEy,iZ = lR,,l* + 11,,1* (2.14) 

1 Ym 
#Y, = tan-1 - 

Ll RY (2.15) 

Only the E, electric fields, those perpendicular to the broad wall 

have been treated thus far. For the Ex fields, those perpendicular to 

the narrow wall, the analysis is identical except that m, a, x and p are 

replaced, respectively, by n, L, Y and q. Similarly, the minimum value 

of q is ti,,* + 7. Again the larger the value of q, the greater the 

accuracy. 

The phase velocities of the propagating modes are all different 

except for the special case where degenerate mode pairs exist. We must 

now look at the variation of electric field along the waveguide in the 

direction of propagation. Specifically, measurements must be made at at 

least two cross sections in the broad wall and four cross sections in 

the narrow wall for the eleven propagating modes at the third harmonic. 

The electric field quantities Ey, expressed previously can be 

expressed by the complex equation 

EY, = C Eyan 
n (2.16) 

Using the nomenclature and method of Forrer and Tomiyasu, at each 

measurement cross section one has 
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nd 
AEyr = 1 AEy,,,n = ARyn + jAIy, 

n=O 

nd 
OE~m = C BEymn = hym + jBI,, 

n=O 

nd 
CEm = 1 ‘Eymn = Qy,,, + jcI,,, 

n=O 

. . . . . 

. . . . . 

. . . . (2.17) 

where A, 8, C, . . . . refer to respective measurement cross sections at 

which AE,, BE,, CE,r . . . . have been determined. nd is the highest n- 

index occurring in the modes under analysis. 

Separating Eq. (2.17) into real and imaginary parts one has 

nd nd 
ARym = 1 ARymn AIym = c AIyml 

n=O n=O 

“.I 
‘Rya = i$ ORymn 

n=O 

nd 
BIynl q c BIym” 

n=O 

nd 
‘Ryn = 1 C&m 

n=O 

nd 
CIya = c cJylnn 

n=O 

* . . . 
. . 

. I . (2.18) 

The quantities on the left-hand side of any one of the above equations 

can he obtained from Eq. (2.16). The right-hand side quantities at the 

K-th cross section can be related to those at A-th cross section with 

the transformation equations 

KRmn = AR mn cosernn + AI mn sinem, 

KI mn = - AR mn sine,, + AImn COSemn (2.19) 
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where 8~~ = fimn(zK - 2~1 is the electrical distance between the two 

cross sections. 

The equations (2.16) are solvable provided 8,, # Prnr where n = 

0, 1, 2, . . . . This restriction was taken into account tJhen the 

distance between waveguide cross sections was selected. 

After substituting Eq. (2.19) into (2.18) a linear system of 

equations with 2(1 + nd1 unknowns is obtained. Si'Rce the Fourier 

analysis at each cross section contributes two equations, measurements 

at 1 + nd cross sections are required. For example, when nd = 1 then 

measurements are made at 1 + nd = 2 cross sections giving 

ARy,,, = 1 ARymn = Aryan + ARyinl 
n=O 

1 
AIya = c AI ymn = AI YmO + AIyinl 

n=O 

1 
BRym = E 'Rymn = 'RymO + 'Ryn\l 

n=O 

1 
s1 ym = 1 SI yan = SI Ymo + BI ym1 

n=O 

From Eqs. (2.19) one obtains 

BR ym0 q AR ,,no cosQt110 + AI ym0 sine,0 

BI YmO = -ARy,.,,O sinem + AIya~ cosS,,,o 

BRym3 = ARym? COS~~~I + ARymq Sinem? 

“I yml = -Abn, sine,? + AIyml cosGml 

where 

e m0 = RmO(ZB - ZA) 

(2.20) 

(2.21) 

(2.221 

Subst;tuting =qs. (2.21) into (2.20) yields 
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ARim = ARymO + ARyml 

AI ym = AI YmO + AIyml 

BRyra = ARyme COsBmo + AIym~ sines0 + ARyal cosBml + AI yml sinfJml 

BIym = aARymo sinf3,O + AI ym~ CosemO - AqRyml sine,, + AI ym COS~~I 
(2.23) 

One knows ARym, AI ymr BRym and BIym from cross section measurements and 

calculations using Eqs. (2.9) and (2.10); em0 and,,., are obtained from 

Eqs. (2.221. Therefore, one can obtain the four unknown quantities 

AR ymo* AR yml J &I ym~ and AI yml from the four equations (2.23). Again 

8 m0 * em1 # 2nn. 

Eymn has now been determined. Note that Eyme = lEymolexp(j~ml 

represents the electric field phasor of the TEmt, mode only. The 

subcomponent E ylnl = iEymllexp(j@m~)r however, is the sum of the TE,l and 

TM,+ phasors and therefore is not uniquely associated with a single 

mode. 

The degenerate mode pairs TEmn and TMmn have identical phase 

velocities and contribute to the electric fields on both the broad and 

the narrow walls of the waveguide. Separating these degenerate mode 

pairs may be accomplished by correllating the broad wall and the narrow 

wall electric fields at the same waveguide cross section. The total 

field on the waveguide wall is the phasor sum of the TE and TN mode 

fields so that 

Eymn = Ey(TM,n) + Ey(TEmn) = Rymn + jIymn 

E xmn = Ex(TMmn) + Ex(TEmn) = Rxmn + jIxmn 

The Ex and Ey components are related to one another by 

(2.241 

(2.25) 

Ex(TM,,) = l/q Ey(TMmn) 

Ex(TEmnJ = -q EyCTE,nl 

uhere 

(2.26) 

(2.27) 

- 17 - 



' na 
q =- 

mb 

Eq. (2.241 can be rewritten 

(RYT” ’ jIyTM)mn -i- (RyTE + jIyTE)m, = (R, + jI,),, 

where 

R, = R, TN + RyTE 
es 

I, = I, TM + I YTE 

Substituting Eqs. (2.26) and (2.27) into Eq. (2.25) gives 

(E,),, q l/q(EyT")mn - q(EyTE)mn = (Rx + jIx)mn 

where 

Rx = f/q RYTM - q RyTE 

Ix = l/q I,TH - qIyTE - 

(2.28) 

(2.29) 

(2.30) 

(2.311 

Sy first solving the following set of equations 

RY = R,T” + R~‘TE 

I, = I, TN c I yTE 

Rx = l/q RyTH - qRyTE 

Ix = l/q I,TH - qI,TE , (2.32) 

where R,, I,, RX and IX are known from measurement and subsequent 

calcualtion, one obtains four linear equations with unknowns, RyTm, 

RY TE, 1, TM and IyTE as follows 

R, + Il/q)R, RY - qRx 
R,TM = f RY TE = 

1 + (l/q)2 1 + q2 

I, + (l/q)Ix 1, - qIx 
1, TM = t 1, TE = 

1 + (l/q)* 1 + q2 (2.33) 

The maximum electric field amplitudes and phase relationships are 
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IEbTH 

IEyTE 

2 = (RyTMJ2 + (IyTM1* 

2 = (RyTEj2 + (IyTn)2 

M , +TE 
(2.34) 

4. DETERMINING THE PROPAGATING POWER IN EACH MODE 

The average power in a given mode propagating yn the z direction is 

given by 

1 
wz = - 

2 s 

lb 
Re[i X fi*lzd5 = - 

I 2 0 

Now for any TE mode 

EX = jk,B' cos k,x sin k,v 

E, = -jkxB' sin k,x coskyy 

Hx = -Ey'ZTE 

HY = E&ZTE 

where 

nf 
B' z----B 

kofo 

mn 
kx =- 

a 

nn 
kY 

q - 

b 

Therefore, 

lb 
Hz =- 

s 2 0, 

B'2 
=- 

=TE 

a 
ReLE,H,* - E,H,*]dxdy 

0 

ET 7) 

ZTE z-z 

(3.11 

(3.2) 

HT d1 - (hoAi,)2 

2n 2n 
1, = - q 

kc dkx2 + k~2 

a k,2B'2 
cos2k,x sin2kyy + - sinzk,x cos2k,y dxdy 

0 ZTE 1 
cos2kxx sin2kyy + sin2kxx cos2kyy 

I 
d(k,x)d(k,yJ 

(3.3) 
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B'2 an msT nv 
(if n # 0) =- --- [[ II 11 22TE bm 2 2 

ab3f2B2 
wz = Jl - (f,/f)2 

8f,2 

ab?lf2B2 
= - Jl - (f&f)2 

4f,2 

Now the amplitude squared term is 

sin2kyy + -[;]E] cos2kyv] d(k,y) 

n2ky2f2B2 
IExTE12 = 

kC2fC2 

where 

k, = 

2 I 

t1-R I 11 - 

2 
(3.4) 

Cm # 0 and n f 01 or 
0 

(m = 0 or n = 0) 
(3.5) 

B 2 1 - 
b-d (3.6) 

2nf, 2 -1 1 
n = &o/E0 

C C=zG- 

Rearranging the amplitude squared equation 

Therefore, 

ab3eo 
wzTE = - 41 - (f,/f12 IExTE12 Cm and n # 01, or 

2n2c 

ab3eo 
= ~ Jl - (f,/f12 IExTE 

n2c 

(3.7) 

2 Cm or n = 0) 
(3.81 

Using the same procedure one can obtain WZTM. 

One can now set up all the linear equations for the computer 

calculation. For the broad wall measurement 
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RIU '= i Ii: Ryt[:] sin[T] 

Im = t li: Iyt[t] sin[T] 

where 

Ryt = Eyt[;] cos$j, 

I,+ = Eyt[:]/ sin+t[:], 

P = 1 + Mmax, 

a = waveguide broadwall dimension. 

For the narrow wall measurement, 

(3.9) 

2 q- 

(3.10) 

Rn =- 5 q j: 
: Rxt[:] sin[F] 

In = t qL: I,i[t] sin[F] 

where 

Rx+ q I,,,[:] cos$j, 

Ixt = /Ext[:] sinpi[t], 

q = 1 + Nmax, 

b= waveguide narrow wall dimension. 

One can set up the equations for each cross section for E, for the third 

and second harmonics, respectively. 
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I 

For the third harmonic, the eleven propagating modes are TElor TEtor 

TEol P  TEllr TMll, TE21, Tfl21, TEoo, TM31, TEa1 and TEbe. As described 

earlier, there are four CM max) broad wall probes in each of tuo (Nd + 1) 

r0W.s spaced 3.8 cm apart. Now one has four [2(Nd + 111 equations as 

follows 

&, + ‘Rfll + O’l,, + O’Iym = 

I 
O'R* + O'Rym, + ' lymo + 'Iym, = 

'R 'R ~0~8~ w + case,, ym, + sinem ymo + sine,, ym, 'I 'I = 

-sin0 'R 
moymo- 

sin8 'R ml yml + case '1 = mo Ymo 
t case '1 ml my1 

(3.111 

Nd is the highest n-index existing in degenerate mode pairs and in this 

-;ase is unity. Mmax is the highest m-index and in this case is 4. p is 

the number of segments in one row which needs to be L 1 + Mmax and in 

this case is 5. The left upper corner superscripts 1 and 2 are the 

indices of the rows. The m-index varies from 1 to 4. 
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(3.12) 

8 m0 = 13 m0 * a2 where AZ = 3.80 cm 

8 ml = R ml - a2 

C? 
I3 mn = - Jl - (f,/f)2 

C 

fc = " J(m/a12 + (nIbI 
2 

When the previous set of equations are expressed in matrix form 

[Al 2 = 3 they become 

1 1 0 0 

0 0 1 1 

cose,o COSO ml sinem sinen,, 

-sine,0 -Si ll8ml COSO m0 case m, 

For the second harmonic, the five propagating modes are TElo, TE20, 

TEol, TEll and TMII. Only two (Mmax 1 probes in each of two (Nd + 1) 

rows are required but since the measurement apparatus used forthe third 

harmonic is available to us with extra probes we can obtain greater 
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accuracy. The equations take the same form as for the third harmonic, 

noting that now m varies from 1 to 2. 

Thus far the treatment and equations have dealt only uith the two 

rows of broad wall probes and the various E,,‘s. Similarly, one obtains 

a set of Ex equations for the second and third harmonics from the four 

narrow wall probe measurements. Q 

There is one C= N nax) probe in each row and four (= Md + 11 rows 

spaced 3.80 cm apart on the narrow uall. Therefore, one has eight 

C= 2(md + 113 simultaneous equations for the third harmonic as follows 

, . 
1 

R XOll 
+ 'Rxln + 'Rxp, + 'Rx3n + O.'lxOn l O&n t O.'I,2n t O.'I,3n 

= 'RX" 

0.'Rxon t O*'Rx,n t 0.'Rx2n t 0*'Rx2n t 'IxOn t 'Ix,n t 'Ixpn + 'I,3, = 'IX" 

t~se~~'R,~~ t cose,n'Rx,n t cose2n1R,2n t cose3n'Rx3n t sineOn'I,On + s1"e,n'I,,n + sine2n'I,2n + she3n'Ix3n - *Rx, 

-s'neOn xon ' 'R - sineln 'R xln - sine2n 'R x2n - ~~~~~~~~~~~ + meOnlIxOn t cOse,nlI,,n t c0se2n'l,2n t 03se3n'I,jn = *I,, 
z 

cos2eon 'R xOn + cos*e,” 'R x,n + cos2e2” 'R x2n l c0s2e3, 'R x3n + sin2eon ‘I xOn l sin2e,n ‘I x,n + sm32n ‘I x2n + sin*e3, ‘I x3n = 3RX” 

-sinteOn 'R xOn - sin*e,0 'R x,n - sin2e2n 'R x2n - sin2830 'R x3n t c0s2eon 'I xOn t cos*e," 'I x,n t c0s2e2, 'I x2n t cos*e3, 'I x3n = 31xn 

cos3e0,,'RxOn t cos3e,n'Rx,,, t cos3e2n'Rx20 t sin3e3,'Ix3, t sin3eon'IxOn t sin3e,n’Ix,n t sin3e2,‘Ix2, t sin383,‘I,3, = 4R,n 

-sin3e 'R On xon - sifl3e,n 'R x,n - sin3e2" 'R x2n - sin3e30 'R x3n t cos3eon 'I xOn t cos3e,n 'I x,n t c0s3e2n 'I x2n t c0s3e3, 'I x3n = 41X” . 

(3.141 
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Equations (3.14) expressed in the form CA1 2 = i! becomes 

1 1 1 1 0 0 0 0 

0 0 0 0 1 1 1 1 

coseo, coseln case*, cose3, sine On sineln sinepn sine3, 

-sine On -sine," -sine2, -sine3, cOseOn cOseln cOsepn %'3n 

cos2eon c0s2e,, c0s2e2, cos2e3, sin2eon sin2e ,n sin28 En sin2ejn 

-sin2eon -sin2e,n -sin2e2n -sin2e3n cos2eon cos2e ,n c0s2e2n ~0~28~~ 

c0s3eon cos3e,n cos3e2, c0s3e3, sin3eon sin3e,n sin3e2n sin3e3n 

-sin3e On -sin38 ,n -sin3e2n -sin3ejn cos3eon cos3e,n c0s3e2n c0s3e3n 

I 

‘lR - 
xOn 

lRxln 

lRx2n 

lRx3n 

'I xOn 

II xln 

'I x2n 

'I x3n _ 

where n = 1 (N laax) and noting that the location of row number 1 on the 

narrow wall is the same as the row number 1 on the broad wall. 

For the second harmonic one needs only one (= tinax probe in each row 

and two (= Md + 1) rows such that there are four I= 2(Md + 113 

simultaneous equations as follows 

'sxn + 'Rx," + O'IxOn + O'Ixln = 'Rxn = 

"%xn + OIRxln t '1 xOn 
t ‘I xln = 'Ixn 

1 
'OseOn %xn + cose,,.,'Rxln + sineOn'IxOn + sine,,,'Ixln = 2Rxn = $ j=, 

1 
-sine0n %xn - sine,,,'R,,,, + cOseOn'IxOn + cOse,n'Ix,n = 2Ixn 

(3.16) 
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or in matrix form [Al 2 = 3 

1 1 0 0 

0 0 1 1 

COSBO'.' cosel n sineOn sin81, 

- -sinGcn -sine,, coseo n case,, - 

‘Rxon 

'RXI n 

'1X0" 

'IXlll 

- ‘Rxn - 

‘Ixrl 

2RXIl 

- 21xtl - 
(3.17) 

where Md is the highest m-index existing in a degwerate mode pair which 

in this case is unity. Nmax is the maximum n-index which in this case 

is unity. q = 1 + Nmax is the number of segments in one row and in this 

case is 2. The left upper corner superscripts 1 and 2 are the indices 

of the rows, noting that 1 refers to the same cross section as 1 on the 

broad wall. Also n = l(Nmax). As before with the broad wall data 

Rxt,[t] = /Lt,[t]l -%t,[~] 

e mrij Rmn and fo are the same as before. 

To calculate the degenerate mode pairs one can use the following as 

before 
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I 

Rymn + (l/q)Rxmn 
CR/") mn = 

1 + (l/q)2 

Rymn - qR xmn 
(RyTEIm, = 

1 + q2 

(I,T”),, = I ymn + (l/q)Ixmn 

1 ymn - q1xmt-t 
(IyTE)jgn = 

1 + 92 (3.19) 

where q = na/mb. 

Finally we have the electric field amplitudes and relative phases 

lb 1 IRY~"I~ + lI,Tn12 TM 2 = 

IEY I bYTEI + bYTEI TE 2 = 

I,TE 
gSTE = tan-1 - I 1 RY TE (3.20) 
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computer program. Using the calibration 

for each of the eleven probes were calcu 

propagating with single mode purity. Th 

modes at the second harmonic and each of 

5. CHECKING THE COMPUTER PROGRAM 

It was necessary to devise a relatively simple check on the complex 

data for the probes, the Pi's 

lated assum ing one watt of power 

is was done for each of the five 

the eleven modes at the third 

harmonic. This requires eleven each amplitude ando phase values for each 

pure mode at each harmonic or 352 values of Pi. Some debugging of the 

program was required. 

For propagating TE modes the power is given by6 

7)Z(f/f,I2 
B2 cos2kxx cos2kyy dydx 

2ZTE (4.1) 

which becomes 

for m f 0, n f 0 

ab for m # 0, n = 0 

ab for m = O,n#O . 

For propagating TM modes 

(4.2) 

Ez2dS 
C.S. 

sin*kxx sin2k,y dydx 
(4.3) 
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which becomes 

WzTM = zE]'ab = z[g2ab for m it 0, n f 0 

for m =O,n# 0 

for m # 0, n = 0 o 
(4.41 

where 

mv nfT 2nf, 2 kx =- k, q - kc2 = k,2 + k,t = - 
a b I 1 C 

n 

ZTE = 
ji 

ZTM = 7) 41 - (f,/f)2 
- (f&f)2 

The electric field configurations, kx, k, and kc are summarized in 

Table 2. 
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Table I. Multimode Power Distribution for a SLAC High Power Klystron 
in Watts (Peak) 

Tube: M-413 

Propagating Fundamental 
Node 2856 MHz 

Second Harmonic 
5712 MHz 

Third Harmonic 
8568 MHz 

TEIO 

TEzo 

TEOI 

TEII 

TM11 

T&I 

TM21 

TEso 

TESI 

TM31 

TEso 

TOTAL 

31.0 x 106 11,206* 269 

1,130 1,490 

52,570 754 

50,643 188 

8,261 450 

258 

174 

138 

93 

37 

42 

31.0 x 106 
(0 db Ref.) 

123,810 
(-24.0 db) 

3,894 
(-39.0 db) 
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Table II. E Field Summary 

EY Ex Kx KY Kc 

BX 

E,o sin- 
a 

ll 

a 

28 

f 

a 
TE1 o 

TEto 

TE3o 

TEho 

TEII 

TEZI 

J-E31 

TEol 

TM21 

TM31 

0 0 

0 

0 

0 

ll 

b 

n 

b 

II 

b 

n 

b 

R 

b 

n 

b 

ll 

b 

2nx 
E,o sin- 

a 

2s 
0 

a 

2n 
- 

a 

4n 
- 

a 

R 

a 

2A 
- 

a 

38 
- 

a 

0 

ll 

a 

2n 
- 

a 

3n 
- 

a 

a 

3llx 
E,o sin- 

a 

3n 
- 

a 
0 

4nx 
E,o sin- 

a 

4n 
0 

a 

1 1 
R 

J 
-+- 
a2 b2 

RX RY 
E,o sin- cos- 

a b 

RX RY 
Exe cos- sin- 

a b 

4 1 
ll I--- -+- 

a2 b2 

9 1 
R r -+- 

a2 bZ 

20x SY 
EYo sin- cos- 

a b 

2ax ny 
ExO CDS- sin- 

a b 

3nx BY 

E,. sin- cos- 
a b 

3llx TTY 

Exe cos- sin- 
a b 

RY 
Exe sin- 

b 

ll 

b 

1 1 
n 

J- 
--+- 
a2 b2 

0 

RX RY 
Eye sin- cos- 

a b 

RX RY 

ExO cos- sin- 
a b 

2ax RY 

E,o sin- cos- 
a b 

2nx Try 

Exe cos- sin- 
a b 

-+- 
3nx ICY 

EyO sin- cos- 
a b 

3llx RY 

E,o cos- sin- 
a b 
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FIGURE CAPTIONS 

Fig. 1. Detail of single electric field probe assembly. 

Fig. 2. MultiprobeIcable assembly. 

Fig. 3. Simplified block diagram - low power amplitude and phase 

calibration. 

Fig. 4. Simplified block diagram - high power m$asurement. 

Fig. 5. Waveguide coordinate system orientation. 
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