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ABSTRACT 

FASTBUS is a standardized modular 32-bit data-bus system for 
performing data acquisition, data processing, and control in 
high energy physics and other applications. It has been 
developed by the Fast System Design Group of the U. S. NIM 
Committee. Presented here is an overview of the FASTBUS 
hardware specification, the operation of the FASTBUS proto- 
col, the implications that the use of FASTBUS has for soft- 
ware systems, and some of the computer to FASTBUS interfaces 
developed to date. 

INTRODUCTION 

FASTBUS (Ref. 1) is a standardized modular 32-bit 
data-bus system for use in high energy physics 
research and other applications where it may be nec- 
essary to handle very high data rates in a data 
acquisition, processing, and/or control situation. 
It has been designed by members of the high energy 
physics research community under the auspices of the 
U.S. NIM committee. Financial support has come from 
the Department of Energy. The primary design goal 
has been to create a standard that facilitates the 
implementation of very high speed data acquisition 
and data processing systems. This has been met by 
devising a system which provides for the parallel 
operation of many processors on independent bus seg- 
ments, but which also allows the segments to link 
together to pass data between devices throughout the 
system. 

Some other design goals have been: 

extensibility - The standard should not preclude 
the use of new technologies; and for the future, 
established FASTBUS systems should be easily modi- 
fied and extended. 
flexibility - A system should be able to accomo- 
date very high speed and very low speed devices, 
various network topologies, various addressing 
modes (the sending of commands to one device or 
many devices, with or without handshakes). 
modularity - The standard should encourage the 
development of modular system components which can 
be used in many applications. 
maintainability - The basic components of FASTBUS 
should be maintainable (that is, they should be 
built out of readily available and multiply 
sourced parts) and the problems of a system in 
operation should be diagnosable and repairable 
without requiring that the entire system be taken 
down. 

A few of the features designed into FASTBUS as a 
result of considering these (and other) goals 
include: 32-bit device addresses, 32-bit internal 
device addresses, and 32-bit data units, all multi- 
plexed on one set of 32 address/data lines; a 
diversified communications protocol with provisions 
for a variety of address and data transfer modes and 

synchronous and asynchronous communications; mechan- 
ical and electrical specifications; and various fea- 
tures to facilitate the development of software. 

FASTBUS HARDWARE 

The communications medium for a FASTBUS system is 
the set of signal lines known as the BUS. An elec- 
trically independent bus unit is known as a SEGMENT. 
FASTBUS devices can be connected together by a cable 
which contains the bus and the segment is then 
called a CABLE SEGMENT; or, grouped together into a 
crate with a backplane which contains the bus and 
the segment is then called a CRATE SEGMENT. 
19-inch FASTBUS crate (Figure 1) which can hold ui 
to 26 modules is an example of a crate segment. The 
cable segment bus has just 60 signal lines, whereas 
the backplane segment bus has the basic 60 as well 
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Figure 1: A 19-Inch FASTBUS Crate 
with a Kludge Card in Slot 6 

* Work supported by the Department of Energy, con- 
tract DE-ACO3-76SFOO515. 
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as other signal and power lines. Figure 2 lists the 
signal lines and their identifiers. The backplane 
segment specification has also allowed for an 
optional auxiliary connector with up to 195 pins. 

. I 
/ 

Signal Lines Common to Cable and Crate Segments 

Mnemonic Signal Name 
AS Address Sync 
AK 
EG 
MS 
RD 
AD 
PA 
PE 
ss 
DS 
DK 
WT 
SR 
RB 
BH 
AG 
AL 
AR 
AI 
GK 

Address Acknowledge 
Enable Geographic 
Mode Select (3 lines) 
Read 
Address/Data (32 lines) 
Parity 
Parity Enable 
Slave Status (3 lines) 
Data Sync 
Data Acknowledge 
Wait 
Service Request 
Reset Bus 
Bus Halted 
Arbitrtation Grant 
Arbitration Level (6 lines) 
Arbitration Request 
Arbitration Request Inhibit 

-Grant Acknowledge 

Additional Crate Segment Signal Lines 

Mnemonic Signal Name 
TX Serial Transmit 
Rx Serial Receive 
TP T Pin 
GA Geographical Address (5 pins) 

Other voltage busses, digital & 
analog returns, daisy chain 6 
returns, and reserved pins 
(62 pins) 

Figure 2: FASTBUS Signals 

Each segment is required to have ancillary logic, 
which contains the ARBITRATION TIMING CONTROL (ATC), 
GEOGRAPHIC ADDRESS CONTROL (GAC), terminators, sys- 
tem handshake logic, and bus RUN/HALT logic. The 
ATC circuitry resolves contention for use of the 
local bus segment. The GAC circuitry assists with 
the geographic addressing of devices on the segment. 

A FASTBUS module is a FASTBUS device which is 
built on a FASTBUS MODULE CIRCUIT BOARD (MCB). When 
a module is plugged into any slot in an FASTBUS 
crate, it must connect to the crate segment and 
respond to the FASTBUS protocol. The module circuit 
board is approximately 367 millimeters high by 403 
millimeters deep. Figure 1 shows a FASTBUS crate 
with a KLUDGE CARD (for wire-wrapping prototype mod- 
ules) inserted in slot 6. The kludge card can acco- 
modate approximately 300 16-pin IC equivalents. 

There are two categories of FASTBUS modules: MAS- 
TERS and SLAVES. A master module is one which can 
gain control (MASTERSHIP) of a segment and initiate 
operations on that segment. A slave module cannot 
gain mastership of any segment. It can only assert 
information on a segment in response to a specific 
request by a master. However slave modules can 

request servicing by asserting the SERVICE REQUEST 
(SR) line. The specification requires that all mas- 
ters have some slave capabilities. These will be 
discussed below. 

It is usually desireable to protect module con- 
trol functions (such as internal enables, disables, 
and clears) so that it is not easy to unintention- 
ally invoke them. To facilitate this, the standard 
has specified two separate internal device subdivi- 
sions. They are known as DATA SPACE and CONTROL 
SPACE. Each must be accessed via an explicit 
address cycle. In addition, several basic control, 
status, and information registers (contained in con- 
trol space) have had their locations specified in 
the standard. 

Various recommended and mandatory device features 
have been included in the specification to facili- 
tate the creation of standardized software for han- 
dling FASTBUS systems. One requirement is that 
every module be accessable by its physical location 
on a segment. This is known as GEOGRAPHICAL 
ADDRESSING. On a crate segment there are 5 coded 
pins which enable each slot in the crate segment 
(and hence the module in that slot) to be uniquely 
addressed. On a cable segment, each device must 
have a set of switches which can be set to indicate 
the device's geographical address. 

Another specification is the explicit definition 
of-certain CONTROL and STATUS REGISTERS (CSRs) in 
control space. One of the mandatory CSRs is CSR 0. 
CSR 0, when read, must return the ID (type or model 
number) of the device. CSR 0 together with the geo- 
graphic addressing feature makes it possible to 
identify each device on a segment and hence generate 
a map of an entire FASTBUS system which can be used 
to verify a system's configuration. 

The implementation of CSR 3 is highly recom- 
mended. CSR 3 is defined to be a register which 
holds a 32-bit software settable address known as 
the LOGICAL ADDRESS. A logical address has three 
variable width fields (totaling 32-bits). The most 
significant field is known as the group field and is 
basically a segment address. The middle field is 
the module address field. The least significant 
field is the internal address field for specifying 
an address internal to the module. Once CSR 3 is 
loaded and the logical address recognition capabil- 
ity of the device is enabled, the device can be 
addressed by asserting this address instead of the 
geographic address. One advantage of logical 
addressing is that it allows the allocation of 
blocks of address space to modules. The logical 
address can then include internal address informa- 
tion which selects a part of a module. Geographic 
addressing can only select the module as a whole. 
Another advantage of logical addressing is that the 
module can be relocated within a segment (and possi- 
bly even the system) without any changes in the 
software applications programs, if the programs 
address slave devices via logical addresses. 

Two segments may be connected together with a 
SEGMENT INTERCONNECT (SI) (Ref. 2). An SI monitors 
the activity on the two segments it connects. When 
an address which is recognized by the SI appears on 
one of the segments (called the SI's NEAR SIDE 
because it is electrically nearest the master 
asserting the address), the SI responds by obtaining 
use of the bus on the other segment to which it is 
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attached (the FAR SIDE), and then it asserts the 
address there. Device addresses may thus be propa- 
gated through many segments in this manner, until 
the segment on which the addressed device resides is 
reached. Note that each SI contains a look-up table 
which must be loaded with the addresses the SI is to 
recognize. 

THE FASTBUS PROTOCOL 

The FASTBUS protocol is the set of rules by which 
the devices utilize the bus signal lines for commu- 
nication in the system. There are basically 3 parts 
to a FASTBUS operation: arbitration for bus master- 
ship, master/slave address lock establishment, and 
the data transfer cycles. 

Arbitration for Bus Mastership 

Only one master can utilize the bus of a segment 
at any time. The Arbitration procedure (controlled 
by the ATC logic) resolves any contention for the 
use of a segment bus. The FASTBUS signal lines used 
in the arbitration are: 

AR - arbitration request 
AG - arbitration grant 
AL - arbitration level (6 lines) 
GK - grant acknowledge 
AI - arbitration inhibit 

A simplified explanation (the AI line is ignored 
here for simplicity) of the arbitration sequence 
(Figure 3) is as follows: 

- 

1. All masters requesting mastership of a segment 
assert the AR line. 

2. The ATC recognizes the arbitration requests and, 
at the appropriate time, asserts AG which is an 
arbitration synchronization signal. 

3. Each master which is participating in the arbi- 
tration then asserts its arbitration vector (CSR 
8) on the 6 AL lines. A master's arbitration 
vector is its priority (and must have been ini- 
tialized). During arbitration, each arbitrating 
master compares its internal arbitration level, 
bit,by bit, with the level on the bus. If the 
bus level is higher, each master removes any 
lower order bits that it has asserted. When the 
ATC lowers the AG line, the master whose ALs 
match the ALs on the bus wins mastership. The 
winning master asserts GK to take mastership of 
the segment. 

* AG 15 generated when the bus IS clear. 
., a. 

Figure 3: Lines Asserted During 
Arbitration 

Establishing the Address Lock 

After a master has obtained mastership, it must 
establish a connection to the device(s) with which 

it is going to communicate. This is known as estab- 
lishing the AS-AK lock. 

The FASTBUS timing, control, and address/data 
lines used in the establishment of the AS-AK lock 
are: 

AS - address sync 
AK - address acknowledge 
MS - mode select (3 lines: MS<2:0>) 
AD - address/data lines 
SS - slave status (3 lines: SS<2:0>) 
EG - enabled geographic 
PA - Parity 
PE - Parity Enable 

Each device may have two separate address spaces 
(control and data space). The MS lines are used to 
indicate which address space is being accessed. It 
is also possible for a master to address more than 
one slave at a time. When more than one slave is 
begin addressed at a time, the master is said to be 
doing a BROADCAST. The SINGLE-LISTENER or broadcast 
state is also indicated via the MS lines. Figure 4 
lists the MS codes and their meaning at address 
cycle time. 

1 MS<2:0> SIGNIFICANCE 

I O 
data space - specific device 

1 control space - specific device 

-I 
2 data space - broadcast 

1 2:; 
control space - broadcast 
reserved - specific device 

I - 
reserved - broadcast 

I Figure 4: Address Type Specification 
+-------------------------------------------+ 

The master initiates the address cycle (Figure 5) 
by asserting the address of the slave on the AD 
lines, asserting the MS code for the kind of address 
cycle desired on the MS lines, and finally asserting 
the AS line. The slave, upon recognizing its 
address, asserts the AK line, and the AS-AK lock is 
then established. Note that the EG line is used to 
indicate whether an address is a geographic address 
(EG=l) or a logical address (EG=O). The GAC ancil- 
lary logic monitors the address cycles on a segment 
and generates EG accordingly. The SS lines are used 
to indicate various connection conditions. They are 
set by the slave before AK is generated if the con- 
nection was sucessful but troubled, or by the SI 
(who will generate AK) if there is a network failure 
and the address can not be propagated to the next 
segment. Figure 6 details the SS codes at address 
time. 

GK * 

MS 

ADS 

AS 

AK 
s \ . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . -. 

-@ Optionally, GK can Be 
lorered here 
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Figure 5: Address Cycle 
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+---------------------------------------------+ 
I 
I ss<2:0> SIGNIFICANCE 
l-7r---- address recognized 

1 
f 2 

network busy 
network failure 

/ 4;5 
network abort 
reserved 
invalid internal address (IA) 

/ 7 
in logical address - IA rejected 1 
invalid internal address 
in logical address - IA accepted 

I Figure 6: Address Time SS Responses 
+--------------------------------------------+ 

Data Transfer Cycles 

Once the AS-AK lock is established, the master 
can proceed with the data transfer cycles. The sig- 
nal lines used in the data transfer cycles are: 

DS - data sync 
DK - data acknowledge 
MS - mode select (3 lines: MS<2:0>) 
AD - data lines 
ss - slave status (3 lines: SS<2:0>) 
PA - parity 
PE - parity enable 
RD - read (data transfer direction) 

There are several different ways in which data 
can be transferred, as well as two different kinds 
of data which can be transferred. The MS lines are 
used to indicate the mode as well as the kind of 
data. Each module has an internal address register. 
This internal address can be written via a logical 
address cycle, and, read or written via a data 
cycle. Data transfer methods include handshake 
block transfers, random data cycle tranfers, and 
pipelined data transfers. The direction of transfer 
is controlled by the RD line. If RD=l, then the 
master is asking that the slave assert data for the 
master to read. If RD=O then the master is assert- 
ing data for the slave to process. Figure 7 lists 
the MS codes and their meanings for the data cycle. 

+---------------------------------------------~ 
I MS<O:2> SIGNIFICANCE 

0 
t 1 

random data cycle 
handshake block transfer 

2 secondary address (IA) 
I 
; 4:6 

pipelined block transfer 
reserved 

7 reserved - pipelined 
I 

Figure 7: MS Codes for Data Cycles I 
+---------------------------------------------~ 

Any combination of data cycles (which a slave and 
master are equipped to handle) can be concatenated 
together to perform the transfer of information 
between the two modules. 

The master initiates the data cycle by: 

1. asserting: MS to indicate the type of data 
transfer which is to be performed, RD to indi- 
cate the direction of the data transfer, and in 
the case of a write, the data on the AD lines; 

2. and then asserting DS. 

The slave responds to the initiated data cycle by 

1. reading the RD line to determine the direction 
of the information transfer, decoding the MS 
lines to ascertain the type of data cycle, 

2. then executing internally the indicated func- 
tion, and, for a read, asserting the data on the 
AD lines. If the slave detects an error, it 
asserts an error code on the SS lines. 

3. The slave then completes the data cycle hand- 
shake by asserting DK. 

An example of data cycle concatenation is shown 
in Figures 8 and 9. A normal address cycle, such as 
displayed in Figure 5, must have been sucessfully 
completed. 

Figure 8, section A shows a secondary address 
cycle which is used to set the internal address reg- 
ister in the slave module. The address contained in 
the IA register is the address of the location in 
the slave module where the next data written to the 
module will be placed, or where the data for the 
next read will be taken from. 

Figure 8, section B, shows a random data write 
cycle. The master asserts MS=O, the data on the AD 
lines, and DS=l. The slave, after processing, 
returns DK=l. The master then drops DS, the slave 
drops DK, and the master proceeds to the next cycle. 

MS/MS-Z> 1 

ADsO<, 

DK 

AS AK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SectIon A section B 

Extended Address Cycle : Random Data Cycle 
II b‘ (WrIteI (write) 4418Al 

Figure 8: Write Cycle Examples 

Figure 9, sections A,B, and C, show an example of 
a handshake block transfer read. Note that in the 
secondary address and random data cycles, DS must be 
dropped at the completion of each cycle. In a hand- 
shake block transfer (MS=l) every change in DS is 
used to indicate another data cycle. 

MS J’ MS= I ~ MS= I 

. . .c_ . . . . . ,.. . . . . . . . . . i 
ADs ..~...~.;~..~...n.,~...~.::::::::~::::::::~~~=~:u: .,,.., / :~::I?::-: , 

AK 
. . . . . . . . . . . . . . . . . . . . . . ..~................~...................~............ 

I / / O:... 
Section A SectIon B section c 
15’ Cycle ~ 2 nd 

I I Sectlon D 

11 82 cycle , 3’d cycle MastershIp 
a45814 Handshake Block Reod I Release 

/ 

Figure 9: Handshake Block Read 
and AS-AK Lock Termination 
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Mastership Release 

Once a master has obtained mastership, it can 
perform any combination of address and data cycles 
needed to complete its task, as long as it retains 
the GK assertion. However, it is permissable to 
release the GK line (as in Figure 5) as soon as the 
AS-AK lock is established, if the master is not 
going to perform any more address cycles. Master- 
ship of the bus is released when the master has set 
AS=0 and GK=O. When the slave sees APO, it removes 
AK (Figure 9, section D). 

SOFTWARE IMPLICATIONS OF FASTBUS 

From early on it was clear that sophisticated 
software tools were going to be needed to handle 
complex FASTBUS systems. In early 1979, the soft- 
ware arm of the Fast System Design Group, called the 
Software Working Group (SWG) was formed. Its main 
function has been to define the issues inherent in 
handling FASTBUS systems, tackle SOME of those 
issues, and to work closely with the hardware group 
in defining hardware features which can aid in the 
development of software. 

Early in 1979, the SWG tackled the subject of 
initializing a FASTBUS system. As indicated earlier 
in this paper, there are several options, registers 
(e.g., logical address, arbitration priorities), 
memories and other control features (including the 
SI route maps) which must be initialized before a 

FASTBLJS system is operational. The system initiali- 
zation subject will be examined here by looking at a 
hypothetical example. 

Figure 10 shows a hypothetical FASTBUS system. 
The left side of the figure illustrates the topology 
of the data acquisition portion of the system. The 
right side illustrates a control system portion. 
Imagine the following: 

+ The host computer reads data out of module S(l,l) 
when it is notified by S(l,l) that data is ready. 
(SC1 ,I) asserts the SR line to notify the host). 
The host computer also reads various environmental 
parameters out of S(3,l) at regular timed inter- 
vals, or when notified via a interrupt message 
from master M(3,l) that it should. S(l,l) and 
S(3,l) could be memory modules. 

+ M(2,l) reads the data from the data_ acquisition 
portion of the system (segments S4, S5, and S6), 
reads environmental parameters from S(3,1), pro- 
cesses that information, and writes its results 
into S(l,l) which is connected to M(2,l) via a 
non-FASTBUS bus. 

+ M(3,l) is responsible for collecting the environ- 
mental parameters from the control portion of the 
system and storing them in S(3,l). 

+ M(7,l) monitors and controls the part of the con- 
trol system attached to segment S7. 

+ M(8,l) and M(8,2) work together handling the S8 
segment. 

+ All masters are programmable and can be reprogram- 
med if necessary to meet changing conditions. 

"2,3 

Figure 10: A Hypothetical FASTBUS Data Acquisition and Control System 
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In this system, the following are some of the 
items which would need initialization: 

+ SIS must be initialized and loaded with route 
maps. 

+ Modules must have their logical address registers 
(CSR 3) loaded and the logical address recognition 
enabled. 

+ Masters must have their arbitration priorities 
(CSR 8) loaded. 

+ Masters must have their programs downloaded. 
+ The entire system must be started and synchron- 

ized. 

The recommendations developed by the SWG for han- 
_ dling the initialization entail the following: 

+ There should be one computer attached to a FASTBUS 
system which is identified as the HOST computer. 
The host is responsible for managing the system. 
This entails initializing the system and perhaps 
performing other run-time jobs such as maintaining 
an error log and verifying that the system is com- 
pletely operational. Of course, the host can also 
perform other functions such as data taking and 
analysis! 

+ A data base should be created on the host. It 
should contain- the information needed to manage 
the system, such as: types and locations of all 
modules in the system, address space requirements, 
which modules need to have programs downloaded 
(and maybe the pointers to the programs), internal 
module registers that need to be initialized, 
information on-system topology, and desired mes- 
sage and broadcast routes. It may also contain 
certain traffic projections such as the amount of 
activity expected on a segment for each event. 

+ There-should be access, display, and editing meth- 
ods for the data base. 

+ There should be available a program which performs 
an analysis of the information in the data base. 
This program determines the optimal message 
routes, allocates address space to the segments 
and the modules on them, and creates the tables 
(route maps) which are downloaded into the SIs. 

+ In general, it is recommended that programs (which 
are downloaded into masters) address slave modules 
in a symbolic address independent fashion. Once 
all modules are allocated addresses, it is then 
necessary to resolve these symbolic addresses. 
This is referred to as the linking problem. This 
problem is yet to be effectively solved although 
the SWG has several ideas. 

+ Finally, there should be a program which downloads 
the system, SI by SI, segment by segment, module 
by module. 

A lot of effort has been put into studying the 
system initialization subject by the SWG. Several 
algorithms have been developed to handle it. These 
include a routing algorithm, an address space allo- 
cation algorithm, and an algorithm for systemati- 

cally loading all the initialization information 
into a system. A feasibility implementation (Ref. 
3) was done in 1979, and currently Fermi National 
Accelerator Laboratory (FNAL) is designing a system 
management software package (Ref. 4) and implement- 
ing the algorithms in FORTRAN. 

One thing that became clear when the SWG first 
started studying the various FASTBUS software top- 
ics, was that a common communications language was 
needed. When coding for the operating system and 
bus interface level, it may be difficult to write 
general purpose code which can be widely shared, as 
that code must often be done in assembly language 
and is very computer specific. However at the 
higher coding levels (such as implementing a system 
loading algorithm and in many instances the applica- 
tions program level) it is feasible and desireable 
to write transportable and sharable code. Over the 
past year work has been done on defining a set of 
Standard Subroutines for FASTBUS (Ref. 5) and they 
will soon be published. 

In any FASTBUS system there are several control, 
status, and information elements contained in the 
control space of modules which are common to many 
modules. The SWG has studied these and developed 
recommendations for standard assignments for many of 
them. It is hoped that these efforts will facili- 
tate the development of code modules which can be 
shared among many FASTBUS systems. 

The SWG meetings have also served as a forum for 
the discussion of many hardware and software ideas 
and developments. These discussions have proved 
very valuable, and a FASTBUS Software Resource Guide 
(Ref. 6) is currently being developed. It will 
include an overview of the various FASTBUS software 
packages available, of the issues of managing 
FASTBUS systems, of various computer/FASTBUS inter- 
faces, mandatory and recommended module features, 
and other miscellaneous information such as good 
practices and conventions. 

There are still other topics to be studied. The 
data base, its creation, display, access and editing 
has not been solved. Currently some members of the 
community are exploring commercially available data 
base packages (including DEC's Datatrieve) for a 
solution. FASTBUS system simulation has only been 
briefly mentioned. It would certainly be handy to 
be able to create a data base for a system under 
design and run a simulation of that system to check 
for traffic loading and bus contention problems. 
The linking problem mentioned earlier, serial net- 
work protocols, buffered interconnect (an asynchro- 
nous method of passing messages between devices) 
message, formats, and many others still need to be 
solved, defined, or resolved. It is envisioned that 
the FASTBUS Software Resource Guide will evolve and 
be periodically updated to pass along the informa- 
tion on these and other topics related to FASTBUS. 
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COMPUTER TO FASTBUS INTERFACES 

Over the past two years various computer to 
FASTBUS interfaces have been developed. 

I/O Register to FASTBUS Interface (IORFI) 

The Input/Output Register to FASTBUS Interface 
(IORFI) (Ref. 7) is a computer-non-specific inter- 
face. It can be used to connect any computer (which 
has parallel I/O ports and associated strobes) to a 
FASTBLJS backplane segment. The FASTBUS backplane 
interface is built on a single module circuit board. 
It is connected to a computer by two 16-bit parallel 
input registers and two 16-bit parallel output reg- 

- isters. IORFIs have been used extensively in the 
checkout of other interfaces, SIs, and FASTBUS mod- 
ules in Canada, Europe, and the United States. 

UNIBUS Processor Interface (UPI) - 

The UNIBUS Processor Interface (UPI) (Ref. 8) is 
a list driven, microcoded interface for connecting a 
UNIBUS machine to a FASTBUS system. The UPI allows 
a processor on the UNIBUS to execute any FASTBUS 
operation (except pipelined transfers), to transfer 
data between the UNIBUS and a FASTBLJS system, and to 
detect errors. The UPI can also respond to FASTBUS 
interrupts and service requests. UPIs have been 
used (Ref. 9) in an experiment at Fermi National 
Accelerator Laboratory (FNAL) to take data, and at 
the University of Illinois in the checkout of the 
segment interconnects. Currently there is also a 
project in progress to attach a VAX to FASTBUS via a - 
UPI. 

VAX-FASTBUS Interface 

A FASTBUS host interface (Refs. 10,ll) for VAXs 
has also been developed. It is a list processing 
microprocessor controlled interface, and has been 
constructed by a connection to the VAX DR-32 Device 
Interconnect (DDI) implemented via the DEC DR-780 
channel. It is described in detail in another paper 
in these proceedings. 

Other Microprocessor-FASTBUS Interfaces 

There are several other FASTBUS interfaces which 
have been developed (or are under development). The 
KEK National Laboratory for High Energy Physics at 
Hiroshima University in Japan (Ref. 12) and the 
European Organization for Nuclear Research (CERN) in 
Geneva, Switzerland (Ref. 13) are two research cen- 
ters which are very active in FASTBUS development. 

SOFTWARE 

Over the past two years during the prototype 
development phase, various software packages have 
been developed for diagnostic and test-bench situ- 
ations. The FASTBUS Diagnostic Language (FDL) (Ref. 
14) was developed at the University of Illinois. It 
is a high-level, conversational language designed to 
provide quick software access to FASTBUS hardware 
for diagnostic purposes. It has been heavily used 
in the development and checkout of the segment 
interconnects. It also contains extensive slave 
simulation code for the IORFI. 

At SLAC, FORTH (Ref. 15) has been chosen as the 
test-bench language. The FASTBUS Diagnostic Operat- 
ing System (FBDOS) (Ref. 16) is a package of FORTH 
words which provides a set of versatile commands for 
accessing FASTBUS. It is intended primarily for use 
in prototype module checkout, production module 
testing, and module diagnostics. 

There have been at least four implementations of 
the Standard Subroutines for FASTBUS. The first 
one, implemented at FNAL for the PDP-11 UNIBUS Pro- 
cessor Interface has actually been used for a data 
acquisition applications program in an experiment 
there (Ref. 17). Currently FNAL is'adapting their 
standard subroutine package to work with the VAX-UP1 
connection. 

CERN has' implemented a set of FORTRAN routines 
(Ref. 18) based on the Standard Subroutines for 
FASTBUS and a computer co7lnection to the IORFIs via 
CAMAC . This package utilizes the NIM/ESONE Standard 
CAMAC Subroutines and is currently running on the 
NORSK-DATA computers under BASIC/FORTRAN and on 
PDP-11s under CATYIFORTRAN. 

An implementation of the Standard Subroutines was 
done at Brookhaven early in 1982 for the VAX-FASTBUS 
Interface. 

THE FASTBUS SNOOP 

The FASTBUS SNOOP (Ref. 19) is a special diagnos- 
tic module which is currently under development. It 
has a very fast front end "silo" which allows it to 
make a record of the FASTBUS operations on a segment 
and thus serve as a logic analyzer. The Snoop will 
also be able act as a master on a system. A series 
of Snoops in system will‘ be connected via a serial 
network and thus be able to operate independently of 
FASTBUS. At least one of the Snoops in a system will 
have a sophisticated workstation (Ref. 20) attached 
to it. A user sitting at that workstation will be 
able to communicate with the other Snoops and thus 
diagnose trouble throughout the system. 

CONCLUSION 

The FASTBUS standard has been under development 
for several years. The specification has now been 
finalized. During the development of FASTBUS, con- 
siderable thought has also been given to the soft- 
ware implications. The desires of the software peo- 
ple have occasionally conflicted with the desire of 
the hardware people for a simple and low-cost hard- 
ware specification. However, in most instances, 
acceptable compromises have been found which hope- 
fully will keep the real overall system implementa- 
tion cost down. 

ACKNOWLEDGMENTS 

The information presented here is condensed from 
many sources. Where practical, references have been 
given. The work described in this paper was done by 
a very large team of people from Canada, Europe, and 
the United States. It is impractical to list all the 
team members here. In particular, I wish to thank 
Dave Gustavson, Ray Larsen, and Leo Paffrath for 
their encouragement and support of my interest in 
FASTBUS. 

-7- 



REFERENCES 

1. FASTBUS Modular High Speed Data Acquisition 
System for High Energy Physics and other Applica- 
tions, Tentative Specification, U.S. NIM Committee, 
June 1982. 

2. The FASTBUS Segment Interconnect, R. Downing 
and M. Haney, IEEE Transactions on Nuclear Science, 
NS-29, No. 1 (1982), page 94. 

3. Software for Managing Multicrate FASTBUS Sys- 
tems, S. Deiss and D.B. Gustavson; to be published 
in the IEEE Transactions on Nuclear Science, Febru- 
ary 1983. 

4. FASTBUS Software Progress, D. Gustavson, 
SLAC-PUB-2996, P.O. Box 4349, Stanford, CA 94305. 

5. Standard Subroutines for FASTBUS, FASTBUS 
Software Working Group, Ruth Pordes (Editor), FNAL, 
P. 0. Box 500, Batavia, Illinois 60510. 

6. FASTBUS Software Resource Guide, Richard 
Brown (Editor), Department of Physics, University of 
Illinois, Urbana, Illinois 61801. 

7. Input/Output Register to FASTBUS Interface, 
C.A. Logg and L; Paffrath, SLAC-PUB-2972, to be pub- 
lished in the IEEE Transactions on Nuclear Science, 
February 1983. 

8. A UNIBUS Processor Interface for a FASTBUS 
Data Acquisition System, M. Larwill, E. Barsotti, 
T.D. Lagerlund,L.M. Taff, and J. Franzen, IEEE 
Transactions on Nuclear Science, Volume NS-28, No. 1 
(1981), page 385. 

9. Data Collection form FASTBUS to a PDP-11 
through the UNIBUS Processor Interface, M. Larwill, 
et.al., to be published in the IEEE Transactions on 
Nuclear Science, February 1983. 

10. FASTBUS Host Interface for VAX/VMS, E. J. 
Siskind, to be published in the IEEE Transactions on 

Nuclear Science, February 1983. 

11. FASTBUS VAX Host Interface for VMS, E. J. 
Siskind, published in these proceedings. 

12. A Status Report of FASTBUS at KEK, Y. Arai, 
KEK, National Laboratory for High Energy Physics, 
Hiroshima 730, Japan; to be published in the IEEE 
Transactions on Nuclear Science, February 1983. 

13. Status of FASTBUS in Europe, H. Verweij, to 
be published in the IEEE Transactions on Nuclear 
Science, February 1983. 

14. FASTBUS Diagnostic Language (FDL) Reference 
Manual for the UNIBUS Processor Interface, Sept. 
1982, Dave Lesny, Seth Abraham, Steve Coffman, Keith 
Nater, Loomis Laboratory of Physics, University of 
Illinois, Urbana, Illinois 61801. 

15. SLAC ELD LSI-11 FORTH User's Guide, August 
1982, Connie Logg, SLAC, P.O. Box 4349, Stanford, 
California 94305. 

16. FASTBUS Diagnostic Operating System (FBDOS), 
August 1982, Connie Logg, SLAC, P.O. Box 4349, Stan- 
ford, California, 94305. 

17. Standard Subroutines for FASTBUS and their 
Implementation for a PDP-11 RT-11 System, using the 
UNIBUS Processor Interface, R. Pordes, to be 
published in the IEEE Transactions on Nuclear Sci- 
ence, February 1983. 

18. CERN Software for FASTBUS, E. M. Rimmer, DD 
Division, CERN, 1211 Geneve 23, Switzerland. 

19. FASTBUS Snoop Diagnostic Module, H.W. Walz, 
IEEE Transactions on Nuclear Science, Volume NS-28, 
No. 1 (1981), page 380. 

20. A "Front Panel" Human Interface for FASTBUS, 
D. Gustavson, T.L. Holmes, L. Paffrath, and J. Stef- 
fani, IEEE Transactions on Nuclear Science, Volume 
NS-28, No. 1 (1981), page 343. 

-8- 


