
XX-PUB-3008
November 1982
(1)

AN INTRODUCTION TO FASTBUS *

C. A. Logg
Electronics Department

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

ABSTRACT

FASTBUS is a standardized modular 32-bit data-bus system for
performing data acquisition, data processing, and control in
high energy physics and other applications. It has been
developed by the Fast System Design Group of the U. S. NIM
Committee. Presented here is an overview of the FASTBUS
hardware specification, the operation of the FASTBUS proto-
col, the implications that the use of FASTBUS has for soft-
ware systems, and some of the computer to FASTBUS interfaces
developed to date.

INTRODUCTION

FASTBUS (Ref. 1) is a standardized modular 32-bit
data-bus system for use in high energy physics
research and other applications where it may be nec-
essary to handle very high data rates in a data
acquisition, processing, and/or control situation.
It has been designed by members of the high energy
physics research community under the auspices of the
U.S. NIM committee. Financial support has come from
the Department of Energy. The primary design goal
has been to create a standard that facilitates the
implementation of very high speed data acquisition
and data processing systems. This has been met by
devising a system which provides for the parallel
operation of many processors on independent bus seg-
ments, but which also allows the segments to link
together to pass data between devices throughout the
system.

Some other design goals have been:

extensibility - The standard should not preclude
the use of new technologies; and for the future,
established FASTBUS systems should be easily modi-
fied and extended.
flexibility - A system should be able to accomo-
date very high speed and very low speed devices,
various network topologies, various addressing
modes (the sending of commands to one device or
many devices, with or without handshakes).
modularity - The standard should encourage the
development of modular system components which can
be used in many applications.
maintainability - The basic components of FASTBUS
should be maintainable (that is, they should be
built out of readily available and multiply
sourced parts) and the problems of a system in
operation should be diagnosable and repairable
without requiring that the entire system be taken
down.

A few of the features designed into FASTBUS as a
result of considering these (and other) goals
include: 32-bit device addresses, 32-bit internal
device addresses, and 32-bit data units, all multi-
plexed on one set of 32 address/data lines; a
diversified communications protocol with provisions
for a variety of address and data transfer modes and

synchronous and asynchronous communications; mechan-
ical and electrical specifications; and various fea-
tures to facilitate the development of software.

FASTBUS HARDWARE

The communications medium for a FASTBUS system is
the set of signal lines known as the BUS. An elec-
trically independent bus unit is known as a SEGMENT.
FASTBUS devices can be connected together by a cable
which contains the bus and the segment is then
called a CABLE SEGMENT; or, grouped together into a
crate with a backplane which contains the bus and
the segment is then called a CRATE SEGMENT.
19-inch FASTBUS crate (Figure 1) which can hold ui
to 26 modules is an example of a crate segment. The
cable segment bus has just 60 signal lines, whereas
the backplane segment bus has the basic 60 as well

11-82 44lr3i\6

Figure 1: A 19-Inch FASTBUS Crate
with a Kludge Card in Slot 6

* Work supported by the Department of Energy, con-
tract DE-ACO3-76SFOO515.

(Contributed to the 1982 Fall DECUS U.S. Symposium, Anaheim, California, December 6-10, 1982)

as other signal and power lines. Figure 2 lists the
signal lines and their identifiers. The backplane
segment specification has also allowed for an
optional auxiliary connector with up to 195 pins.

. I
/

Signal Lines Common to Cable and Crate Segments

Mnemonic Signal Name
AS Address Sync
AK
EG
MS
RD
AD
PA
PE
ss
DS
DK
WT
SR
RB
BH
AG
AL
AR
AI
GK

Address Acknowledge
Enable Geographic
Mode Select (3 lines)
Read
Address/Data (32 lines)
Parity
Parity Enable
Slave Status (3 lines)
Data Sync
Data Acknowledge
Wait
Service Request
Reset Bus
Bus Halted
Arbitrtation Grant
Arbitration Level (6 lines)
Arbitration Request
Arbitration Request Inhibit

-Grant Acknowledge

Additional Crate Segment Signal Lines

Mnemonic Signal Name
TX Serial Transmit
Rx Serial Receive
TP T Pin
GA Geographical Address (5 pins)

Other voltage busses, digital &
analog returns, daisy chain 6
returns, and reserved pins
(62 pins)

Figure 2: FASTBUS Signals

Each segment is required to have ancillary logic,
which contains the ARBITRATION TIMING CONTROL (ATC),
GEOGRAPHIC ADDRESS CONTROL (GAC), terminators, sys-
tem handshake logic, and bus RUN/HALT logic. The
ATC circuitry resolves contention for use of the
local bus segment. The GAC circuitry assists with
the geographic addressing of devices on the segment.

A FASTBUS module is a FASTBUS device which is
built on a FASTBUS MODULE CIRCUIT BOARD (MCB). When
a module is plugged into any slot in an FASTBUS
crate, it must connect to the crate segment and
respond to the FASTBUS protocol. The module circuit
board is approximately 367 millimeters high by 403
millimeters deep. Figure 1 shows a FASTBUS crate
with a KLUDGE CARD (for wire-wrapping prototype mod-
ules) inserted in slot 6. The kludge card can acco-
modate approximately 300 16-pin IC equivalents.

There are two categories of FASTBUS modules: MAS-
TERS and SLAVES. A master module is one which can
gain control (MASTERSHIP) of a segment and initiate
operations on that segment. A slave module cannot
gain mastership of any segment. It can only assert
information on a segment in response to a specific
request by a master. However slave modules can

request servicing by asserting the SERVICE REQUEST
(SR) line. The specification requires that all mas-
ters have some slave capabilities. These will be
discussed below.

It is usually desireable to protect module con-
trol functions (such as internal enables, disables,
and clears) so that it is not easy to unintention-
ally invoke them. To facilitate this, the standard
has specified two separate internal device subdivi-
sions. They are known as DATA SPACE and CONTROL
SPACE. Each must be accessed via an explicit
address cycle. In addition, several basic control,
status, and information registers (contained in con-
trol space) have had their locations specified in
the standard.

Various recommended and mandatory device features
have been included in the specification to facili-
tate the creation of standardized software for han-
dling FASTBUS systems. One requirement is that
every module be accessable by its physical location
on a segment. This is known as GEOGRAPHICAL
ADDRESSING. On a crate segment there are 5 coded
pins which enable each slot in the crate segment
(and hence the module in that slot) to be uniquely
addressed. On a cable segment, each device must
have a set of switches which can be set to indicate
the device's geographical address.

Another specification is the explicit definition
of-certain CONTROL and STATUS REGISTERS (CSRs) in
control space. One of the mandatory CSRs is CSR 0.
CSR 0, when read, must return the ID (type or model
number) of the device. CSR 0 together with the geo-
graphic addressing feature makes it possible to
identify each device on a segment and hence generate
a map of an entire FASTBUS system which can be used
to verify a system's configuration.

The implementation of CSR 3 is highly recom-
mended. CSR 3 is defined to be a register which
holds a 32-bit software settable address known as
the LOGICAL ADDRESS. A logical address has three
variable width fields (totaling 32-bits). The most
significant field is known as the group field and is
basically a segment address. The middle field is
the module address field. The least significant
field is the internal address field for specifying
an address internal to the module. Once CSR 3 is
loaded and the logical address recognition capabil-
ity of the device is enabled, the device can be
addressed by asserting this address instead of the
geographic address. One advantage of logical
addressing is that it allows the allocation of
blocks of address space to modules. The logical
address can then include internal address informa-
tion which selects a part of a module. Geographic
addressing can only select the module as a whole.
Another advantage of logical addressing is that the
module can be relocated within a segment (and possi-
bly even the system) without any changes in the
software applications programs, if the programs
address slave devices via logical addresses.

Two segments may be connected together with a
SEGMENT INTERCONNECT (SI) (Ref. 2). An SI monitors
the activity on the two segments it connects. When
an address which is recognized by the SI appears on
one of the segments (called the SI's NEAR SIDE
because it is electrically nearest the master
asserting the address), the SI responds by obtaining
use of the bus on the other segment to which it is

-2-

attached (the FAR SIDE), and then it asserts the
address there. Device addresses may thus be propa-
gated through many segments in this manner, until
the segment on which the addressed device resides is
reached. Note that each SI contains a look-up table
which must be loaded with the addresses the SI is to
recognize.

THE FASTBUS PROTOCOL

The FASTBUS protocol is the set of rules by which
the devices utilize the bus signal lines for commu-
nication in the system. There are basically 3 parts
to a FASTBUS operation: arbitration for bus master-
ship, master/slave address lock establishment, and
the data transfer cycles.

Arbitration for Bus Mastership

Only one master can utilize the bus of a segment
at any time. The Arbitration procedure (controlled
by the ATC logic) resolves any contention for the
use of a segment bus. The FASTBUS signal lines used
in the arbitration are:

AR - arbitration request
AG - arbitration grant
AL - arbitration level (6 lines)
GK - grant acknowledge
AI - arbitration inhibit

A simplified explanation (the AI line is ignored
here for simplicity) of the arbitration sequence
(Figure 3) is as follows:

-

1. All masters requesting mastership of a segment
assert the AR line.

2. The ATC recognizes the arbitration requests and,
at the appropriate time, asserts AG which is an
arbitration synchronization signal.

3. Each master which is participating in the arbi-
tration then asserts its arbitration vector (CSR
8) on the 6 AL lines. A master's arbitration
vector is its priority (and must have been ini-
tialized). During arbitration, each arbitrating
master compares its internal arbitration level,
bit,by bit, with the level on the bus. If the
bus level is higher, each master removes any
lower order bits that it has asserted. When the
ATC lowers the AG line, the master whose ALs
match the ALs on the bus wins mastership. The
winning master asserts GK to take mastership of
the segment.

* AG 15 generated when the bus IS clear.
., a.

Figure 3: Lines Asserted During
Arbitration

Establishing the Address Lock

After a master has obtained mastership, it must
establish a connection to the device(s) with which

it is going to communicate. This is known as estab-
lishing the AS-AK lock.

The FASTBUS timing, control, and address/data
lines used in the establishment of the AS-AK lock
are:

AS - address sync
AK - address acknowledge
MS - mode select (3 lines: MS<2:0>)
AD - address/data lines
SS - slave status (3 lines: SS<2:0>)
EG - enabled geographic
PA - Parity
PE - Parity Enable

Each device may have two separate address spaces
(control and data space). The MS lines are used to
indicate which address space is being accessed. It
is also possible for a master to address more than
one slave at a time. When more than one slave is
begin addressed at a time, the master is said to be
doing a BROADCAST. The SINGLE-LISTENER or broadcast
state is also indicated via the MS lines. Figure 4
lists the MS codes and their meaning at address
cycle time.

1 MS<2:0> SIGNIFICANCE

I O
data space - specific device

1 control space - specific device

-I
2 data space - broadcast

1 2:;
control space - broadcast
reserved - specific device

I -
reserved - broadcast

I Figure 4: Address Type Specification
+---+

The master initiates the address cycle (Figure 5)
by asserting the address of the slave on the AD
lines, asserting the MS code for the kind of address
cycle desired on the MS lines, and finally asserting
the AS line. The slave, upon recognizing its
address, asserts the AK line, and the AS-AK lock is
then established. Note that the EG line is used to
indicate whether an address is a geographic address
(EG=l) or a logical address (EG=O). The GAC ancil-
lary logic monitors the address cycles on a segment
and generates EG accordingly. The SS lines are used
to indicate various connection conditions. They are
set by the slave before AK is generated if the con-
nection was sucessful but troubled, or by the SI
(who will generate AK) if there is a network failure
and the address can not be propagated to the next
segment. Figure 6 details the SS codes at address
time.

GK *

MS

ADS

AS

AK
s \
. -.

-@ Optionally, GK can Be
lorered here

11 62 4165A,

Figure 5: Address Cycle

-3-

+---+
I
I ss<2:0> SIGNIFICANCE
l-7r---- address recognized

1
f 2

network busy
network failure

/ 4;5
network abort
reserved
invalid internal address (IA)

/ 7
in logical address - IA rejected 1
invalid internal address
in logical address - IA accepted

I Figure 6: Address Time SS Responses
+--+

Data Transfer Cycles

Once the AS-AK lock is established, the master
can proceed with the data transfer cycles. The sig-
nal lines used in the data transfer cycles are:

DS - data sync
DK - data acknowledge
MS - mode select (3 lines: MS<2:0>)
AD - data lines
ss - slave status (3 lines: SS<2:0>)
PA - parity
PE - parity enable
RD - read (data transfer direction)

There are several different ways in which data
can be transferred, as well as two different kinds
of data which can be transferred. The MS lines are
used to indicate the mode as well as the kind of
data. Each module has an internal address register.
This internal address can be written via a logical
address cycle, and, read or written via a data
cycle. Data transfer methods include handshake
block transfers, random data cycle tranfers, and
pipelined data transfers. The direction of transfer
is controlled by the RD line. If RD=l, then the
master is asking that the slave assert data for the
master to read. If RD=O then the master is assert-
ing data for the slave to process. Figure 7 lists
the MS codes and their meanings for the data cycle.

+---~
I MS<O:2> SIGNIFICANCE

0
t 1

random data cycle
handshake block transfer

2 secondary address (IA)
I
; 4:6

pipelined block transfer
reserved

7 reserved - pipelined
I

Figure 7: MS Codes for Data Cycles I
+---~

Any combination of data cycles (which a slave and
master are equipped to handle) can be concatenated
together to perform the transfer of information
between the two modules.

The master initiates the data cycle by:

1. asserting: MS to indicate the type of data
transfer which is to be performed, RD to indi-
cate the direction of the data transfer, and in
the case of a write, the data on the AD lines;

2. and then asserting DS.

The slave responds to the initiated data cycle by

1. reading the RD line to determine the direction
of the information transfer, decoding the MS
lines to ascertain the type of data cycle,

2. then executing internally the indicated func-
tion, and, for a read, asserting the data on the
AD lines. If the slave detects an error, it
asserts an error code on the SS lines.

3. The slave then completes the data cycle hand-
shake by asserting DK.

An example of data cycle concatenation is shown
in Figures 8 and 9. A normal address cycle, such as
displayed in Figure 5, must have been sucessfully
completed.

Figure 8, section A shows a secondary address
cycle which is used to set the internal address reg-
ister in the slave module. The address contained in
the IA register is the address of the location in
the slave module where the next data written to the
module will be placed, or where the data for the
next read will be taken from.

Figure 8, section B, shows a random data write
cycle. The master asserts MS=O, the data on the AD
lines, and DS=l. The slave, after processing,
returns DK=l. The master then drops DS, the slave
drops DK, and the master proceeds to the next cycle.

MS/MS-Z> 1

ADsO<,

DK

AS AK .
SectIon A section B

Extended Address Cycle : Random Data Cycle
II b‘ (WrIteI (write) 4418Al

Figure 8: Write Cycle Examples

Figure 9, sections A,B, and C, show an example of
a handshake block transfer read. Note that in the
secondary address and random data cycles, DS must be
dropped at the completion of each cycle. In a hand-
shake block transfer (MS=l) every change in DS is
used to indicate another data cycle.

MS J’ MS= I ~ MS= I

. . .c_ ,.. i
ADs ..~...~.;~..~...n.,~...~.::::::::~::::::::~~~=~:u: .,,.., / :~::I?::-: ,

AK
. ..~................~...................~............

I / / O:...
Section A SectIon B section c
15’ Cycle ~ 2 nd

I I Sectlon D

11 82 cycle , 3’d cycle MastershIp
a45814 Handshake Block Reod I Release

/

Figure 9: Handshake Block Read
and AS-AK Lock Termination

-h-

Mastership Release

Once a master has obtained mastership, it can
perform any combination of address and data cycles
needed to complete its task, as long as it retains
the GK assertion. However, it is permissable to
release the GK line (as in Figure 5) as soon as the
AS-AK lock is established, if the master is not
going to perform any more address cycles. Master-
ship of the bus is released when the master has set
AS=0 and GK=O. When the slave sees APO, it removes
AK (Figure 9, section D).

SOFTWARE IMPLICATIONS OF FASTBUS

From early on it was clear that sophisticated
software tools were going to be needed to handle
complex FASTBUS systems. In early 1979, the soft-
ware arm of the Fast System Design Group, called the
Software Working Group (SWG) was formed. Its main
function has been to define the issues inherent in
handling FASTBUS systems, tackle SOME of those
issues, and to work closely with the hardware group
in defining hardware features which can aid in the
development of software.

Early in 1979, the SWG tackled the subject of
initializing a FASTBUS system. As indicated earlier
in this paper, there are several options, registers
(e.g., logical address, arbitration priorities),
memories and other control features (including the
SI route maps) which must be initialized before a

FASTBLJS system is operational. The system initiali-
zation subject will be examined here by looking at a
hypothetical example.

Figure 10 shows a hypothetical FASTBUS system.
The left side of the figure illustrates the topology
of the data acquisition portion of the system. The
right side illustrates a control system portion.
Imagine the following:

+ The host computer reads data out of module S(l,l)
when it is notified by S(l,l) that data is ready.
(SC1 ,I) asserts the SR line to notify the host).
The host computer also reads various environmental
parameters out of S(3,l) at regular timed inter-
vals, or when notified via a interrupt message
from master M(3,l) that it should. S(l,l) and
S(3,l) could be memory modules.

+ M(2,l) reads the data from the data_ acquisition
portion of the system (segments S4, S5, and S6),
reads environmental parameters from S(3,1), pro-
cesses that information, and writes its results
into S(l,l) which is connected to M(2,l) via a
non-FASTBUS bus.

+ M(3,l) is responsible for collecting the environ-
mental parameters from the control portion of the
system and storing them in S(3,l).

+ M(7,l) monitors and controls the part of the con-
trol system attached to segment S7.

+ M(8,l) and M(8,2) work together handling the S8
segment.

+ All masters are programmable and can be reprogram-
med if necessary to meet changing conditions.

"2,3

Figure 10: A Hypothetical FASTBUS Data Acquisition and Control System

-5-

In this system, the following are some of the
items which would need initialization:

+ SIS must be initialized and loaded with route
maps.

+ Modules must have their logical address registers
(CSR 3) loaded and the logical address recognition
enabled.

+ Masters must have their arbitration priorities
(CSR 8) loaded.

+ Masters must have their programs downloaded.
+ The entire system must be started and synchron-

ized.

The recommendations developed by the SWG for han-
_ dling the initialization entail the following:

+ There should be one computer attached to a FASTBUS
system which is identified as the HOST computer.
The host is responsible for managing the system.
This entails initializing the system and perhaps
performing other run-time jobs such as maintaining
an error log and verifying that the system is com-
pletely operational. Of course, the host can also
perform other functions such as data taking and
analysis!

+ A data base should be created on the host. It
should contain- the information needed to manage
the system, such as: types and locations of all
modules in the system, address space requirements,
which modules need to have programs downloaded
(and maybe the pointers to the programs), internal
module registers that need to be initialized,
information on-system topology, and desired mes-
sage and broadcast routes. It may also contain
certain traffic projections such as the amount of
activity expected on a segment for each event.

+ There-should be access, display, and editing meth-
ods for the data base.

+ There should be available a program which performs
an analysis of the information in the data base.
This program determines the optimal message
routes, allocates address space to the segments
and the modules on them, and creates the tables
(route maps) which are downloaded into the SIs.

+ In general, it is recommended that programs (which
are downloaded into masters) address slave modules
in a symbolic address independent fashion. Once
all modules are allocated addresses, it is then
necessary to resolve these symbolic addresses.
This is referred to as the linking problem. This
problem is yet to be effectively solved although
the SWG has several ideas.

+ Finally, there should be a program which downloads
the system, SI by SI, segment by segment, module
by module.

A lot of effort has been put into studying the
system initialization subject by the SWG. Several
algorithms have been developed to handle it. These
include a routing algorithm, an address space allo-
cation algorithm, and an algorithm for systemati-

cally loading all the initialization information
into a system. A feasibility implementation (Ref.
3) was done in 1979, and currently Fermi National
Accelerator Laboratory (FNAL) is designing a system
management software package (Ref. 4) and implement-
ing the algorithms in FORTRAN.

One thing that became clear when the SWG first
started studying the various FASTBUS software top-
ics, was that a common communications language was
needed. When coding for the operating system and
bus interface level, it may be difficult to write
general purpose code which can be widely shared, as
that code must often be done in assembly language
and is very computer specific. However at the
higher coding levels (such as implementing a system
loading algorithm and in many instances the applica-
tions program level) it is feasible and desireable
to write transportable and sharable code. Over the
past year work has been done on defining a set of
Standard Subroutines for FASTBUS (Ref. 5) and they
will soon be published.

In any FASTBUS system there are several control,
status, and information elements contained in the
control space of modules which are common to many
modules. The SWG has studied these and developed
recommendations for standard assignments for many of
them. It is hoped that these efforts will facili-
tate the development of code modules which can be
shared among many FASTBUS systems.

The SWG meetings have also served as a forum for
the discussion of many hardware and software ideas
and developments. These discussions have proved
very valuable, and a FASTBUS Software Resource Guide
(Ref. 6) is currently being developed. It will
include an overview of the various FASTBUS software
packages available, of the issues of managing
FASTBUS systems, of various computer/FASTBUS inter-
faces, mandatory and recommended module features,
and other miscellaneous information such as good
practices and conventions.

There are still other topics to be studied. The
data base, its creation, display, access and editing
has not been solved. Currently some members of the
community are exploring commercially available data
base packages (including DEC's Datatrieve) for a
solution. FASTBUS system simulation has only been
briefly mentioned. It would certainly be handy to
be able to create a data base for a system under
design and run a simulation of that system to check
for traffic loading and bus contention problems.
The linking problem mentioned earlier, serial net-
work protocols, buffered interconnect (an asynchro-
nous method of passing messages between devices)
message, formats, and many others still need to be
solved, defined, or resolved. It is envisioned that
the FASTBUS Software Resource Guide will evolve and
be periodically updated to pass along the informa-
tion on these and other topics related to FASTBUS.

-6-

COMPUTER TO FASTBUS INTERFACES

Over the past two years various computer to
FASTBUS interfaces have been developed.

I/O Register to FASTBUS Interface (IORFI)

The Input/Output Register to FASTBUS Interface
(IORFI) (Ref. 7) is a computer-non-specific inter-
face. It can be used to connect any computer (which
has parallel I/O ports and associated strobes) to a
FASTBLJS backplane segment. The FASTBUS backplane
interface is built on a single module circuit board.
It is connected to a computer by two 16-bit parallel
input registers and two 16-bit parallel output reg-

- isters. IORFIs have been used extensively in the
checkout of other interfaces, SIs, and FASTBUS mod-
ules in Canada, Europe, and the United States.

UNIBUS Processor Interface (UPI) -

The UNIBUS Processor Interface (UPI) (Ref. 8) is
a list driven, microcoded interface for connecting a
UNIBUS machine to a FASTBUS system. The UPI allows
a processor on the UNIBUS to execute any FASTBUS
operation (except pipelined transfers), to transfer
data between the UNIBUS and a FASTBLJS system, and to
detect errors. The UPI can also respond to FASTBUS
interrupts and service requests. UPIs have been
used (Ref. 9) in an experiment at Fermi National
Accelerator Laboratory (FNAL) to take data, and at
the University of Illinois in the checkout of the
segment interconnects. Currently there is also a
project in progress to attach a VAX to FASTBUS via a -
UPI.

VAX-FASTBUS Interface

A FASTBUS host interface (Refs. 10,ll) for VAXs
has also been developed. It is a list processing
microprocessor controlled interface, and has been
constructed by a connection to the VAX DR-32 Device
Interconnect (DDI) implemented via the DEC DR-780
channel. It is described in detail in another paper
in these proceedings.

Other Microprocessor-FASTBUS Interfaces

There are several other FASTBUS interfaces which
have been developed (or are under development). The
KEK National Laboratory for High Energy Physics at
Hiroshima University in Japan (Ref. 12) and the
European Organization for Nuclear Research (CERN) in
Geneva, Switzerland (Ref. 13) are two research cen-
ters which are very active in FASTBUS development.

SOFTWARE

Over the past two years during the prototype
development phase, various software packages have
been developed for diagnostic and test-bench situ-
ations. The FASTBUS Diagnostic Language (FDL) (Ref.
14) was developed at the University of Illinois. It
is a high-level, conversational language designed to
provide quick software access to FASTBUS hardware
for diagnostic purposes. It has been heavily used
in the development and checkout of the segment
interconnects. It also contains extensive slave
simulation code for the IORFI.

At SLAC, FORTH (Ref. 15) has been chosen as the
test-bench language. The FASTBUS Diagnostic Operat-
ing System (FBDOS) (Ref. 16) is a package of FORTH
words which provides a set of versatile commands for
accessing FASTBUS. It is intended primarily for use
in prototype module checkout, production module
testing, and module diagnostics.

There have been at least four implementations of
the Standard Subroutines for FASTBUS. The first
one, implemented at FNAL for the PDP-11 UNIBUS Pro-
cessor Interface has actually been used for a data
acquisition applications program in an experiment
there (Ref. 17). Currently FNAL is'adapting their
standard subroutine package to work with the VAX-UP1
connection.

CERN has' implemented a set of FORTRAN routines
(Ref. 18) based on the Standard Subroutines for
FASTBUS and a computer co7lnection to the IORFIs via
CAMAC . This package utilizes the NIM/ESONE Standard
CAMAC Subroutines and is currently running on the
NORSK-DATA computers under BASIC/FORTRAN and on
PDP-11s under CATYIFORTRAN.

An implementation of the Standard Subroutines was
done at Brookhaven early in 1982 for the VAX-FASTBUS
Interface.

THE FASTBUS SNOOP

The FASTBUS SNOOP (Ref. 19) is a special diagnos-
tic module which is currently under development. It
has a very fast front end "silo" which allows it to
make a record of the FASTBUS operations on a segment
and thus serve as a logic analyzer. The Snoop will
also be able act as a master on a system. A series
of Snoops in system will‘ be connected via a serial
network and thus be able to operate independently of
FASTBUS. At least one of the Snoops in a system will
have a sophisticated workstation (Ref. 20) attached
to it. A user sitting at that workstation will be
able to communicate with the other Snoops and thus
diagnose trouble throughout the system.

CONCLUSION

The FASTBUS standard has been under development
for several years. The specification has now been
finalized. During the development of FASTBUS, con-
siderable thought has also been given to the soft-
ware implications. The desires of the software peo-
ple have occasionally conflicted with the desire of
the hardware people for a simple and low-cost hard-
ware specification. However, in most instances,
acceptable compromises have been found which hope-
fully will keep the real overall system implementa-
tion cost down.

ACKNOWLEDGMENTS

The information presented here is condensed from
many sources. Where practical, references have been
given. The work described in this paper was done by
a very large team of people from Canada, Europe, and
the United States. It is impractical to list all the
team members here. In particular, I wish to thank
Dave Gustavson, Ray Larsen, and Leo Paffrath for
their encouragement and support of my interest in
FASTBUS.

-7-

REFERENCES

1. FASTBUS Modular High Speed Data Acquisition
System for High Energy Physics and other Applica-
tions, Tentative Specification, U.S. NIM Committee,
June 1982.

2. The FASTBUS Segment Interconnect, R. Downing
and M. Haney, IEEE Transactions on Nuclear Science,
NS-29, No. 1 (1982), page 94.

3. Software for Managing Multicrate FASTBUS Sys-
tems, S. Deiss and D.B. Gustavson; to be published
in the IEEE Transactions on Nuclear Science, Febru-
ary 1983.

4. FASTBUS Software Progress, D. Gustavson,
SLAC-PUB-2996, P.O. Box 4349, Stanford, CA 94305.

5. Standard Subroutines for FASTBUS, FASTBUS
Software Working Group, Ruth Pordes (Editor), FNAL,
P. 0. Box 500, Batavia, Illinois 60510.

6. FASTBUS Software Resource Guide, Richard
Brown (Editor), Department of Physics, University of
Illinois, Urbana, Illinois 61801.

7. Input/Output Register to FASTBUS Interface,
C.A. Logg and L; Paffrath, SLAC-PUB-2972, to be pub-
lished in the IEEE Transactions on Nuclear Science,
February 1983.

8. A UNIBUS Processor Interface for a FASTBUS
Data Acquisition System, M. Larwill, E. Barsotti,
T.D. Lagerlund,L.M. Taff, and J. Franzen, IEEE
Transactions on Nuclear Science, Volume NS-28, No. 1
(1981), page 385.

9. Data Collection form FASTBUS to a PDP-11
through the UNIBUS Processor Interface, M. Larwill,
et.al., to be published in the IEEE Transactions on
Nuclear Science, February 1983.

10. FASTBUS Host Interface for VAX/VMS, E. J.
Siskind, to be published in the IEEE Transactions on

Nuclear Science, February 1983.

11. FASTBUS VAX Host Interface for VMS, E. J.
Siskind, published in these proceedings.

12. A Status Report of FASTBUS at KEK, Y. Arai,
KEK, National Laboratory for High Energy Physics,
Hiroshima 730, Japan; to be published in the IEEE
Transactions on Nuclear Science, February 1983.

13. Status of FASTBUS in Europe, H. Verweij, to
be published in the IEEE Transactions on Nuclear
Science, February 1983.

14. FASTBUS Diagnostic Language (FDL) Reference
Manual for the UNIBUS Processor Interface, Sept.
1982, Dave Lesny, Seth Abraham, Steve Coffman, Keith
Nater, Loomis Laboratory of Physics, University of
Illinois, Urbana, Illinois 61801.

15. SLAC ELD LSI-11 FORTH User's Guide, August
1982, Connie Logg, SLAC, P.O. Box 4349, Stanford,
California 94305.

16. FASTBUS Diagnostic Operating System (FBDOS),
August 1982, Connie Logg, SLAC, P.O. Box 4349, Stan-
ford, California, 94305.

17. Standard Subroutines for FASTBUS and their
Implementation for a PDP-11 RT-11 System, using the
UNIBUS Processor Interface, R. Pordes, to be
published in the IEEE Transactions on Nuclear Sci-
ence, February 1983.

18. CERN Software for FASTBUS, E. M. Rimmer, DD
Division, CERN, 1211 Geneve 23, Switzerland.

19. FASTBUS Snoop Diagnostic Module, H.W. Walz,
IEEE Transactions on Nuclear Science, Volume NS-28,
No. 1 (1981), page 380.

20. A "Front Panel" Human Interface for FASTBUS,
D. Gustavson, T.L. Holmes, L. Paffrath, and J. Stef-
fani, IEEE Transactions on Nuclear Science, Volume
NS-28, No. 1 (1981), page 343.

-8-

