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ABSTRACT 

The real-time behavior of true-vacuum bubbles nucleated in the 

false-vacuum background is studied in a Q4 -theory. Classically, the 

bubble expansion rate has been known to approach the velocity of light 

asymptotically. A quantum effect, creation of Higgs and fermion pairs, 

is studied by a semiclassical method, and is shown to lead to a slower 

expansion rate. Within the thin-wall approximation, several possible 

asymptotic behaviors are examined. A solution that behaves like the 

classical one but with different coefficients is shown to be stable, 

The first order corrections to the coefficients are calculated approxi- 

mately. The created Higgs pairs are found to remain inside the bubble 

and carry an energy of approximately 10B3 X of the energy released from 

the false vacuum. The fermions that are massless in the false vacuum 

go out of the bubble and have energy N 10 -3 g2 
, where g is the Yukawa 

coupling constant. It is shown that the resulting asymptotic state 

is Lorentz-invariant. 
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1. Introduction 

In recent years there has been a growing interest in the very early 

universe in connection with the grand unified theories of the elementary 

particles, In most of the grand unified models, the symmetry of the 

theory is restored above a critical temperature Tc of the order of the 

grand unifying scale - 10 14-15 GeV Cl]: at such a high temperature, the 

state with zero expectation value of the Higgs field tends to have the 

lower free energy than states with nonzero Higgs expectation value. There- 

fore, the very early universe experiences a phase transition from the 

symmetric phase to a nonsymmetric phase as it expands and cools down to 

a temperature below Tc. This phase transition may occur via nucleation 

of bubbles of the nonsymmetric phase in the symmetric background, their - 

eventual expansion and coalescence. 

The nucleation mechanism for a phase transition was initially studied 

by Volosin and others [2] in a model of a real Higgs field Q. Their model 

has a potential U(q) with two minima, Q+ and q-, the former being meta- 

stable and the latter stable with U(cp,)-U(q)-) 5 E > 0 (see figure 1). 

This model abstracts the real situation at a temperature less than T-. 

Assuming that bubbles have thin walls, that is, <cp> = cp- inside the 

bles and <cp> = 'p+ outside, they gave the energy Eb of such a bubble 

tive to the homogeneous, i.e., complete stable vacuum: 

c 
bub- 

rela- 

Eb = 
4nS1R2 

m- 

- R3 4Trs 
3 (1.1) 

. 
where R(t) is the radius of the bubble in the c.m. frame and R - dR/dt. 

The first term includes the surface-tension and the Lorentz factor due to 
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the motion of the wall. Sl is the rest energy of the bubble wall per unit 

area. The second term is the energy gain due to the difference in the 

energy density between the stable and the meta-stable vacua. They assumed 

that the bubble energy Eb is conserved, E b = 0, and obtained a following 

classical solution, 

R"(t) = (1.2) 

where R. = 3Sl/s is the radius of the bubble at rest (t= 0). Therefore, 

once a bubble is created it blows up as t + 00. This is because all the 

energy released from the false vacuum is used to accelerate the wall. 

Coleman and Callan C3,4l have studied essentially the same model using 

the path integral formalism and gave the prescription for the calculation 

of the-nucleation rate. Coleman [31 has also shown that the behavior 

(1.2) of the bubble wall is reproduced by the solution of the classical 

field equation, and noted that no excitations of the Higgs field, i.e., 

no Higgs particles are left inside the bubble ("no roiling sea of mesons"). 

The nucleation rate at finite temperature was first studied by Linde C5l. 

Guth and others 161 have discussed a possible scenario of the phase 

transition, via nucleation of the bubbles as mentioned above, in the 

early universe. They showed that the horizon and the flatness problems 

are avoided if the nucleation rate is small enough that the universe 

undergoes an exponential expansion, R(t) 0: e xt , where the expansion rate 

x is given by C(8~rj3) Gpo$ in terms of the energy density p. of the meta- 

stable state. In this scenario, the primordial monopole problem is also 

solved because the universe is dominated by a few large bubbles. A dif- 

ficulty of this scenario is that if Coleman's conclusion of no "roiling 

sea of mesonstl is to be believed, then the energy of meta-stable vacua 
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should be released only when the walls of the few large bubbles collide. 

This leads to a large scale inhomogeneity and anisotropy [71, Linde CSI 

has also pointed out that for the horizon and the flatness problems to be 

actually solved in this scenario, the period of the exponential expansion 

has to be so long that the transition temperature has to be unrealistically 

small. To avoid these difficulties, several other scenarios have been 

proposed C8,91. 

It should be noted that Volosin et al., and Coleman's argument on 

the real-time behavior of a bubble is a classical one. One of the possible 

quantum phenomena is pair production. There is no reason to believe that 

particles that couple to the Higgs field are not created by violent ex- 

panding bubbles. If particles are created, then the energy carried by 

the created pairs has to be included in the energy conservation law. In 

fact, some fluctuations of the Higgs field around- the background of the 

bubble expanding as (1.2) have been shown to grow [lo]. This indicates 

that particle creation may have a significant effect on the behavior of 

the bubble expansion. Since Coleman's conclusion is one of the bases of 
* 

constructing the scenario for the very early universe, it is important 

to take quantum effects into account and to see whether the energy obtained 

by the conversion is still concentrated on the wall and whether the bubble 

still expands as (1.2). 

The purpose of this paper is to study the effect of pair creation on 

the behavior of the bubble expansion in a Aq4 -theory with a fermion field. 

* 
For example, matter creation, regardless of its cause, tends to suppress 
the supercooling. From this viewpoint, the pair creation due to the 
gravitational effect of the exponential expansion were studied by 
Horibe and Hosoya Clll. 
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Specifically, by using a semiclassical method, we study the self-consistent 

behavior of the bubble expansion in the asymptotic region, t + 03. We ob- 

tain that the energy released from the false vacuum is distributed to the 

wall, the created Higgs particles and the created fermions according to a 

ratio that is constant in time. The ratio is given to the first nontrivial 

orders of the coupling constants of the model. We find that the created 

Higgs particles remain inside the bubble (see figure 3). 

2. The model and the method 

The classical bubble expansion (1.2) was obtained from the energy 

conservation law (1.1). In presence of pair creation, equation (1.1) 

becomes 

0 = Eb(T) + E'(T) , (2.1) 

where E'(T) is the total energy carried by the pairs at time T. If we 

assume that the bubble is still parametrized by R(t), (2.1) would lead to 

a self-consistent equation for R(t), whose solution should yield a slower 

expansion rate than (1.2). However, the self-consistent equation so ob- 

tained is nonlocal and nonlinear, and thus seems difficult to be solved. 

Therefore, we limit ourselves to study the leading asymptotic behaviour 

of E'(T) for several possible asymptotic behaviours of R(t). Then, by 

looking at the energy balance (2.1), we find possible self-consistent 

asymptotic R(t). This limit is nevertheless interesting, because the 

asymptotic behaviour of the bubble expansion is important for cosmolog- 

ical problems. 

In this paper, we study the model with a single real Higgs field Q 

and a fermion field $ of spin %. The action of the Higgs field is the 
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same as the one used by Coleman C31, 

$, = /d4+ (alllp)z - U(Q) 1 . (2.2) 

In order that the theory be renormalizable, the potential U(Q) is a 

forth order polynomial in cp, which, up to a constant, is parametrized 

as follows, 

U(q) = $ (p2- a2 ( ) 2 EO 
+ 2a (p-4 ' (2.3) 

where A, a and E are positive. For small Ed, the minima of the above 

potential are, 

&O 
% 

=-t-a-- 
2Aa3 

(2.4) 

The meta-stable state 'p+ is called the false vacuum, and the stable state 

.(Q- the true vacuum. The energy density difference between the true and 

the false vacuum is equal to eO at the lowest order of the eo-expansion, 

E z  u(q)+) - u(cp-) = y) + O &:,  

0 
l 

Coleman has shown that for small so, the action (2.2) is minimized 

by the following solution, 

cpc'(t,r) w atanh 

for r< RCR(t) 

ll(m-Ro) 
+ 0 EO 

( > cl 
2 for r-R (t) (2.5) 

i ‘p+ for r > R"(t) 

where u : afl and R. E p3/Ae 0' Since 
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p(lh- Ro) N 'y [r-Rce(t)] + 0 [r-R(t)12 . 

the classical solution (2.5) gives the thickness of the wall 1j1.1~ at 

time t to be 

(2.6) 

Therefore, the thin-wall approximation is valid when 

4 
l<<Rop = k . 

0 

The time dependence of the wall thickness (2.6) can be understood as the 

result of a Lorentz contraction. In fact, at any time t, 

(2.7) 

is satisfied by R(t) = RcL(t). 

We assume that pair creation only changes the expansion rate and 

not the shape of the bubble except for the factor of the Lorentz contrac- 

tion in the wall thickness. It seems plausible to expect that the bubble 

would keep its shape, because a wider surface costs energy. Furthermore, 

if a shape is distorted, the deformed area would tend to create more pairs 

than a plain spherical surface. This effect would tend to reduce the 

distortion. According to the above assumption, the expectation value of 

the scalar field (pb for any r is expressed in terms of R(t) as follows, 

Qb = atanh &R(t)) + O(E ) 
2 0 (2.8a) 
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where it is given by (2.7). Since the bubble is to be created at t" 0, 

(2.8a) should apply for t?O. For tz0, 

(2.8b) 

The above bubble (2.8) is created without any particles associated with 

it. Right after its nucleation, regardless of whether it is spontaneous 

or stimulated, the space is clean. As the bubble expands and gains accel- 

eration, it begins to create particles. The effect of pair creation can 

be significant in the asymptotic region t >> Ro, where we concern ourselves. 

In this region, the bubble is a semiclassical object; that is, it acts 

merely as an external source for the particles. Thus, we are allowed to 

use the usual Feynman-graph method to calculate the pair creation ampli- 

tude. An analogous situation is B-decay of nuclei. Once an electron is 

emitted, as Coleman C31 put it, "it propagates classically" with a def- 

inite momentum. Imagine an electric field in some asymptotic region so 

that some of the electrons get accelerated and radiate photons. In order 

to find the asymptotic behavior of electrons, we merely have to solve the 

problem of a "semiclassical" electron coupled to the quantum photon field 

without worrying about the initial quantum origin of the electron, 

The fluctuations (pf of the Higgs field on the background qb satisfy 

the following equation, 

o= a ,u+d2U(b, ipf+~(~~~)z [aU).+~2+VH(r,t~ (pf f C(qf2] l (2tg) [ 1 !J Qb 
where VH(r,t) is, from (2.8a,b), 
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2 
VH(r,t) = - +- 8(t)sech2 ' 2 u + o(Eo) . (2.10) 

As seen in (2.9), the bubble background acts as an external space-time 

dependent mass term for the fluctuation. However, there is a complication 

here about separation of "particles" from the background. In order for 

the fluctuations to be understood as particles, they have to be far from 

the wall. Otherwise they are rather a part of a deformed wall and the 

calculation based on the assumption (2.3) would not be valid. We assume 

here that only fluctuations that are separable from the wall are excited. 

The consistency of the assumption and the result will be shown in the 

next section. 

Nate that in this particular model (1.2), the mass of the w-particles 

in the false and true vacua differs only at order. E. Therefore, at the 

lowest order in s, we assign the mass 1~ to the propagator in the loop 

graphs, and use the O(E 0 H 
0 ) term of V (r,t) as the vertices. The energy 

density difference E appears only in the expression for the bubble energy 

Eb(T) of (1.1). 

The graph (a) illustrated in figure 2 gives the lowest nontrivial 

contribution to the energy E Hp (T) carried by the Higgs pairs as follows, 

~PO =fi4xJd4xf$ Ik0121mKH(k2)eik(x-Y) VH(r,t)VH(r',tl) , 

(2.11) 

where the four-momentum k carried by the vertices gives the total momen- 

tum of the pair, and 
I 9 

ImKH(k2) = & 0(k2- 4P2) d 1 - s , 
k 

(2.12) 
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Since ImKH(k2) is not a polynomial in k2 as seen above, its Fourier trans- 

form is nonlocal. This causes difficulty in finding the E HP(T) f or finite 

T: if EHP(m) is expressed by a one-fold integration over a time coordin- 

ate t, EHP(T) is given by the finite integration of the same integrand 

with upper limit T. This prescription is not applicable to our case, 

because our EHP(m) is essentially a two-fold integration over two time 

coordinates t and t'. In order to define EHP(T) for a finite T, we intro- 

duce a cutoff function t -- 
T e (2.13) 

for each of the vertices in (2.11). Since this cutoff function gradually 

turns off the vertices after t N T, the.resulting integration seems appro- 

priate-for the definition of E HP(T), the energy carried away by the 
* 

created pairs by time T. . 

The integral over x and x' in (2.11) is straightforward, 

* 
Another reason for choosing (2.13) is that the integral in (2.11) is 
actually divergent because of the upper limit t-t'- m. Consider the 
case when E HP(T) is a s' g in le-fold integration over t and is divergent, 
for example, 

EHP(m) = A f dt tn (n > 0) , 
0 

In this case, exact EHp for finite T is given by 

n+l 
EHp(T) =A fdttn = 5 . 

0 
The cutoff function (2.13) gives the following approximation for the 
above EHP(T), 

EHP(T) cx A [ dt tn 
n+l =An!T . 

0 

Therefore, the asymptotic behavior of EHP(T) is correctly reproduced. 
However, the example also shows that the numerical factor in the result 
obtained under our assumption should not be rigorously believed in. 
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"v;(kr,ko) z Jd4x exp 1-t /eikx $(x,t) co 
- 24n2u2 J 

R nk 
= dt exp 

0 
-$+ikot t 2 sink R rt cosech L+ 0.. , (2.14) 

% '"t 

with Rt G R(t) and k, : 1 kl , where we have kept only the leading term in 

the thin-wall approximation. The following formula has been used to 

derive (2.14) Cl21, 

2n 4%k r = . (2.15) 
(2n- 

For the fermion field $ of spin & we assume that it couples to the 

Higgs field as 

- 
% = 

Jd4x 1 j;iSe + g (cp - cp+) $5 1 . (2.16) 

where g> 0 for simplicity. This fermion is massless in the false vacuum 

and has a mass of g(cp+- _ cp >- 2gu in the true vacuum, reflecting the 

actual situation: in actual grand unified models, the false vacuum has 

higher symmetries than the true vacua, therefore particles, especially 

fermions, tend to be massless in the false vacuum. The self-energy graph 

(a) with a fermion loop in figure 2 gives the energy E fP carried by the 

created fermions. For reasons explained later in section 4, the created 

fermions are thought to exist mainly outside the bubble, i.e., in the 

false vacuum. Thus, we take the fermion propagators in graph (a) to be 

massless. The resulting E fP is similar to (2.11), and have VH replaced 

by 

Vf(r,t) G g cpb(r,t) 
[ 

- q+ 
I 

and KH(k2) replaced by the following Kf(k2), 
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ImKf k2 = ( ) & e(k2) . (2.17) 

Corresponding to (2.14), we have the following, 

?$(kr,ko)= 8T2at /a 
R 

dt exp -$+ikOt - p coskrRt+ 
sinkrRt 

0 t 

rk t x cosech - . (2018) 
5 

In the following sections, we integrate over t for several possible 

asymptotic behaviors of R(t), and then carry out the momentum integrations 

in order to evaluate E Hp CT) and Efp(T). 

3. Higgs pair creation - 

In this section, we calculate the asymptotic-behaviour of E HP(T) for 

three possible asymptotic behaviours of R(t). The classical expansion 

rate asymptotically approaches one, the velocity of light, as follows, 

3 
"i RCR(t) + t + 2t . . . . (3.1) 

Since we expect that pair creation slows down the expansion, we study 

the following three cases. (i) The bubble expansion has an asymptotic 

velocity B less than one. (ii) The asymptotic rate of the bubble expan- 

sion is one, but it approaches it more slowly: R(t)+t- c+b2/2T with 

b>Ro and c>O. (iii) Similar to the case (ii), but R(t)+t- nTS with 

r&>O and l><>-1. Even though the case (iii) includes (ii) as a 

special case, (ii) is studied in detail to illustrate the method of 

approximations. 
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(i) First we assume that the asymptotic expansion rate approaches f3 of 

1+0:* 

R(t) + @t + . . . astem . 0.2) 

In this case, (2.14) is approximated as follows, 

2 
?F(kr,ko)= -24~~ 5 cosech - (3.3) ., 1-I, 

The pair energy E HP is calculated from the following formula, 

EHp(T) = 2881~~(1- B2)2 B4 & kOdkO - 
rk 2 k2k2 r 

X cosech - 

‘\ 

11, 

,",;,z), +-’ 

r 

(3.5) 

This yields a finite result. The integrand in (3.5) has no singularity 

because the denominator, ki- k:B2, is always greater than 4u2 within the 

integration region. For k. -+ 00, the kr-integration is finite because of 

2 the (cosech) . Thus, the kg-integration becomes 

m 
5 

l (3.6) 

* 
There are no ad hoc reasons to exclude the case of fi= 0. 'We may find 
a self-consistent solution among the R(t)'s that asymptotically behave 
as follows, 

R(t) -f m , R(t) -f 0 , 

One example of such cases is, R(t) + sty with l> y> 0. These need a 
separate treatment. Nevertheless, the analysis in this section shows 
that the solution in the case (ii) is the only stable one among R(t)'s 
in (iii) and therefore even if a solution exists among the above cases, 
it is never achieved. 
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which is finite for ,$ < 1. The pair energy EHP(m) is approximately 

(3.7) 

Since E"(T) is finite for T + ~0, we conclude that creation of the 

Higgs pairs cannot make asymptotic rate of the bubble expansion less than 

one. Consider the r.h.s. of equation (2.1), 

J-- 1 -R; 

- TR~+E~~(T) . (3.8) 

Using the asymptotic form (3.2) for RT, -as T + 00, the leading orders of 

the first and second terms are of O(T2) and O(T3), respectively. Since 

we have found that E"'(T) is of 091) in this case, it is impossible to 

balance the released energy (the second term) with the pair energy, i.e., 

we cannot have zero coefficient for the leading O(T3) term in (3.8). 

Therefore, the asymptotic behaviour (3.2) cannot be a self-consistent 

asymptotic solution of (2.1). 

(ii) Next, we consider the case when the asymptotic expansion rate is one. 

Naively, (3.7) gives a divergent expression and therefore suggests that 

pair creation may affect the expansion rate significantly. We assume the 

following asymptotic behaviour for R(t) similar to the classical one, 

2 
R(t) + t - c + k + . . . . (3.9) 

Since, in this case 

bL R(t) -t 1 - - 
2t2 

. (3.10) 
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we expect that b > R o and c > 0, so that the expansion is slowed down by 

pair creation. The vertex TH of (2.14) is now, 

OD 

?;(kr,ko) 'v -24r2b2 J sinkrt Tbk 
dt exp -$+ikot r cosech - 

0 t vt , (30 11) 

where we have used 

!Jt -f 1-I ; . (3.12) 

In order to estimate (3.19) and EHp(T) of (3.4), we divide the 

momentum space integral in (3.4) into two parts. 

(1) kr 2 z 

The integration is dominated by the region where the argument of 
- 

cosech is small. Thus, by approximating cosech xw l/x, we get 

-H VT(kr,ko)= -24rbp 1 

Therefore, the total energy E HP,~ (T) of the pairs created in this region 

is given by: 

J 

co 

ko dko 

J--- k;+4u2 

The kg-integration is finite for T + m. An approximate va1u.e 1/8u2 is 

obtained if we neglect the J-function that is -1 except near the boundary, 

k2= 4p2. Note that the main contribution to the kg-integration comes from 

the peak of the integrand at k2= 5v2, and in the kr-integration the inte- 

grand kf gives the largest contribution at the upper limit k,- (pT/nb). 

The approximate value of the leading order term of (3.13) is, 
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(3.14) EHbl(T) + < T3 . 
4" 

Using cosech x-2ewX for x >> 1, we approximate (3.11) as follows, 

m :;(kr,ko)l -48r2b2 dt exp -$+ikot 1 7 sinkrt exp 

This integration is given in terms of a modified Bessel function of the 

third kind, Kg(z)" The argument z is such that 

~z~>2~>2~>>1 . 

By using the asymptotic expansion of Kg(z) w (?T/~z) J5 emZ, we get 

where y E 2Ckr(ko- kr > (hb/p) I’ . Finally, on changing the integration 

variable k. to y, we obtain the leading order term, 

EHP’2(T) y mm.?.- 
4r3/2 (") 

7/2 
exp j-26 t u4T3 . (3.15) 

We can now discuss the consequences of the energy conservation. 

The asymptotic behavior (3.9) leads to the following leading terms for 

each piece of (3.8), 
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the surface energy: 4Ks1G j 4nS1 T3 
I b , v-8 

the volume energy: 
4lTE - - 3 

R; -t -+ T3 . 

The pair energy E HP'2(T) is considerably smaller than E Hp'1(T) because 

of the factor exp{-2(nub)'), therefore we neglect E Hp'2(T) and write 

If we include only the effect of the Higgs pair creation, the total energy 

conservation law (2.1) implies the following equation for b, 

- 
41Ts1 4RE + 3 2 -_- - 

b 3 4T5 b -= ' l 

Thus, we obtain 

b sol = R. (1 + 2) ' 

(3.16) 

(3.17) 

in agreement with the naive expectation b 
SO-L 

>R 0' Since the bubble does 

not create many pairs initially, the value of c in (3.9) is to be found 

by connecting the asymptotic R(t) of (3.9) with b = bsoZ with the RCR(t) 

at tN Ro. The resulting c is of order of (9X/16?T6)Ro. 

The solution (b,c) = (bsoZ,csoZ) is stable. If the bubble expansion 

at a certain time T( >> Ro) is described by (3.9) with b=Ro, and is thus 

slower than the one with bsoZ., then more pairs are created than given by 

energy balance. This causes the rate of acceleration of the expansion to 

decrease and b to decrease. On the other hand, if the value of b is 
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greater 'than bsoZ, less pairs are created than necessary to balance the 

energies. As a result, b decreases. 

From (3.17), we also learn that the ratio of the energy used to 

create pairs and the released energy is given by the following, 

9x 

161~~ 
1+-x l 

16~~ 

(3.18) 

The spectrum of the created particles can be obtained from the following 

argument: in deriving EHP'l(T) of (3.14), we first learned that the in- 

tegration in (3.13) is dominated by the peak at k2= 5p2 of the integrand. 

This is mainly because of the fractional function in the integrand, which 

for T +m is l/ (ki-kz)2. If we leave an angle 0 between x and k 

unintegrated, (2.14) gives 

TT a 
J 

d(cos0) 

Therefore, the integrand of (3.13) is proportional to the following, 

1 

kO 

-kr case 
> 

2 l 

/d(‘Ose) Jd(coseq) (kg- k cose)2 (koe k coseT)2 l 

r r 

Thus, the integrand in (3.15) peaks around 0 N 8' N 0. Therefore, we 

conclude that pair creation is a local phenomenon and that the direction 

of the total three-momentum of a pair is along the radius vector to the 

place where the pair is created, and outward. The momentum of the indi- 

vidual pair is obtained by noting that pair creation occurs isotopically 

in the rest frame of the center of mass system of the pairs. Note that 
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it is not the rest frame of the portion of the bubble wall where a pair 

is created. Since k2 N 5u2 and k r - (pT/rb), where b is given by (3.17), 

the speed v of the rest frame of the center of mass system of the pairs 

at time T is given as follows, 

kr 5n2b2 v=-.ul-- 
kO 2T2 

. (3.19) 

Comparing this with (3.10), we learn that v is smaller than R. In this 

rest frame, the particle has an energy of (G/2)1-1 and the velocity is 

l/G. Therefore, the highest velocity of a particle going outward is 

given by 

l- 5a2b2 ---N 
2T2 

1 . (3.20) 

which is still smaller than R. From this, we conclude that the created 

pairs are left inside the bubble, even though they are moving outward. 

They have high energies of order of (uT/.rrb). This is consistent with 

the cutoff (2-13): since the high energy component is dominant, the short 

time scale is important, which is not affected by the cutoff (2.13). 

Also, from (3.12), we learn that krw (VT/~). This agrees with the naive 

expectation that the thickness of the wall at T determines the scale of 

the energy spectrum of created paris at T. Figure 3 illustrates some 

examples of motion of the created pairs. 

It is now straightforward to show that the "particles" can be 

clearly distinguished from the wall and thus the result is consistent 

with our assumption that only the fluctuation that corresponds to parti- 

cles and not wall deformations are excited. One way to show this is to 
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calculate the mean distance D(T) between the c.m. of particles and the 

wall at time T and compare it with the thickness of the wall. The first 

step for this is to recognize that the particle creation rate per time 

period dt is proportional to tdt. This is obtained by dividing 

CdEHP(t)/dt] by the typical energy per pair, ko=t. The c.m. of a pair 

created at time t is at radius r(T,t) N R(t) + v(t)(T-t) at time T. 

Using (3.9) and (3.19), we obtain the following D(T), 

D CT) 
tdt = lja2 b2 gn T 

m T +o$ . 
0 

I tdt 

On the contrast, the thickness of the wall at T is b/VT, which is 
- 

considerably smaller than D(T) due to T being large and the thin wall 

assumption. Therefore, even though the particles-stay closer to the wall 

as T increases, they exist distinctly far from the wall. 

(iii) The third, and more general case is, 

R(t) + t - ,t' + . . . o (3.21) 

Since R(t) + 1 - n[t 5-l , the parameters n and 5 have to satisfy nS > 0 

and 1 > 5. Also since the bubble is expected to expand slower than the 

classical rate, we expect that 5 > -1. As we did in (ii), we divide the 

momentum space integral into two parts and take the region where 

kr < ~i~/n. In this region, by using that 

1-5 
2 

t 
vy$ ' (3.22) 
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we obtain the following 

vT(kr,ko) = -12rm F e i' 
r 

r(y) [(kg+ kr]' _ (kg- kr)-? ] 

(3.23) 

In the above, the (ko- kr)-term has a peak at the boundary kg- krw uT/r 

of the momentum space, and therefore is dominant. By taking only this 

term into account, we obtain the following E Hp CT), 

2 
EHp(T) = .%!+ ,r2 

Tr ~2+~h+C~ 
(2,2;2+c ($+' Q T' (4+5) . 

(3.24) 

Since the energy released from the false vacuum behaves like T3 , the 

power of T in the above has to be 3 in order to balance the energy. The 

only solution for 5 within the range 1 > 5 > -1 is Ssoz '.- 1. Since this 

reduces (3.21) to (3.9), we learn that nsoz = -b2 sozi2 ' 

The power of T in (3.24) decreases monotonically from 5 N -1 up to 

+l as figure 3 shows. From this, we find that the solution (3.17) is 

not only stable among other R(t)'s in (3.9), but also stable in a wider 

class of R(t)'s in (3.21). The reasoning is similar to the one given 

below (3.9). That is, if < is bigger than -1 and the bubble is expanding 

slower than (3.9) with any b, too few pairs are created to balance the 

energy. Then, the bubble expansion gets more accelerated, so that 5 

decreases. For the region 5 < -1, even though it is difficult to 

imagine how such behavior is achieved, similar discussion applies and 

the final 5 would increase. 



- 22 - 

4. Fermion pair creation 

The analysis in the previous section showed that the created 

scalar particles move outward, but remain inside the bubble due to their 

mass and the high rate of expansion of the bubble, However, it may not 

be true for particles that are massless outside the bubble, like fermions 

in the grand unified models. In such a case, the created pairs would go 

out of the bubble due to their high velocity. In this section, we study 

the effect of creation of such massless fermions in the toy model des- 

cribed in section 2. 

The lowest nontrivial contribution to the energy E fP carried by 

the created fermion pairs comes from the graph (b) in figure 2. Since 

we assume that the created fermions go out of the bubble, we take the 

fermion propagators to be massless. We have to confirm that this 

assumption is consistent with the results. 

(i> It is rather straightforward to show that, in case of (3.2), the 

energy E fP carried by fermion pairs is finite for T -f a. Therefore, 

again it is impossible for the bubble to attain a terminal expansion 

rate less than one0 

(ii) In case of (3.9), R(t) -+ t - c + b 2 /2t, the region of momentum 

space kr ~ < vT/nb is again dominant and yields the following qc(kr,ko)* 

(4.1) 

The above and (2.17) lead to the following, 
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8 Efp(T) = - 
37r2 

lJT s 
J 0 

kfdkr J- kOdkOk2[~ko+$.j2 _ kz]4 l (4*2) 

The kg-integral in the above yields an approximate value T2/16ki. This 

comes mainly from a peak of the integrand at k2 - 2kr/T. The energy 

Efp(T) gets another power of T from kr-integration. The resulting pair 

energy is 

Efp(T) = - ' g3u3 T3 

67r3 Xb 
. (4.3) 

The total energy conservation law (2.1) with Ep = EHp + E fP gives the 

following solution for b, 

(4.4) 

From (4.4), we find that created massless fermion pairs carry 

(4.5) 
l+9A+L 

161~~ 12a4 

of the energy released from the false vacuum. In contrast to the case 

of the Higgs pairs, the kr-distribution of the fermion pairs is flat 

from 0 to *~T/~bsOz . However we can show that most of the created 

pairs go out of the bubble as assumed. At a fixed total four-momentum 

of a pair, the probability that both of the particles go out of the 

bubble is given by $,, the radial velocity of the c.m. system relative 

to the wall. Since kL N 2kr/T, we know that 
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kr - T 

B R:, = . r (4.6) 

for large kr. Also since uT/rb >> T/R: due to the thin-wall approximation, 

'r - 1 for most of the region of kr, 0 - uT/rb. Therefore, most of the 

particles go out of the bubble (see figure 5). In fact, the ratio of the 

particles actually going outside and all the created particles is given by 

(4.7) 

For example, the above yields 0.922 for ;Rg/bsot = 100, when, for 

b sol 
-a 0' the thickness of the initial bubble wall is l/lOOth of the 

radius. For the creation of the massive fermions-that remain inside the 

bubble, a similar calculation shows that the resulting E fp is 

_ 1o-7 g2A2 R. 
3 

Efp 

( > RO1-I 
2 ( ) b l 

* Therefore, the effect of the massive fermion creation is small, in 

agreement with the above discussion. 

(iii) In this case, the Fourier-transform of the vertex V is 

5- independent and given by (4.1). The upper limit of the kr-integration 

P~/IT leads to the following, 

* 
The main reason why these behave differently from the quantities in 
the previous section lies in the difference of the integration retion. 
The kg-integral in (4.2) is divergent at the boundary k2= 0 for T = QJ, 
while the one in (3,13) is convergent within the integral region k2> 4~~. 



- 25 - 

5-5 
Efp(T) =T 2 . (4.8). 

* 
Since the power of T is monotonically decreasing as 5 increases, as in 

(3.241, we conclude that the solution (4.4) is stable among a wide class 

of possible behaviors of R(t), (3.21). 

5. Conclusion and discussion 

We have studied pair creation by vacuum bubbles in a Av4-theory. 

By using the thin-wall approximation, we have shown that the Higgs 

particles and spin & fermions, which have a Yukawa coupling with the 

Higgs field, are created locally by the expanding bubble wall, As a 

result, the bubble expansion rate approaches the velocity of light 
- 

slower than that given by a classical analysis. 

Classically, the radius of the bubble was shown to behave like 

n 

Rc'(t) -f t + , 

as t -tm. We have found that the only possible asymptotic solution 

among a wide class of the possibilities, (3.2) and (3.21), is 

R(t) + t - csOz , 

with 

b so2 

(3.1) 

(3.9) 

(4.4) 

* 
See preceeding footnote. 
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and where g is the Yukawa coupling constant. We have also found that 

the solution (3.9) with (4.4) is stable. 

The energy released by the false vacuum as the bubble expands 

is distributed among the wall, the Higgs particles and the fermions 

according to the following ratio, 

1 :9h 
167~~ 

(5.1) 

which is constant in time. The Higgs pairs created at time T have 

k2 N 5~~ and kr N uT/n N uT/vbsol, where k is the total four-momentum 

of the pair and k, is the total radial momentum of the pair. They 

remain inside the bubble moving outward; The fermion pairs created at 

time T-have an almost flat distribution in kr from-T/R: to-uT/nbsol 

and their kL is-2kr/T. They go out of the bubbl.e, where they are 

taken to be massless. Typical behaviour of the Higgs particles is 

illustrated in figure 3. We should note that the numerical factors in 

(4.4) and (5.1) are not necessarily exact. In fact, if we had used 

cutoff functions other than (2.13), we would have obtained numerical 

factors different from those in (4.4) and (5.1). To be modest, we 

should only say that they are of order of 10 -3 . 

We have so far neglected the quantum corrective to the constants 

of the model and worked with the bare quantities. The corections due to 

the real parts of the graphs in figure 2 are of O(X) and O(g2) and thus 

should be treated properly, We can, however, show that at our order of 

the perturbation we merely need to replace the bare constants in (4.4) 

and (5.1) by the renormalized constants. First, let us take the Higgs 

particles. The real part of the graph (a) yields the renormalized 
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constants 1-1 r, A', E'o . Neglecting the pair creation, the corrected 

classical bubble solution depends on the renormalized constants as the 

original classical solution does on the bare constants. Especially, 

R"o = p 
r3 

/Arc;. The constants in the expression of bubble energy (1.1) 

are also replaced by the renormalized constants. Therefore, the energy 

balance equation (3.16) becomes as follows, 

4aSf 
4?TE 

r 
3 

3 --- + L - -0 , 
b 3 4~~ b 

which leads to 

b=R++-$+J3] . 

Since ur = uCl+O(hr)l, th e quantum corrections are of higher order in 

6 and thus can be neglected. A similar discussion applies to the 

fermion part, and the correction is of higher order of g. Therefore, 

(4.4) and (5.1) hold for the renormalized constants. 

The asymptotic state we have found is Lorentz-invariant in the 

sense that Lorentz-transformations affected only the unknown nonleading 

terms. It is easy to see that r.h.s. of (3.9) is invariant, since (3.9) 

can be understood as the first three terms of the expansion of an 

hyperbola, 
2 4 

(t- csol)2+bsol . 1 In order to discuss the behaviour of 

the created particles, we first note that the Higgs pairs are created at 

time t with kr = (ut/rb), k2 = 5u2 at a rate of = (l/t)dtdS, where dS is 

an area element of the wall. Since on (3.9) dt/t Y (l/bsoZ)d(proper time), 

we find that the pair production rate is constant in the rest frame of 

the wall. In the same frame, the radial total momentum k: is given by 
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a constant 

k; = 

Therefore, these Higgs particles are created Lorentz-invariantly. The 

fermions discussed in section 4 have a wide spectrum as shown in 

figure 5. Since the same argument applies to each slice of kr, they 

too,are created invariantly. 

This asymptotic Lorentz-invariance strongly supports our expecta- 

tion that our method used in this paper is applicable to the spontaneously 

nucleated bubbles. By using the path-integral method, Coleman [3] showed 

that the nucleation rate is obtained without integration over the Lorentz- 

group and thus the divergence appeared in an earlier calculation C21 is 

avoided. This observation was supported by the fact that his classical 

bubble solution possesses Lorentz-invariance: the final states related 

by a Lorentz-transformation are quantum-mechanically indistinguishable 

from each other, thus they should not be counted separately for the total 

nucleation rate. In our case, we have found that our asymptotic states 

have Lorentz-invariance too, and thus are indistinguishable from their 

Lorentz-transformed states. Therefore, our result is compatible with 

Coleman's formula for the nucleation rate. 

In this paper, we have taken the lowest order pair creation prob- 

ability into account. As for the higher order effects, the Lorentz- 

invariance of our solution seems to suggest that time dependence of the 

physical quantities remain unchanged. That is, 
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Pair creation rate = + dt dS 

(5.2) 

Total energy of pairs = t3 

Bubble radius = (3.9) . 

Otherwise, the above discussion on compatibility of our results and the 

finiteness of the nucleation rate would fail. 

In constructing a scenario for the very early universe, we need 

to investigate more realistic models such as a Coleman-Weinberg type 

model at a finite temperature. An analytical analysis parallel to that 

given in this paper is impossible in such a model since even a classical 

bubble solution that corresponds to (2.5) is not known. We could, . 

however, make a qualitative guess about results: in order for the 

asymptotic Lorentz-invariance to hold, (5.2) seems to be a general 

property of the results. Qualitative features can be quite different. 

Especially, the ratios of the energy given to the particles are not 

necessarily as small as (5.1). If they are not, the pair creation 

phenomena investigated in this paper would play an important role in 

the very early universe. 
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Figure Captions 

Fig. 1. The potential U(q) that has a stable state cp- and a meta-stable 

state 'p+. 

Fig. 2. The self-energy graphs with cuts that give the lowest nontrivial 

contributions to the pair creation amplitude and thus the energy EP. The 

dashed line represents the Higgs propagator with mass P, and the solid 

line the massless fermion propagator. 

Fig. 3. The behavior of the created Higgs particles with k2 = 5u2 and 

kr = pT/nb. The cones A, B and C with dots show regions where the 

particles created at the apexes A, B- and C of each cone go through. 

Fig. 4. The behaviour of the power of T in (3.24). 

Fig. 5. The radial velocity f3, (4.6) of the c.m. system of the massive 

fermion pairs relative to the wall. The shaded region gives the 

probability (4.7) of the pairs going out of the bubble. 
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