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The conventional approach to fixed-order perturbative QCD predictions is based on an arbitrary
choice of the renormalization scale, together with an arbitrary range. This ad hoc assignment of the
renormalization scale causes the coefficients of the QCD running coupling at each order αn

s to be
strongly dependent on the choice of both the renormalization scale and the renormalization scheme.
However, such ambiguities are not necessary, since as a basic requirement of renormalization
group invariance (RGI), any physical observable must be independent of the choice of both the
renormalization scheme and the initial renormalization scale. In fact, if one uses the Principle of

Maximum Conformality (PMC) to fix the renormalization scale, the coefficients of the pQCD series
match the series of conformal theory, and they are thus scheme independent. The PMC predictions
also eliminate the divergent renormalon contributions which grow strongly as n!. The elimination
of the scale and scheme ambiguities at all orders relies heavily on how precisely we know the
analytic form of the QCD running coupling. Conventional schemes for defining the QCD coupling
suffer from a complex and scheme-dependent renormalization group equation (RGE), which is
usually solved perturbatively at high orders due to the entanglement of the scheme-running and
scale-running behaviors. In this paper, we show that these complications can be avoided by using
the newly suggested C-scheme coupling, whose scheme-and-scale running behaviors are governed
by the same scheme-independent RGE. As a result, an analytic solution for the running coupling
can be achieved at any order. Using the C-scheme coupling, we present a demonstration that the
PMC prediction is scheme-independent to all-orders for any renormalization schemes. Given a
measurement which sets the magnitude of the coupling at a specific scale such as MZ , the resulting
pQCD predictions, after applying the single-scale PMC, become completely independent of the
choice of the renormalization scheme and the initial renormalization scale, thus satisfying all of
the conditions of RGI. We illustrate these features for the non-singlet Adler function and for τ

decay to ν+ hadrons at four-loop order. The PMC thus systematically eliminates the scheme and
scale uncertainties of pQCD predictions, greatly improving the precision of tests of the Standard
Model and the sensitivity of collider experiments to new physics.
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I. INTRODUCTION

Fixed-order perturbative predictions for observables in Quantum Chromodynamics (QCD) using conventional
methods suffer from an uncertainty in fixing the renormalization scale (Brodsky et al., 1983; Grunberg, 1980, 1984;
Stevenson, 1981a,b, 1982, 1984). This ambiguity in making fixed-order predictions occurs because one usually assumes
an arbitrary renormalization scale, (representing a typical momentum flow of the process) together with an arbitrary
range. This ad hoc assignment of the renormalization scale causes the coefficients of the QCD running coupling at each
order αn

s to be strongly dependent on the choice of both the renormalization scale and the renormalization scheme.
It is usually assumed that at sufficiently high order, one will eventually achieve reliable predictions and minimal

dependence on the guessed renormalization scale for global quantities such as a total cross-section. However, a small
scale-dependence for the global quantity could be caused by accidental cancelations among different orders; the scale
uncertainty for contributions at each order could still be very large. The running of the QCD-coupling is governed
by its renormalization group equation (RGE), which is scheme-dependent due to the scheme-dependent {βi≥2}-terms.
Thus if the {βi≥2}-terms have large dependence on the scheme choice, the perturbative predictions based on some
schemes could be unreliable; the large expansion coefficients could make the truncation of the perturbative series
useless. The resulting uncertainties thus would not be minimized by including more higher-order terms. Even worse,
it is known that in general the pQCD series will suffer from divergent renormalon contributions which grow as
αn
s β

n
0 n! (Beneke, 1999; Gardi and Grunberg, 2001). Thus even if a perturbative QCD prediction based on a guessed

scale agrees with measurements, one cannot be certain that it is a reliable, accurate representation of the theory.
As a guiding principle, a valid prediction for any physical observable must be independent of the choice of both

the initial renormalization scale and the renormalization scheme; this is the central property of renormalization group

invariance (RGI) (Bogoliubov and Shirkov, 1955; Callan, 1970; Peterman, 1979; Stuckelberg and Peterman, 1953;
Symanzik, 1970). Thus a primary goal for testing pQCD reliably is how to set the renormalization scale such that
one obtains accurate fixed-order predictions with maximum precision while satisfying the principle of renormalization
group invariance. A review of various scale-setting approaches which have been suggested in the literature are
summarized in Ref.(Wu et al., 2013).
In contrast to other scale-setting approaches, the Principle of Maximum Conformality (PMC) (Brodsky and Wu,

2012; Brodsky and Giustino, 2012; Mojaza et al., 2013; Brodsky et al., 2014; Brodsky and Wu, 2012d,f) determines
the value of the renormalization scale of the QCD running coupling αs based on the properties of RGE and its β-
function. When one applies the PMC, all nonconformal β terms are systematically eliminated at each finite order by the
choice of the renormalization scale. Since the pQCD series is identical to the series of a conformal theory with β = 0, the
PMC prediction has the essential feature that it is scheme-independent at every finite order. The PMC satisfies the self-
consistency conditions of the renormalization group, such as reflectivity, symmetry and transitivity (Brodsky and Wu,
2012c). The resulting PMC predictions thus satisfy all of the basic requirements of RGI. Since the running coupling
sums all of the β-terms, the divergent renormalon terms do not appear in the PMC prediction, leading to the
convergence of the pQCD series. The PMC provides the underlying principle for the well-known Brodsky-Lepage-
Mackenzie (BLM) method (Brodsky et al., 1983). It generalizes the BLM procedure by shifting all {βi}-terms into
the running coupling at all orders, and it reduces to the standard scale-setting procedure of Gell-Mann and Low
(GM-L) (Gell-Mann and Low, 1954) in the NC → 0 QED Abelian limit (Brodsky and Huet, 1998).
The PMC scales are achieved by applying the RGE recursively. The resulting PMC scales reflect the virtuality of

the amplitudes relevant to each order. Specific values for the PMC scales are computed as a perturbative expansion,
so they have small uncertainties which can vary order-by-order. It has been found that the PMC scales and the
resulting fixed-order PMC predictions are to high precision independent of the choice of initial renormalization scale.
To make the PMC scale-setting procedures simpler and more easy to be automatized, a single-scale approach (PMC-s),
which achieves many of the same PMC goals, has been suggested in Ref.(Shen et al., 2017a). This method effectively
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replaces the individual PMC scales at each order by a single scale in the sense of a mean value theorem; moreover,
its predictions are explicitly independent of the choice of the initial renormalization scale.
The QCD coupling can be “adiabatically” and continuously evolved not only in scales, but also in the choice of

renormalization scheme (Stevenson, 1981a,b, 1982, 1984) by incorporating scheme-running equations, forming the
so-called extended RGEs. Since along the evolution trajectory of RGEs, no dissimilar scales/schemes are involved,
reliable pQCD predictions can be achieved (Lu and Brodsky, 1993). The extended RGEs provide a convenient way
for estimating both the scale- and scheme-dependence of pQCD predictions for a physical process. The solution
of the scale-running equation can be obtained via an iterative process, which is equivalent to the standard analy-
sis (Chetyrkin, 1997) by using a proper integration constant (Brodsky and Wu, 2012). The scheme-running equations
can be solved perturbatively (Lu and Brodsky, 1993).
As we shall show, one can utilize a novel C-scheme coupling (Boito et al., 2016) whose scheme-and-scale running

behaviors are both governed by a single RGE which is free of scheme-dependent {βi≥2}-terms. The value of the param-
eter C can be chosen to match any conventional renormalization scheme. We shall show that the scheme-independent
RGE for the C-scheme coupling leads to scheme-independent pQCD predictions for physical observables, i.e. by using
the C-scheme coupling, a strict demonstration on the scheme-independence of PMC prediction to all-orders for any
renormalization schemes can be achieved. Thus, by combining the C-scheme coupling with the PMC single-scale
approach (PMC-s), the resulting predictions become completely independent of the choice of the renormalization
scheme and the initial renormalization scale, satisfying all of the conditions of RGI. This approach thus systemat-
ically eliminates the scheme and scale ambiguities of pQCD predictions, greatly improving the precision of tests of
the Standard Model and the sensitivity of collider experiments to new physics. Furthermore, since the perturbative
coefficients obtained using the PMC-s are identical to those of a conformal theory, one can derive all-orders “commen-
surate scale relations” (Brodsky et al., 2014; Brodsky and Lu, 1993; Shen et al., 2017b) between physical observables
evaluated at specific relative scales. An example is the “Generalized Crewther Relation” (Broadhurst and Kataev,
1993; Brodsky et al., 1996; Crewther, 1997), which shows that the product of Re+e−(s) times the integral over the
spin-dependent structure functions g1(x,Q

2) which enters the Bjorken sum rule at a specific value of Q2/s has no
leading-twist radiative QCD corrections at all orders.
The remaining parts of this paper are organized as follows: In Sec.II, we review the RGE and the extended RGE

which govern the scheme-and-scale runnings of the QCD coupling. We then define the C-scheme coupling, deduce its
scheme-independent RGE, give its analytic solution, and provide the relation between the C-scheme coupling and a
conventional coupling. In Sec.III, we present an overview of the PMC, give the formulas for dimensional-regularized
Rδ-schemes and for general C-schemes within the single-scale approach. We then demonstrate the equivalence of
PMC, using either the C-scheme coupling or the conventional coupling. By rewriting the pQCD prediction in terms
of C-scheme coupling, we will demonstrate how scheme-and-scale independent all-orders predictions can be achieved
by applying the PMC single-scale approach. In Sec.IIV, we present numerical results for the two quantities, the
non-singlet Adler function and τ decays to ν+ hadrons, up to four-loop level. Sec.V provides a summary.

II. THE RENORMALIZATION SCHEME-AND-SCALE RUNNING OF THE QCD COUPLING

A. The conventional renormalization group equation and its extended version

The definition of the QCD strong coupling αs(µ) depends on theoretical conventions such as the choice of the
renormalization scheme. Its running behavior in the renormalization scale µ – its RGE – is governed by its logarithmic
derivative, the β-function:

µ2 daµ
dµ2

= β(aµ) = −a2µ

∞
∑

i=0

βia
i
µ. (1)

For simplicity, we shall set aµ = αs(µ)/π, where µ is the renormalization scale, throughout the paper. Various
terms in β0, β1, · · ·, correspond to the one-loop, two-loop, · · ·, contributions to the RGE, respectively. The first
two terms β0 = (11 − 2

3nf )/4 and β1 = (102 − 38
3 nf )/4

2, where nf is the number of active quarks, are universal in
mass-independent schemes; the remaining {βi}-terms are scheme-dependent. The explicit form for the {βi}-terms
up to five-loop level in the MS-scheme are available in Refs. (Gross and Wilczek, 1973; Politzer, 1973; Caswell, 1974;
Tarasov et al., 1980; Larin et al., 1993; Ritbergen et al., 1997; Chetykin, 2005; Czakon, 2005; Baikov et al., 2017).
If one integrates the RGE (1), one obtains

lnµ2
0 −

1

β0aµ0

−
β1

β2
0

ln aµ0
−

∫ aµ0

0

da

β̃(a)
= lnµ2 −

1

β0aµ
−

β1

β2
0

ln aµ −

∫ aµ

0

da

β̃(a)
, (2)
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where µ0 is a reference scale. We have introduced a new β̃-function which is defined as

1

β̃(a)
≡

1

β(a)
+

1

β0a2
−

β1

β2
0a

. (3)

The advantage of the β̃-function lies in the fact that the integral
∫ aµ

0
da/β̃(a) is free of singularities in the limit

aµ → 0, so that it can be expressed as a power series in aµ,

∫ aµ

0

da

β̃(a)
=

(

β2

β2
0

−
β2
1

β3
0

)

aµ +

(

β3

2β2
0

−
β2β1

β3
0

+
β3
1

2β4
0

)

a2µ +

(

β4

3β2
0

−
β2
2

3β3
0

−
2β3β1

3β3
0

+
β2β

2
1

β4
0

−
β4
1

3β5
0

)

a3µ +O(a4µ). (4)

It is useful to define an asymptotic scale Λ by collecting all µ0-dependent terms on the left-hand-side of Eq.(2) into
its definition, leading to the evolution of strong coupling aµ without reference to a specific choice of µ0, i.e.

ln
µ2

Λ2
=

1

β0aµ
+

β1

β2
0

ln aµ +

∫ aµ

0

da

β̃(a)
. (5)

The asymptotic scale Λ is, by definition, scheme dependent. Given a measurement which sets the value of the coupling
at a given scale, one can fix Λ for a given scheme by matching the measured value of the coupling to its predicted
value as determined by Eq.(5). Notice that this new asymptotic scale Λ differs from the generally adopted asymptotic
scale ΛQCD (c.f. the definition given by the PDG (Patrignani et al., 2016)) by an overall parameter; i.e.,

Λ = β
(β1/2β

2
0)

0 ΛQCD. (6)

This difference is caused by absorbing different integration constants into the definition of the asymptotic scales.
Another example of differing conventions is the ’t Hooft scheme (’t Hooft, 1977), where the associated asymptotic

scale is Λ
′tH = (β2

0/β1)
2β2

0/β1ΛQCD (Brodsky and Wu, 2012).
It is useful to notice that by using Eq.(5), we can obtain a relation of the couplings at two scales such as µ and Q:

(

1

β0aµ
+

β1

β2
0

ln aµ +

∫ aµ

0

da

β̃(a)

)

−

(

1

β0aQ
+

β1

β2
0

ln aQ +

∫ aQ

0

da

β̃(a)

)

= ln
µ2

Q2
. (7)

If the running coupling is measured at a reference scale Q, then we can fix its value at any other scale without
determining the asymptotic scale Λ, thus avoiding any uncertainty coming from the determination of Λ.
Using the relation Eq.(6) and iteratively solving Eq.(5) up to four-loop level yields (Chetyrkin, 1997)

aµ =
1

β0L
−

b1 lnL

(β0L)2
+

1

(β0L)3
[

b21(ln
2 L− lnL− 1) + b2

]

+
1

(β0L)4

[

b31

(

− ln3 L+
5

2
ln2 L+ 2 lnL−

1

2

)

− 3b1b2 lnL+
b3
2

]

+O

(

1

(β0L)5

)

, (8)

where L = ln(µ2/Λ2
QCD) and bi = βi/β0.

As a step forward, Stevenson (Stevenson, 1981a,b) has suggested the use of new scheme-running equations which
incorporate both the scale and scheme running behaviors in a consistent way. This procedure is called the extended

RGE approach (Lu and Brodsky, 1993), whose solution has been given in Ref. (Brodsky and Wu, 2012c). As an
application, by using the relation of the β-functions between different schemes, i.e. βS(a

S
µ) = βR(aRµ )∂aSµ/∂a

R
µ , one

can reproduce the Celmaster-Gonsalves relation (Celmaster and Gonsalves, 1978, 1979) for the asymptotic scales of
different schemes (Zeng et al., 2016); i.e.

ΛS

ΛR
= exp

(

−
f2
2β0

)

. (9)

Here S and R designate two arbitrary renormalization schemes, and the coefficient f2 is the next-to-leading order
term of the coupling αS

µ expanded in powers of αR
µ , i.e. aRµ = aSµ + f2(a

S
µ)

2 + f3(a
S
µ)

3 + · · ·.

B. A novel scheme-invariant running coupling

Boito and Miravitllas Ref.(Boito et al., 2016) have suggested a novel way to deal with the scheme dependence
of QCD couplings based on the Celmaster-Gonsalves relation. They have shown that one can introduce a class of
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new couplings âµ, characterized by a single parameter C, whose variation directly compensates for the usual scheme
dependence of scale parameter Λ of the corresponding conventional coupling aµ. In the following, we shall demonstrate
that – in distinction to the standard RGE behavior (1) of aµ, the scale dependence of the resulting C-scheme coupling
âµ is independent of the scheme-dependent {βi≥2}-terms, and it is thus explicitly scheme-invariant.
Eq.(5) implies that the conventional aµ coupling satisfies the following scheme-dependent scale-running behavior

1

aµ
+

β1

β0
ln aµ = β0

(

ln
µ2

Λ2
−

∫ aµ

0

da

β̃(a)

)

. (10)

As suggested by Ref.(Boito et al., 2016), one can define a new coupling âµ = α̂s(µ)/π in the following way:

1

âµ
+

β1

β0
ln âµ = β0

(

ln
µ2

Λ2
+ C

)

, (11)

where the phenomenological parameter C is introduced which incorporates the effects of all scheme-dependent {βi≥2}-

terms; i.e. C = −
∫ aµ

0
da/β̃(a). Different choices of C thus correspond to different renormalization schemes. As will

be shown below, there are many advantages in using this single parameter C to characterize the scheme-dependence
of the running coupling. By choosing a specific value for C = CRS, the running coupling of the C-scheme will become
equivalent to the coupling of any conventional renormalization scheme. A subtle point for this equivalence is that the
value of C also implicitly depends on the renormalization scale where the C-scheme and the conventional scheme are
matched.
By using Eq.(11), the solution of âµ can be written in terms of the Lambert W -function,

âµ = −
β0

β1W−1(z)
, z = −

β0

β1
exp

[

−
β2
0

β1

(

ln
µ2

Λ2
+ C

)]

, (12)

where W−1(z) is the solution of the equation W (z) exp[W (z)] = z. The function W (z) is a multi-valued function with
an infinite number of branches denoted byWn(z) (Corless et al., 1996). The correct physical branch can be determined
by the requirement that âµ must be real and positive for a real positive scale µ 1. Since in practice nf ≤ 6, we have
z < 0, and the physical branch is W−1(z). One also finds that W−1(z) monotonically decreases within the region of
z ∈ (−1/e, 0), with W−1(z) ∈ (−∞,−1). The ultraviolet limit corresponds to z → 0−, W−1(z) → −∞, leading to
âµ → 0+, as required by asymptotic freedom.
By using Eq.(11), we can obtain a new RGE for the C-scheme coupling âµ which has a much simpler form than

the standard RGE (1):

β̂(âµ) = µ2 ∂âµ
∂µ2

= −
β0â

2
µ

1− β1

β0
âµ

= −β0â
2
µ

∞
∑

i=0

(β1/β0)
i
âiµ. (13)

At the same time, from Eq.(11), one may also observe that

∂âµ
∂C

= β̂(âµ). (14)

Those two equations indicate that

• The β̂-function (13) is by definition scheme-independent. Thus the scale-running behavior of the C-scheme
coupling âµ is explicitly scheme-independent since it only depends on the scheme-independent β-coefficients β0

and β1. Thus even though the C-scheme coupling âµ itself is implicitly scheme-dependent, its scale-running
behavior can be scheme-independent.

• The scale-running and scheme-running behaviors of âµ have been explicitly separated – however, each of them

separately satisfy the same β̂-function. As is the case of the conventional RGE (1), the new RGE (13) for the
C-scheme coupling can be iteratively solved up to any finite-loop level. It is found that the solution of âµ up to
four-loop level can be obtained from Eq.(8) by replacing

aµ → âµ, bi = βi/β0 → (β1/β0)
i.

1 This conclusion is valid, at least for µ2 ≫ Λ2e−C .
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• Integrating RGE (13) yields a relation of âµ for any two scales µ1 and µ2, i.e.,

1

âµ2

=
1

âµ1

+ β0 ln
µ2
2

µ2
1

−
β1

β0
ln

âµ2

âµ1

. (15)

Thus if â at the reference scale µ1 is fixed by a measurement, we can determine its value at any other scale.

• As will be shown below, given the proper choice of C, any coupling constant aµ which is defined in any
conventional scheme can be uniquely expressed by a corresponding C-scheme coupling âµ. For example, in the
effective charge approach (Grunberg, 1980, 1984), any perturbatively calculable physical observable can be used
to define an effective coupling âµ. If the defined effective C-scheme coupling âµ for an observable is independent

of C, Eq.(14) indicates that β̂(âµ) = 0, and we will then obtain a scheme-independent pQCD conformal series
in âµ for the corresponding observable.

C. Relation between the C-scheme coupling âµ and the conventional coupling aµ

In order to achieve a pQCD prediction using the C-scheme coupling âµ, one needs to obtain a relation between âµ
and the conventional coupling aµ. We can transform Eq.(11) to the form

1

âµ
+

β1

β0
ln âµ = β0 C +

1

aµ
+

β1

β0
ln aµ + β0

∫ aµ

0

da

β̃(a)
; (16)

solving it recursively, we obtain

aµ = âµ + Cβ0â
2
µ +

(

β2

β0
−

β2
1

β2
0

+ β2
0C

2 + β1C

)

â3µ

+

[

β3

2β0
−

β3
1

2β3
0

+

(

3β2 −
2β2

1

β0

)

C +
5

2
β0β1C

2 + β3
0C

3

]

â4µ +O(â5µ), (17)

or inversely,

âµ = aµ − Cβ0a
2
µ +

(

β2
1

β2
0

−
β2

β0
+ β2

0C
2 − β1C

)

a3µ

+

[

β3
1

2β3
0

−
β3

2β0
+

(

2β2 −
3β2

1

β0

)

C +
5

2
β0β1C

2 − β3
0C

3

]

a4µ +O(a5µ). (18)

This shows that the conventional coupling aµ at any scale µ can be expanded in terms of the C-scheme coupling âµ
at the same scale, and vice versa.
As an explicit example, consider the conventional coupling aµ with the {βi≥2}-coefficients of the MS renormalization

scheme. We then have (Boito et al., 2016),

aMS
µ = âµ +

9

4
Câ2µ +

(

3397

2592
+ 4C +

81

16
C2

)

â3µ +

(

741103

186624
+

18383

1152
C +

45

2
C2 +

729

64
C3 +

445

144
ζ(3)

)

â4µ + · · ·(19)

where we have set nf = 3, and ζ(i) is the Riemann ζ-function. Eq.(19) shows that the value of C needs to be

introduced as a function of the scale in order to obtain the equivalent C-scheme and MS-scheme couplings.
To show explicitly how the C-scheme coupling â depends on the parameter C, we present the coupling â at the

scale Mτ as a function of C in Fig. 1. Here we adopt the world average αMS
s (MZ) = 0.1181(11) (Patrignani et al.,

2016) as the reference value, which runs down to αMS
s (Mτ ) = 0.3159(95) using the four-loop RGE.

• Fig. 1 shows that the coupling â monotonously decreases as a function of C. This is confirmed by the fact that

the C-scheme β̂(âµ)-function (13) is generally negative – the negative β̂(âµ)-function implies that the coupling
must monotonically decrease with the increment of C.

• By choosing a suitable C, the new coupling âµ becomes equivalent to the coupling aµ defined for any corre-
sponding conventional scheme; i.e. aµ = âµ|C . At a different scale µ, a different C needs to be introduced in
order to ensure the equivalence of the couplings at the same scale. For example, we have

aMS
Mτ

= âMτ
(C = −0.0818) and aMS

MZ
= âMZ

(C = 0.7285).
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)
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≃ 0.10

FIG. 1 The C-scheme coupling âMτ as a function of C at the scale Mτ , which is calculated by using the relation (16) up

to four-loop level. We adopt αMS
s (Mτ ) = 0.3159(95) as the reference value. The solid line represents the center value, and

the shaded band corresponds to the uncertainty ∆αs(Mτ ) = ±0.0095. The crossing point of the two dotted lines indicates

âMτ (C = −0.0818) = aMS
Mτ

.

III. SCHEME-AND-SCALE INDEPENDENT PQCD PREDICTIONS USING PMC SCALE-SETTING

The pQCD approximant of an observable up to nth-order level can be generally expressed as

ρn(Q) =

n
∑

i=1

ri(µ/Q)ai+p
µ (20)

or

ρn(Q) =

n
∑

i=1

ĉi(µ/Q)âi+p
µ , (21)

where µ is the renormalization scale and Q is the kinematic scale of the process at which it is measured. Without
losing generality, we can set the power of the coupling associated with the tree-level term as 1, or equivalently p = 0.
The parameters ri and ĉi are the perturbative coefficients for the conventional coupling aµ and the corresponding
C-scheme coupling âµ. Their relations can be obtained by using the relation (17) between the C-scheme coupling âµ
and the conventional coupling aµ,

ĉ1 = r1, (22)

ĉ2 = r2 + β0r1C, (23)

ĉ3 = r3 + (β1r1 + 2β0r2)C + β2
0r1C

2 + r1

(

β2

β0
−

β2
1

β2
0

)

, (24)

ĉ4 = r4 +

(

3β0r3 + 2β1r2 + 3β2r1 −
2β2

1r1
β0

)

C +

(

3β2
0r2 +

5

2
β1β0r1

)

C2 + r1β
3
0C

3

+r1

(

β3

2β0
−

β3
1

2β3
0

)

+ r2

(

2β2

β0
−

2β2
1

β2
0

)

, (25)

· · ·

The authors of Refs.(Boito et al., 2016; Jamin and Miravitllas, 2016) have investigated the possibility of obtaining
an “optimized” prediction for the truncated pQCD series using the C-scheme coupling by exploiting its scheme
dependence. In their treatment, by fixing µ ≡ Q and varying C within a possible domain, an optimal C-value, and
thus an optimal scheme, is determined by requiring the absolute value of the last known term ĉn(Q/Q)ânQ to be at
its minimum. However,

• We note that the idea of requiring the magnitude of the last known term of the pQCD series to be at its
minimum is similar to the postulate of the Principle of Minimum Sensitivity (PMS) (Stevenson, 1981a,b, 1982,
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1984), in which the optimal scheme is determined by directly requiring all unknown higher-order terms to
vanish. Thus this application of optimization to the C-scheme coupling approach meets the same problems
of PMS, cf. Refs.(Ma et al., 2015; Wu et al., 2015): It does not satisfy the self-consistency conditions of the
renormalization group, such as reflectivity, symmetry and transitivity (Brodsky and Wu, 2012c); Its pQCD
convergence is accidental and questionable; it disagrees with Gell Mann-Low scale setting when applied to QED
cases; and it gives unphysical results for jet production in e+e− annihilation; etc..

• The optimal value of C is different for a different fixed-order prediction, which need to be redetermined when
new perturbative terms are known. Although this approach of using the C-scheme coupling could be considered
as a practical way to improve pQCD precision, similar to the PMS approach, it cannot be considered as the
solution to the conventional scheme-and-scale setting ambiguities.

In contrast to the PMS, the PMC identifies all the RG-involved scheme-dependent {βi}-terms in the perturbative
series and eliminate them by shifting the scales of the running coupling. After applying the PMC, the coefficients
ρn of αn

s match the corresponding conformal series, and thus the prediction is scheme independent in general. We
have presented in Ref. (Mojaza et al., 2013; Brodsky et al., 2014) an explicit demonstration that PMC scale-setting
leads to scheme-independent pQCD predictions for any dimensional-like enormalization scheme, with the generalized
subtraction − ln 4π+γE+δ, which we label as the Rδ-scheme. Thus different values of δ indicate different dimensional-
like scheme; e.g. δ = 0 is the MS-scheme, and δ = ln 4π − γE is the unsubtracted MS-scheme. More explicitly if the
perturbative coefficient ρn has been calculated using the Rδ-scheme, they satisfy

∂ρn
∂δ

= −β(aµ)
∂ρn
∂aµ

. (26)

Thus after eliminating all of the {βi}-terms by applying the PMC, one obtains ∂ρn|PMC/∂δ = 0, proving that the PMC
prediction ρn|PMC is independent of the value of δ and thus any choice of the dimensionally regulated Rδ-schemes.
We will now generalize this procedure to see whether one can eliminate all scheme-dependent C-terms in a pQCD

approximant by applying the PMC. Since the parameter C identifies any choice of the renormalization scheme,
we will then achieve a general demonstration of the scheme-independence of the PMC pQCD predictions for any
renormalization scheme.

A. An overview of the PMC scale-setting

A rigorous demonstration of the scheme-independence of PMC predictions for any dimensional-like Rδ-scheme
has been given in Refs.(Mojaza et al., 2013; Brodsky et al., 2014). The PMC provides a systematic way to set the
optimized renormalization scale up to all order. The PMC procedure follows these steps

- First, we perform a pQCD calculation of an observable, taking any renormalization scheme at an arbitrary initial
renormalization scale. The initial renormalization scale only need to be large enough to ensure the reliability
of the perturbative prediction. For example, one may choose the renormalization scheme to be the usually
adopted MS-scheme; after applying the PMC, the final pQCD prediction will be shown it to be independent of
this choice, since the PMC is consistent with RGI.

- Second, we identify the β terms in the pQCD series. This can be achieved with the help of the degeneracy
relations among different orders which identify which terms in the pQCD series are associated with the RGE
and which terms are not. Alternatively, one can use the δ dependence of the series to identify the β terms.
One can also rearrange all the perturbative coefficients, which are usually expressed as an nf -power series, into
{βi}-terms or non-{βi}-terms. One needs to be careful using this method to ensure that the UV-free light-quark
loops are not related to the {βi}-terms; they should be identified as non-conformal ones and should be kept
unchanged when doing the nf → {βi} transformation. In practice, one can also apply PMC scale setting by
directly dealing with the nf -power series without transforming them into the {βi}-terms (Brodsky and Wu,
2012). If the nf -terms are treated correctly, the results for these treatments are equivalent since they lead to the
same resummed “conformal” series up to all orders. Any scale difference between the two approaches at each
order is comparatively small; it is systematically reduced as more {βi}-terms are taken into account (Bi et al.,
2015).

- Third, we absorb different types of {βi}-terms into the strong coupling in an order-by-order manner. Different
types of {βi}-terms as determined from the RGE lead to different running behaviors of the strong coupling at
different orders, and hence, determine distinct PMC scales at each order. The PMC scales themselves are given
by a perturbative expansion series in the strong coupling.
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- Finally, through these steps, all non-conformal {βi}-terms are resummed into the running coupling such that
the remaining terms in the perturbative series are identical to those of the corresponding conformal theory,
thus leading to a scheme-independent prediction. The scheme-independence of the PMC prediction is a general
result; it has been explicitly demonstrated for dimensional-like Rδ-scheme. Since a different renormalization
scale generally appears at each order, we call this approach as the PMC multi-scale approach.

Recently, we have suggested a novel single-scale PMC approach, labeled as PMC-s, which sets a single overall PMC
scale for the pQCD approximant (Shen et al., 2017a). This PMC-s scale effectively replaces the individual PMC
scales at each order in the sense of a mean-value theorem. The single-scale approach avoids the problem of very small
arguments of the running coupling appearing at any specific order; e.g., when a soft gluon carries the momentum
flow. Some examples appear in the analysis of the Bjorken sum rule (Deur et al., 2017), the analysis of hadronic τ
decay ,and the static quark potential (Brodsky et al., 2014).
The single-scale approach makes the implementation and automation of PMC scale-setting simpler and more trans-

parent. It is, however, effectively equivalent to the multi-scale approach (Shen et al., 2017a). The PMC-s fixes the
renormalization scale by directly requiring all the known RG-dependent nonconformal terms to vanish. The effective
PMC scale have been observed in two examples to approach a steady point with increasing loop order. Moreover,
the difference between the two nearby values decreases as more high-order loop-terms are included. The rapid pQCD
convergence of the effective PMC scale indicates that the single PMC scale converges rapidly as more loop corrections
are included.
The single-scale PMC-s approach can be adopted as a reliable substitution for the multi-scale approach for setting

the scale for high-energy processes, particularly when one does not need detailed information at each order.
In summary, the PMC-s inherits most of the features of the multi-scale approach: its predictions are also scheme

independent due to the resulting conformal series, and the convergence of the pQCD expansion is also greatly improved
due to the elimination of the divergent renormalon terms. On the other hand, in some leading-twist processes such as
single-spin asymmetries in deep inelastic scattering (Brodsky et al., 2002) or the double Boer-Mulders effect in lepton
pair production (Brodsky et al., 2003), the scale of the running coupling at specific orders will be physically soft since
these processes involve gluonic initial-state or final-state interactions at relatively small momentum transfer. Thus in
this case the PMC multi-scale approach is required.

B. The PMC scale-setting for dimensional-like Rδ-scheme

TheRδ-scheme introduces a generalization of the conventional dimensional regularization schemes, where a constant
−δ is subtracted in addition to the standard subtraction ln 4π − γE of the MS-scheme. The Rδ-scheme provides a
natural explanation of the degeneracy relations which are general properties of the non-Abelian gauge theory and
underly the resulting conformal features of the pQCD series (Bi et al., 2015). By using the general displacement
relation for the running coupling at any two scales, one can obtain the general pattern of the {βi}-terms at each
order, which naturally implies the wanted degeneracy relations among different terms; e.g., the coefficients for β0a

2
µ,

β1a
3
µ, · · ·, βia

i+2
µ are the same.

The pQCD approximants among different Rδ-schemes are simply related by a scale shift. We can derive general
pQCD expression in the Rδ-schemes by using the displacement relation between couplings at different scales,

aµ = aµδ
+

∞
∑

n=1

1

n!

dnaµ
(d lnµ2)n

∣

∣

∣

∣

µ=µδ

(−δ)n, (27)

where δ = lnµ2
δ/µ

2. Thus one can rewrite the pQCD prediction (20) as (Mojaza et al., 2013; Brodsky et al., 2014)

ρn(Q) = r1aµδ
+ (r2 + β0r1δ)a

2
µδ

+ [r3 + β1r1δ + 2β0r2δ + β2
0r1δ

2]a3µδ

+[r4 + β2r1δ + 2β1r2δ + 3β0r3δ + 3β2
0r2δ

2 + β3
0r1δ

3 +
5

2
β1β0r1δ

2]a4µδ
+O(a5µδ

). (28)

It is easy to confirm that,

∂ρn
∂δ

= −
∂aµδ

∂δ

∂ρn
∂aµδ

= −µ2
δ

∂aµn

∂µ2
δ

∂ρn
∂aµδ

= −β(aµδ
)
∂ρn
∂aµδ

. (29)

This shows that when the non-conformal terms associated with the β(aµδ
)-function have been removed, one can

achieve a scheme-independent prediction; i.e. β(aµδ
) → 0 indicates ∂ρn/∂δ → 0. The PMC scales determined by the
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non-conformal terms depend on the choice of renormalization scheme, which however are compensated by scheme-
dependent coefficients ri,0, leading to the final conformal and scheme-independent pQCD series. This is also consistent
with the commensurate scale relations (Brodsky and Lu, 1993; Shen et al., 2017b) among different orders.
By explicitly showing the β-pattern at each perturbative order; i.e., by replacing the coefficients ri with ri,j , the

pQCD prediction ρn as defined in Eq.(20) can be rewritten in the following form

ρn(Q) =

n
∑

i=1

ri(µ/Q)aiµ

= r1,0aµ + [r2,0 + β0r2,1] a
2
µ +

[

r3,0 + β1r2,1 + 2β0r3,1 + β2
0r3,2

]

a3µ

+

[

r4,0 + β2r2,1 + 2β1r3,1 +
5

2
β1β0r3,2 + 3β0r4,1 + 3β2

0r4,2 + β3
0r4,3

]

a4µ + · · · . (30)

The non-conformal coefficients ri,j(≥1) are general functions of µ and Q, which are usually in form of lnµ/Q. For

convenience, we identify the coefficients ri,j(≥1) as ri,j =
∑j

k=0 C
k
j lnk(µ2/Q2)r̂i−k,j−k , in which r̂i,j = ri,j |µ=Q and

the combination coefficient Ck
j = j!/k!(j − k)!. The conformal coefficients are free from µ-dependence, e.g., ri,0 ≡ r̂i,0.

Next, we rewrite the pQCD expansion (30) into a compact form as

ρn(Q) =

n
∑

i≥1

ri,0a
i
µ +

i+j≤n
∑

i≥1,j≥1

(−1)j
[

iβ(aµ)a
i−1
µ

]

ri+j,j∆
(j−1)
i (aµ). (31)

For a fourth-order prediction, we need to know the first three ∆
(j−1)
i (x), which are

∆
(0)
i (x) = 1, (32)

∆
(1)
i (x) =

1

2!

[

∂β(x)

∂x
+ (i− 1)

β(x)

x

]

, (33)

∆
(2)
i (x) =

1

3!

[

β(x)
∂2β(x)

(∂x)2
+

(

∂β(x)

∂x

)2

+ 3(i− 1)
β(x)

x

∂β(x)

∂x
+ (i − 1)(i− 2)

β(x)2

x2

]

. (34)

In the second summation of Eq.(31), we need to keep the expansion up to anµ-order.
Following the standard PMC procedures, we are ready to fix the PMC scale and obtain the required PMC predic-

tions.
For the multi-scale PMC approach, we obtain the following conformal series for a pQCD approximant up to nth-order

level,

ρn(Q)|PMC =
n
∑

i=1

ri,0a
i
Qi
, (35)

where only the conformal coefficients ri,0 remain, and the PMC scales Qi for each order are determined by recursively
absorbing the {βi}-terms into the coupling at the corresponding order, which satisfy

∑

j≥0

∆
(j)
i (aµ) ln

j+1 Q2
i

µ2
=
∑

j≥0

(−1)j+1∆
(j)
i (aµ)

ri+j+1,j+1

ri,0
, (36)

which leads to

ln
Q2

i

Q2
=

∑

0≤j≤(n−1−i)

Pi,ja
j
µ. i ∈ [1, (n− 1)]. (37)

For a nth-order prediction, we can fix (n−1) PMC scales. The above expressions show that the PMC scale Qi is given
as a perturbative series; any residual scale dependence in Qi is due to unknown high-order terms. This is the first kind
of residual scale dependence. However, we have no information on how to set the scale for the highest-order running
coupling; in practice, it can be set as the finally determined PMC scale, i.e. Qn = Qn−1. This treatment leads to
the second kind of residual scale dependence. In practice, we have found that those two residual scale dependence,
in comparison with the conventional scale dependence, are quite small even at low orders. This is due to a much
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faster pQCD convergence after applying the PMC (the first kind also suffers from exponential suppression). Solving
Eq.(36) iteratively, we can get the perturbative coefficients Pi,j for the PMC scales. For example, for a fourth-order
prediction, we have

Pi,0 = −
r̂i+1,1

ri,0
, (38)

Pi,1 =
(i + 1)(r2i+1,1 − ri,0ri+2,2)

2r2i,0
β0, (39)

Pi,2 =
(i + 2)(r2i+1,1 − ri,0ri+2,2)

2r2i,0
β1 −

(i+ 1)[(2i+ 1)r3i+1,1 − 3(i+ 1)ri,0ri+1,1ri+2,2 + (i+ 2)r2i,0ri+3,3]

6r3i,0
β2
0 . (40)

For the single-scale approach (PMC-s), the resulting conformal series up to nth-order level changes to

ρn(Q)|PMC−s =

n
∑

i≥1

ri,0a
i
Q⋆

, (41)

where a single effective PMC scale Q⋆ is introduced, which is determined by requiring all the non-conformal terms to
vanish simultaneously, i.e.

∑

i≥1,j≥1,0≤k≤j

(−1)j lnk
Q2

⋆

Q2

[

iβ(aQ⋆
)ai−1

Q⋆

]

Ck
j ∆

(j−1)
i (aQ⋆

)r̂i+j−k,j−k = 0 , (42)

which leads to

ln
Q2

⋆

Q2
=

n−2
∑

i=0

Sia
i
Q⋆

. (43)

Solving Eq.(42) iteratively, we can get the perturbative coefficients Si. For example, for a fourth-order prediction, we
have

S0 = −
r̂2,1
r̂1,0

, (44)

S1 =
2 (r̂2,0r̂2,1 − r̂1,0r̂3,1)

r̂21,0
+

r̂22,1 − r̂1,0r̂3,2

r̂21,0
β0, (45)

S2 =
3r̂1,0 (r̂3,0r̂2,1 − r̂1,0r̂4,1) + 4r̂2,0 (r̂1,0r̂3,1 − r̂2,0r̂2,1)

r̂31,0
+

3r̂1,0r̂2,1r̂3,2 − r̂21,0r̂4,3 − 2r̂32,1
r̂31,0

β2
0

+
3
(

r̂22,1 − r̂1,0r̂3,2
)

2r̂21,0
β1 +

3r̂1,0 (2r̂2,1r̂3,1 − r̂1,0r̂4,2) + r̂2,0
(

2r̂1,0r̂3,2 − 5r̂22,1
)

r̂31,0
β0. (46)

As shown in Eqs.(44, 45, 46), there are some identical combinations in the scale expansion series among different or-
ders, which are consistent with the degeneracy relations among different orders; e.g., the coefficients of (i+2)βia

i+1(Q)
are the same. These equations show that the scale Q⋆ has no relation to the initial scale µ at any fixed order. Thus
the PMC-s has only the first kind of residual scale dependence, whose magnitude is also smaller than the case of
the multi-scale approach, since the precision of the PMC scales at various orders are generally different due to their
{βi}-terms are known at different orders. Moreover, the pQCD series for the observable converges rapidly; thus
any residual scale dependence due to uncalculated high-order terms will be greatly suppressed. For example, the

conventional approach assigns an uncertainty of
(

+1.0%
−3.0%

)

,
(

+0.3%
−1.6%

)

or
(

+0.4%
−0.2%

)

to the two-loop, three-loop, and the

four-loop approximants of the ratio Re+e−(Q = 31.6GeV) by assuming the range µ ∈ [1/2Q, 2Q], respectively; as
a comparison, the single-scale PMC prediction on Re+e−(Q = 31.6GeV) is unchanged within the same choices of
µ (Shen et al., 2017a). Thus, the PMC single-scale approach PMC-s could be adopted as a valid substitution for the
PMC multi-scale approach for setting the renormalization scale for high-energy processes, particularly when one does
not need detailed information at each order.
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C. The PMC scale-setting for a general C-scheme

By using the relation (17) between the C-scheme coupling âµ and the conventional coupling aµ, we transform the
pQCD approximant ρn(Q) as

ρ̂n(Q) =

n
∑

i=1

ĉi(µ/Q)âiµ. (47)

Here we are considering at least the next-to-leading order pQCD correction to the pQCD prediction; i.e. n ≥ 2.
The coefficients ĉi can be related to the coefficients ri,j for conventional running coupling from Eqs.(22, 23, 24, 25,
30). We shall adopt the same notation r̂i,j = ri,j |µ=Q for our following treatment, in which the conformal coefficient
ri,0 = r̂i,0. These equations show the non-conformal part of the coefficients ĉi have a more complex {βi}-structure; it
can be schematically written as

ĉi(µ/Q) = r̂i,0 + gi
(

µ/Q,
{

βm
j

})

+ hi

(

µ/Q,
{

βl
k/β

n
0

})

, (48)

where j ≥ 0, l,m, n, k ≥ 1, the functions gi and hi can be read from the known coefficients ĉi. Due to this complex
{βi}-structure, it is difficult to distribute gi and hi into running couplings at different orders, although this is important
for determining the correct running coupling at each perturbative order. To avoid this problem, we will treat (gi+hi)
together and adopt the single-scale PMC approach to eliminate all the RG-involved {βi}-terms 2.
By using Eq.(47), we obtain

∂ρ̂n
∂C

= −
∂âµ
∂C

∂ρ̂n
∂âµ

= −µ2 ∂âµ
∂µ2

∂ρ̂n
∂âµ

= −β̂(âµ)
∂ρ̂n
∂âµ

, (49)

where we have used the fact that the scale-running and scheme-running of âµ satisfy the same β̂-function. Eq.(49)

shows that when the non-conformal terms associated with the β̂(âµ)-function have been removed, one can achieve a

scheme-independent prediction at any fixed order, i.e. β̂(âµ) → 0 indicates ∂ρ̂n/∂C → 0. Eq.(49) agrees with the
conclusion of Eq.(29) which is derived using the Rδ-scheme. The present conclusion however is much more general,
since the value of C is arbitrary and could be referred to as any renormalization scheme.
Following the single-scale PMC procedures, an effective scale Q⋆ is introduced to eliminate all nonconformal terms.

The scale Q⋆ is thus determined by requiring

n
∑

i=1

[

gi
(

Q⋆/Q,
{

βm
j

})

+ hi

(

Q⋆/Q,
{

βl
k(≥1)/β

n(≥1)
0

})]

âiQ⋆
= 0. (50)

This equation can be solved recursively, and we can express the solution as a power series in âQ⋆
, i.e.,

ln
Q2

⋆

Q2
=

n−2
∑

i=0

Ŝiâ
i
Q⋆

, (51)

whose first three coefficients are

Ŝ0 = −
r̂2,1
r̂1,0

− C, (52)

Ŝ1 =
2 (r̂2,0r̂2,1 − r̂1,0r̂3,1)

r̂21,0
+

r̂22,1 − r̂1,0r̂3,2

r̂21,0
β0 +

β2
1

β3
0

−
β2

β2
0

, (53)

Ŝ2 =
3r̂1,0 (r̂3,0r̂2,1 − r̂1,0r̂4,1) + 4r̂2,0 (r̂1,0r̂3,1 − r̂2,0r̂2,1)

r̂31,0
+

3r̂1,0r̂2,1r̂3,2 − r̂21,0r̂4,3 − 2r̂32,1
r̂31,0

β2
0

+
3
(

r̂22,1 − r̂1,0r̂3,2
)

2r̂21,0
β1 +

3r̂1,0 (2r̂2,1r̂3,1 − r̂1,0r̂4,2) + r̂2,0
(

2r̂1,0r̂3,2 − 5r̂22,1
)

r̂31,0
β0 −

β3
1

2β4
0

+
β2β1

β3
0

−
β3

2β2
0

. (54)

2 As a comparison, the non-conformal coefficients ri,j(≥1) for conventional running coupling, as shown by Eq.(30), are superposition of
RGEs for each running coupling, thus they can be conveniently adopted for determining the correct PMC scale at each perturbative
order.
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It is interesting to find that all high-order coefficients Ŝi (i ≥ 1) are free of the scheme parameter C. By using the
definition of C-scheme coupling (11), we obtain

1

âQ⋆

+
β1

β0
ln âQ⋆

= β0

(

ln
Q2

⋆

Λ2
+ C

)

= β0



ln
Q2

Λ2
−

r̂2,1
r̂1,0

+
n−2
∑

i≥1

Ŝiâ
i
Q⋆



 . (55)

The second equation shows that, even though the effective scale Q⋆ depends on the choice of C, the coupling α̂Q⋆
is

independent of the choice of C at any fixed order.
Thus, after fixing the scale Q⋆, we achieve a C-scheme independent pQCD series

ρ̂n(Q)|PMC =

n
∑

i≥1

ri,0â
i
Q⋆

. (56)

The pQCD series depends on the initial choice of scheme via the coefficients ri,j and the {βi≥2}-functions. Thus,
Eq.(56) indicates the scheme-independence of the C-scheme predictions is equivalent to the scheme-independence of
the initial choice of scheme, and vice versa. The demonstration of C-scheme independence, as shown by Eq.(49),
shows the pQCD predictions are scheme independent for any choice of the initial scheme.
Given a measurement of the running coupling at a reference scale Q, aQ, one can determine the value of Λ for a

specific scheme by using its {βi}-functions. By using the above formulas, we obtain pQCD predictions independent
of any choice of scheme (represented by any choice of C). This demonstrates to any orders the scheme-independent
of the PMC predictions – Given one measurement which sets the value of the coupling at a scale, the resulting PMC
predictions are independent of the choice of renormalization scheme.

D. Equivalence of the PMC predictions for Rδ-schemes for conventional and C-scheme couplings

In the case of the dimensional-like Rδ-renormalization schemes, the PMC predictions for the conventional coupling
(Eq.(41)) and the C-scheme coupling (Eq.(56)) are exactly the same. This equivalence is due to the fact that

• By eliminating the non-conformal terms, the pQCD approximant becomes conformal series. As shown by
Eqs.(17, 18), the C-scheme coupling âµ and the conventional coupling aµ are mutually related by the RG-
involved {βi}-terms, thus the conformal coefficients ri,0 at every order are the same for both cases.

• For an nth-order prediction, the effective conventional coupling aQ⋆
satisfies the conventional RGE (1), which

can be rewritten in the following form with the help of Eq.(43), i.e.

1

aQ⋆

+
β1

β0
ln aQ⋆

= β0



ln
Q2

Λ2
+

n−2
∑

i≥0

Sia
i
Q⋆

−

(∫ aQ⋆

0

da

β̃(a)

)

n−2



 , (57)

where the subscript (n − 2) indicates the perturbative expansion is up to an−2
Q⋆

-order. On the other hand, the

effective C-scheme coupling âQ⋆
satisfies Eq.(55). By using the relation

(∫ aµ

0

da

β̃(a)

)

n−2

=
n−2
∑

i=1

(Si − Ŝi)a
i
µ, (58)

it can be further written as

1

âQ⋆

+
β1

β0
ln âQ⋆

= β0



ln
Q2

Λ2
+

n−2
∑

i≥0

Siâ
i
Q⋆

−

(

∫ âQ⋆

0

da

β̃(a)

)

n−2



 . (59)

Thus both the effective couplings aQ⋆
and âQ⋆

are solutions of the same equation, Eq.(57) or Eq.(59), which
can be solved iteratively. Those two equations are alternatives to the RGE, their solution is are identical for the
choice of same scale Q, indicating aQ⋆

≡ âQ⋆
for any fixed-order prediction.
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IV. PHENOMENOLOGICAL EXAMPLES

In doing the numerical calculations below, we adopt the world average αMS
s (MZ) = 0.1181(11) (Patrignani et al.,

2016) as the reference value for fixing the running coupling, which runs down to αMS
s (Mτ ) = 0.3159(95). MZ = 91.1876

GeV and Mτ = 1.777 GeV.

A. The non-singlet Adler function

The non-singlet Adler function (Adler, 1974) reads

Dns(Q2, µ) = 12π2

[

γns(aµ)− β(aµ)
∂

∂aµ
Πns(L, aµ)

]

=
3

4
γns
0 + D̄ns(Q2, µ), (60)

where µ is the renormalization scale, aµ = αs(µ)/π, and L = lnµ2/Q2. γns(aµ) =
∑

i≥0 γ
ns
i aiµ/16π

2 is the non-

singlet part of the photon field anomalous dimension and Πns(L, aµ) =
∑

i≥0 Π
ns
i aiµ/16π

2 is the non-singlet part of

the polarization function for a flavor-singlet vector current. The pQCD series of D̄ns(Q2, µ) up to nth-loop level can
be written as

D̄ns
n (Q2, µ) =

n
∑

i=1

ri(µ/Q)aiµ. (61)

The perturbative coefficients γns
i and Πns

i within the MS-scheme have been given up to four-loop level (Baikov et al.,
2012a), and the coefficients ri within the MS-scheme up to four-loop level can be read from Refs.(Baikov et al., 2010;
Chetyrkin et al., 1996). For example, if setting µ = Q and nf = 3, the first four MS-coefficients are

r1 = 1, r2 = 1.6398, r3 = 6.3710, r4 = 49.0757.

The coefficients at any other choices of the renormalization scale (µ 6= Q) can be obtained via RGE.

1. Scheme-and-scale uncertainties using conventional scale-setting

Taking Q = Mτ , we obtain a four-loop MS-scheme prediction on D̄ns using conventional scale-setting (Conv.),

D̄ns
4 (M2

τ , µ = Mτ )|Conv. = 0.1286± 0.0053± 0.0094
(

+0.0257
−0.0109

)

, (62)

where the first error is for ∆αMS
s (MZ) = ±0.0011 and the second error is an estimate of the “unknown” high-

order contribution, which is conservatively taken as the maximum value of the last known term of the perturbative
series within the possible choices of initial scale (Wu et al., 2015). As for the four-loop prediction, we take the
maximum value of |r4(µ/Mτ )a

4
µ| with µ ∈ [Mτ , 4Mτ ] as the estimated “unknown” high-order contribution. We

also present the conventional scale error predicted by varying µ ∈ [Mτ/2, 2Mτ ] in the parenthesis, which gives
D̄ns

4 |Conv. ∈ [0.1265, 0.1543]. The conventional scale error is still about 21% at the four-loop level. Thus a five-loop or
even higher loop calculation is needed to suppress the scale uncertainty using the conventional scale setting approach.
The unknown fifth-order coefficient has been estimated by several groups, e.g. r5 ≃ 283 (Beneke and Jamin, 2008)

or r5 ≃ 275 (Baikov et al., 2008). If using r5 ≃ 283, Eq.(62) changes to

D̄ns
5 (M2

τ , µ = Mτ )|Conv. = 0.1315± 0.0057± 0.0065
(

−0.0052
−0.0079

)

, (63)

which shows that the conventional scale uncertainty could be reduced to 6%.
In addition to the scale dependence, the predictions using conventional scale setting is also scheme dependent at

any fixed order. We adopt the C-scheme coupling to illustrate this dependence.
By using the relation (17), we rewrite D̄ns

n (Q2, µ) in terms of the C-scheme coupling âµ as

D̄ns
n (Q2, C) =

n
∑

i=1

ĉi(µ/Q)âiµ, (64)
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where the coefficients ĉi(µ/Q) can be derived by using Eqs.(22, 23, 24, 25). For example, if setting µ = Q and nf = 3,
the C-dependent coefficients ĉi in terms of ri up to five-loop level are

ĉ1 = 1, ĉ2 = 1.6398 + 2.25C, ĉ3 = 7.6816 + 11.3792C + 5.0625C2,

ĉ4 = 61.0597 + 72.0804C + 47.4048C2 + 11.3906C3,

ĉ5 = r5 + 65.4774 + 677.68C + 408.637C2 + 162.464C3 + 25.6289C4.

Those coefficients at the NLO and higher orders explicitly depend on C.

C
µ (GeV)
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0.12

-1 7
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n
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(M

2 τ
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)
0.16
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41
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22
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4 (M 2

τ
, C)
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4 (M 2

τ
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4 (M 2

τ
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FIG. 2 (color online) The four-loop prediction on D̄ns(M2
τ , C) for the Adler function using conventional scale setting as a

function of parameters C and µ, which is shown by a light shaded band. The solid line is for the MS-scheme, and the dashed
line is for the MS-scheme.

A graphical representation of D̄ns(M2
τ , C) as a function of parameters C and µ is given in Fig. 2, in which we have

chosen C ∈ [−2,+2] 3 and µ ∈ [Mτ , 4Mτ ]. The light shaded band shows the four-loop prediction on D̄ns(M2
τ , C),

which still shows a large scheme-and-scale dependence. Using a proper choice of C, the prediction using C-scheme
coupling âµ are be equivalent to predictions using some of the familiar schemes; e.g. the solid line in Fig.2 is for

the MS-scheme and the dashed line is for the MS-scheme. To ensure equivalence, the value of C should be changed
for different scales. For example, by taking C = −0.188 one obtains the conventional MS prediction for µ = Mτ ;
alternatively it can taken as C = −0.004 for µ = 4Mτ .
Requiring the estimated “unknown” high-order contribution, |ĉn(µ/Mτ )â

n
µ|MAX, to be at its minimum, we can

obtain an optimal C-scheme for D̄ns
n (Q2, C). At the four-loop level with n = 4, the optimal C-value is −0.972, leading

to

D̄ns
4 (M2

τ , C = −0.972)|Conv. = 0.1365± 0.0069± 0.0083, (65)

where the central value is for µ = Mτ , the first error is for ∆αMS
s (MZ) = ±0.0011 and the second error is an estimate

of the “unknown” high-order contribution. As for a five-loop prediction, if using r5 ≃ 283, the optimal C-value
changes to −1.129, and we obtain

D̄ns
5 (M2

τ , C = −1.129)|Conv. = 0.1338± 0.0062± 0.0054. (66)

2. Predictions using PMC scale-setting

By applying PMC scale-setting, scheme and scale independent predictions can be achieved at any fixed order. To
apply PMC scale-setting, we need to distribute the perturbative ones ri into conformal coefficients (ri,0) and non-
conformal ones (ri,j( 6=0)), which can be achieved by using the β-pattern described by Eq.(30). Up to four-loop level,
the known coefficients for conventional coupling are (Shen et al., 2017b)

ri(≥1),0 =
3

4
γns
i , ri(≥2),1 =

3

4
Πns

i−1, ri(≥3),2 = 0, ri(≥4),3 = 0. (67)

3 The relation between the C-scheme coupling âMτ and the MS-scheme coupling aMτ ceases to be perturbative and breaks down below
C ∼ −2. Thus in our discussions we shall adopt C ≥ −2.
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Following the standard PMC single-scale approach, by resumming all the RG-involved non-conformal {βi}-terms into
the running coupling, we obtain the PMC prediction for D̄ns

n , i.e.

D̄ns
n (Q2, C)|PMC =

3

4

n
∑

i=1

γns
i âiQ⋆

. (68)

Using the known four-loop pQCD prediction D̄ns
4 , the PMC scale Q⋆ can be determined up to next-to-next-to-leading

log (N2LL) accuracy:

ln
Q2

⋆

Q2
= −C + 0.2249− 3.1382âQ⋆

− 13.3954â2Q⋆
, (69)

in which the value of the C-scheme coupling âQ⋆
is determined by Eq.(55).
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FIG. 3 The PMC scale Q
(i)
⋆ of D̄ns

4 (M2
τ , C) as a function of parameter C, where i indicates the scale is at the N(i−1)LL accuracy.

The PMC scale Q⋆ is independent of the choice of the initial scale, consistent with the observation of Eq.(43); it
is, however scheme-dependent, since it depends on the parameter C. We present Q⋆ as a function of C in Fig.3, in

which Q
(1,2,3)
⋆ are at the LL, NLL and N2LL level, respectively. Fig.3 shows Q

(1,2,3)
⋆ decreases with the increment of

C, and Q
(1)
⋆ > Q

(2)
⋆ > Q

(3)
⋆ . The optimal scale Q⋆ is of perturbative nature: when more loop terms are included, it

becomes more accurate. However, Eq.(55) shows that the C-scheme coupling at the scale Q∗ (âQ⋆
) is independent

to the choice of C. By taking Q = Mτ , we obtain âQ⋆
≡ 0.1056(41) for any choice of C, where the errors are from

∆αMS
s (MZ) = ±0.0011. We then obtain the scheme-independent PMC prediction on D̄ns

4 ,

D̄ns
4 (M2

τ , C)|PMC = 0.1345± 0.0066± 0.0008, (70)

where the first error is for ∆αMS
s (MZ) = ±0.0011 and the second error is an estimate of the “unknown” high-order

contribution, which equals to ±
∣

∣

3
4γ

ns
4 â4Q⋆

∣

∣, since the PMC prediction is independent to the choice of initial scale µ.
In order to compare the scheme dependence before and after applying the PMC, we set the initial scale µ = Mτ , and

present various predictions for D̄ns
4 (M2

τ , C) in Fig. 4. The solid line is the prediction using conventional scale-setting,
the lighter-shaded band shows the predicted unknown high-order contributions for various C values. At four-loop
level, Fig. 4 shows that the scheme-dependence of D̄ns

4 (M2
τ , C)|Conv. is rather large, which decreases with increasing

values for C; for larger C values, the error band becomes slightly larger. When C = −0.972, the error bar is the
minimum, corresponding to the optimal scheme. By further using the approximate five-loop term r5 ≃ 283, we also
give the results for the approximate five-loop prediction. Fig. 4 shows a smaller error bar is achieved with a five-loop
term, D̄ns

5 (M2
τ , C)|Conv. first increases and then decreases with the increment of C, and the optimal scheme is slightly

shifted to C = −1.129. The flat dash-dot line in Fig. 4 shows that the conventional scheme dependence can be
eliminated by applying the PMC. Due to the much faster pQCD convergence after applying the PMC, and due to
the elimination of the scale dependence, the PMC suggests that the unknown high-order contribution could be quite
small in comparison to the present four-loop prediction.
We present the value of each loop-term, LO, NLO, N2LO, or N3LO, for the four-loop prediction D̄ns

4 using conven-
tional (Conv.) and PMC scale-settings in Table I. Here κi stands for the ratio of the ith-order term over the total
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FIG. 4 (color online) D̄ns(M2
τ , C) for the Adler function as a function of the parameter C. The solid line is the prediction

using conventional scale setting, the lighter-shaded band is the uncertainty for a four-loop prediction ∆ = ±|ĉ4(µ/Mτ )â
4
µ|MAX

(Left) and for an approximate five-loop prediction ∆ = ±|ĉ5(µ/Mτ )â
5
µ|MAX (Right), where MAX is the maximum value for

µ ∈ [Mτ , 4Mτ ]. When C = −0.972 (Left) and C = −1.129 (Right), the error bar as shown by a vertical solid line is the
minimum. The dash-dot line represents the four-loop PMC prediction, and the darker shaded band is for ∆ = ±|r̂4,0â

4
Q⋆

| .
The independence of the PMC prediction on the parameter C demonstrates its scheme-independence.

TABLE I The value of each loop-term, LO, NLO, N2LO, or N3LO, for the four-loop prediction D̄ns
4 using conventional (Conv.)

and PMC scale-settings, respectively. µ = Q = Mτ . The results for the MS-scheme, the optimal C-scheme with C = −0.972,
and the C-scheme with C = −0.783 (Boito et al., 2016) are presented accordingly. The PMC prediction is unchanged for any
choice of C-scheme. κi represents the relative importance among different orders.

LO NLO N2LO N3LO Total κ1 κ2 κ3 κ4

Conv., MS-scheme 0.1006 0.0166 0.0064 0.0050 0.1286 78% 13% 5% 4%

Conv.,C = −0.783 0.1254 −0.0019 0.0037 0.0070 0.1342 93% −1% 3% 5%

Conv., optimal C-scheme 0.1347 −0.0099 0.0034 0.0083 0.1365 99% −7% 2% 6%

PMC, any C-scheme 0.1056 0.0240 0.0041 0.0008 0.1345 79% 18% 3% < 1%

contributions to D̄ns
4 , where i = 1 indicates the LO-order term, and etc.. The pQCD convergence for the conventional

MS-scheme is moderate. The pQCD convergence for the optimal C-scheme (C = −0.972) does not suffer from the usual

αs-suppression, the relativity of the related high-loop terms show, |D̄ns,LO
4 | ≫ |D̄ns,NLO

4 | ∼ |D̄ns,N2LO
4 | ∼ |D̄ns,N3LO

4 |.
On the other hand, by applying the PMC, a much better pQCD convergence is naturally achieved due to the elimi-
nation of the divergent renormalon-like terms.
An approximate method to determine the optimal C-scheme is suggested in Ref.(Boito et al., 2016) by fixing the

renormalization scale µ = Q and requiring the magnitude of the last known-term ĉn(Q/Q)ânQ to be at its minimum.

Using this suggestion, the uncertainty is assumed to be given by the magnitude of ĉn(Q/Q)ânQ, and if specifically

ĉn(Q/Q)ânQ equals to zero for an optimal C, one sets the one-order lower term ĉn−1(Q/Q)ân−1
Q as the uncertainty. Fig.5

shows D̄ns
5 (M2

τ , C) as a function of C for µ = Q = Mτ by using the approximate five-loop term r5 ≃ 283; its predicted
optimal C is −0.783, which leads to |ĉ5(Mτ/Mτ )â

5
Mτ

| = 0 and D̄ns
5 (M2

τ , C = −0.783)|Conv. = 0.1342±0.0063±0.0070,

where the first error is for ∆αMS
s (MZ) = ±0.0011 and the second error is equals to ±|ĉ4(Mτ/Mτ )â

4
Mτ

|.

B. τ decays to ν+ hadrons

The ratio of the τ total hadronic branching fraction to its lepton branching fraction can be parameterized as,

Rτ =
Γ(τ → hadrons + ντ )

Γ(τ → l + ν̄l + ντ )
= 3SEW

(

|Vud|
2 + |Vus|

2
)

(1 + δ(0) + · · ·), (71)

where SEW is an electroweak correction, |Vud| as well as |Vus| are CKM matrix elements. The pQCD correction is
encoded in δ(0) and the ellipsis indicate further small subleading corrections. The pQCD correction up to nth-order
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FIG. 5 (color online) D̄ns(M2
τ , C) as a function of C using conventional scale-setting, which agrees with that of Ref.(Boito et al.,

2016). µ = Q = Mτ . The solid line is the approximate five-loop prediction with r5 ≃ 283 using conventional scale setting, the
lighter-shaded band is its uncertainty ∆ = ±ĉ5(Mτ/Mτ )â

5
Mτ

. The optimal scheme corresponds to C = −0.783, which leads to

a vanishing ĉ5(Mτ/Mτ )â
5
Mτ

, and ±|ĉ4(Mτ/Mτ )â
4
Mτ

| is taken as its uncertainty. As a comparison, the dash-dot line represents

the scheme-independent four-loop PMC prediction, whose darker-shaded band is for ∆ = ±|r̂4,0â
4
Q⋆

|.

level reads,

δ(0)n (M2
τ , µ) =

n
∑

i=1

ci(µ/Mτ )a
i
µ, (72)

where the perturbative coefficients ci for the MS-scheme up to four-loop level can be found in Refs.(Beneke and Jamin,
2008; Baikov et al., 2008). Numerically, the first five coefficients ci for µ = Mτ and nf = 3 are,

c1 = 1, c2 = 5.2023, c3 = 26.3659, c4 = 127.079, c5 = 307.783 + r5.

1. Scheme-and-scale uncertainties using conventional scale-setting

Taking µ = Mτ , we obtain a four-loop MS-scheme prediction on δ(0) using conventional scale-setting (Conv.),

δ
(0)
4 (M2

τ , µ = Mτ )|Conv. = 0.1930± 0.0104± 0.0199
(

+0.0169
−0.0285

)

, (73)

where the first error is for ∆αMS
s (MZ) = ±0.0011 and the second error is an estimate of the “unknown” high-order

contribution. We also present the conventional scale error predicted by varying µ ∈ [Mτ/2, 2Mτ ] in the parenthesis,

which gives δ
(0)
4 |Conv. ∈ [0.1645, 0.2099]. The scale error using conventional scale setting is ∼ 15% at the four-loop

level. If we use the predicted five-loop term r5 ≃ 283 (Beneke and Jamin, 2008) , we obtain

δ
(0)
5 (M2

τ , µ = Mτ )|Conv. = 0.1990± 0.0113± 0.0151
(

−0.0053
−0.0202

)

, (74)

it shows the conventional scale uncertainty is still large ∼ 10%.
The predictions using conventional scale setting are scheme dependent. By using the relation (17), we rewrite

δ
(0)
n (M2

τ , µ) in terms of the C-scheme coupling âµ as

δ(0)n (M2
τ , C) =

n
∑

i=1

ĉi(µ/Mτ )â
i
µ, (75)

where the first five coefficients for µ = Mτ and nf = 3 reads,

ĉ1 = 1, ĉ2 = 5.2023 + 2.25C, ĉ3 = 27.6765+ 27.4104C + 5.0625C2,

ĉ4 = 148.4 + 235.546C + 101.51C2 + 11.3906C3,

ĉ5 = 198.853 + 1754.35C + 1240.42C2 + 324.781C3 + 25.6289C4 + c5.
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FIG. 6 (color online) The four-loop prediction on δ(0)(M2
τ , C) using conventional scale setting as a function of parameters C

and µ, which is shown by a light shaded band. The solid line is for the MS-scheme, and the dashed line is for the MS-scheme.

A graphical representation of δ(0)(M2
τ , C) as a function of parameters C and µ is given in Fig. 2, in which we have

chosen C ∈ [−2,+2] and µ ∈ [Mτ , 4Mτ ]. The light shaded band shows the four-loop prediction on δ(0)(M2
τ , C), the

solid line is MS-scheme prediction and the dashed line is the MS-scheme one.
Requiring the approximate “unknown” high-order contribution, |ĉn(µ/Mτ )â

n
µ|MAX, minimal, we obtain an optimal

C-scheme for δ(0)(M2
τ , C) at the nth-order level. Using the four-loop prediction with n = 4, the optimal C-value is

−1.638, which leads to

δ
(0)
4 (M2

τ , C = −1.638)|Conv. = 0.1979± 0.0099± 0.0186. (76)

where the first error is for ∆αMS
s (MZ) = ±0.0011, and the second error is for ±|ĉ4(µ/Mτ )â

4
µ|MAX. If using the

five-loop term r5 ≃ 283, the optimal C-value changes to −1.813, and we obtain

δ
(0)
5 (M2

τ , C = −1.813)|Conv. = 0.1968± 0.0095± 0.0118. (77)

2. Predictions for τ decay using PMC scale-setting

By applying PMC scale-setting, it is found that a scheme and scale independent prediction can be achieved at
any fixed order. Up to four-loop level, the known conformal and non-conformal coefficients for conventional coupling
are (Brodsky et al., 2014),

ri(≥1),0 =
3

4
γns
i , ri(≥2),1 =

19

256
γns
i−1 +

3

64
Πns

i−1,

ri(≥3),2 =

(

265

6144
−

π2

256

)

γns
i−2 +

19

512
Πns

i−2, ri(≥4),3 =

(

3355

98304
−

19π2

4096

)

γns
i−3 +

(

265

8192
−

3π2

1024

)

Πns
i−3. (78)

By resumming all the RG-involved non-conformal {βi}-terms into the running coupling, we obtain the PMC prediction

for δ
(0)
n (M2

τ , C), i.e.

δ(0)n (M2
τ , C)|PMC =

3

4

n
∑

i=1

γns
i âiQ⋆

, (79)

Using the known four-loop pQCD prediction δ
(0)
4 (M2

τ , C), the PMC scale Q⋆ can be determined up to next-to-next-
to-leading log (N2LL) accuracy:

ln
Q2

⋆

M2
τ

= −C − 1.3584 + 1.6234âQ⋆
− 1.1385â2Q⋆

, (80)

where the optimal C-scheme coupling âQ⋆
is determined by Eq.(55).

We present the scheme-dependent Q⋆ as a function of C in Fig.7, in which Q
(1,2,3)
⋆ are at the LL, NLL and N2LL

level, respectively. To compare with the case of D̄ns(Q2), the perturbative series for lnQ2
⋆/M

2
τ oscillates, leading to
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FIG. 7 The PMC scale Q
(i)
⋆ of δ

(0)
4 (M2

τ , C) as a function of parameter C, where i indicates the scale is at the N(i−1)LL accuracy.

Q
(1)
⋆ < Q

(2)
⋆ and Q

(2)
⋆ > Q

(3)
⋆ ; similar to the case of D̄ns(Q2), Q

(1,2,3)
⋆ decreases with increasing C; the prediction will

become more precise when more loop terms are included. Eq.(55) indicates the C-scheme coupling âQ⋆
is free of the

parameter C, and for the four-loop level we obtain âQ⋆
= 0.1449(63), where the error is for ∆αMS

s (MZ) = ±0.0011.

We then obtain the scheme-and-scale independent PMC prediction on δ
(0)
4 (M2

τ , C),

δ
(0)
4 (M2

τ , C)|PMC = 0.2035± 0.0123± 0.0030. (81)

where the first error is for ∆αMS
s (MZ) = ±0.0011 and the second error is an estimate of the “unknown” high-order

contribution, which is ±
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4 â4Q⋆

∣

∣.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.1

0.14

0.18

0.22

0.26

0.3

C

δ
(0

)
(M

2 τ
,C

)

 

 

δ
(0)
4 (M2

τ , C), Conv.

δ
(0)
4 (M2

τ , C), PMC

δ
(0)
4 (M2

τ ,−1.638), Conv.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.1

0.14

0.18

0.22

0.26

0.3

C

δ
(0

)
(M

2 τ
,C

)

 

 

δ
(0)
5 (M2

τ , C), Conv.

δ
(0)
4 (M2

τ , C), PMC

δ
(0)
5 (M2

τ ,−1.813), Conv.

FIG. 8 (color online) δ(0)(M2
τ , C) for τ decay as a function of the parameter C. The solid line is the prediction using conventional

scale setting, the lighter-shaded band is the uncertainty for a four-loop prediction ∆ = ±|ĉ4(µ/Mτ )â
4
µ|MAX (Left) and for an

approximate five-loop prediction ∆ = ±|ĉ5(µ/Mτ )â
5
µ|MAX (Right), where MAX is the maximum value for µ ∈ [Mτ , 4Mτ ]. When

C = −1.638 (Left) and C = −1.183 (Right), the error bar as shown by a vertical solid line is the minimum. The dash-dot line
represents the four-loop PMC prediction, and the darker shaded band is for ∆ = ±|r̂4,0â

4
Q⋆

| . The independence of the PMC
prediction on the parameter C demonstrates its scheme-independence.

To compare the scheme dependence before and after applying the PMC, we set the initial scale µ = Mτ , and
present various predictions on δ(0)(M2

τ , C) in Fig. 8. The solid line is the prediction using conventional scale-setting,
the lighter-shaded band shows the predicted unknown high-order contributions for various C values. At four-loop
level, Fig. 8 shows that the error band shall first increases and then decreases with increasing C; the optimal scheme
is obtained for C = −1.638. By further using the approximate five-loop term r5 ≃ 283, we give the results for the
approximate five-loop prediction. Fig. 8 shows a smaller error bar is achieved with a five-loop term, D̄ns

5 (M2
τ , C)|Conv.

oscillates with the increment of C, and the optimal scheme is slightly shifted to C = −1.813. The flat dash-dot line in
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Fig. 8 shows the conventional scheme dependence can be eliminated by applying the PMC. The unknown high-order
contribution could be quite small for the present four-loop PMC prediction.

TABLE II The value of each loop-term, LO, NLO, N2LO, or N3LO, for the four-loop prediction δ
(0)
4 (M2

τ ) using conventional

(Conv.) and PMC scale-settings, respectively. µ = Q = Mτ . The results for the MS-scheme, the optimal C-scheme with
C = −1.638, and the C-scheme with C = −0.882 (Boito et al., 2016) are presented accordingly. The PMC prediction is
unchanged for any choice of C-scheme. κi represents the relative importance among different orders.

LO NLO N2LO N3LO Total κ1 κ2 κ3 κ4

Conv., MS-scheme 0.1006 0.0526 0.0268 0.0130 0.1930 52% 27% 14% 7%

Conv., C = −0.882 0.1301 0.0544 0.0164 0.0034 0.2043 64% 27% 8% 2%

Conv., optimal C-scheme 0.1873 0.0532 −0.0240 −0.0186 0.1979 95% 27% −12% −10%

PMC, any C-scheme 0.1449 0.0451 0.0105 0.0030 0.2035 71% 22% 5% 2%
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FIG. 9 (color online) δ(0)(M2
τ , C) as a function of C, with µ = Mτ . The solid line is the approximate five-loop prediction using

conventional scale setting, the lighter-shaded band is the uncertainty ∆ = ±ĉ5(Mτ/Mτ )â
5
Mτ

. In the cross-point, C = −1.629

or C = −0.882, ĉ5(Mτ/Mτ )â
5
Mτ

vanishes, and ±|ĉ4(Mτ/Mτ )â
4
Mτ

| is taken as the uncertainty. The dash-dot line represents the

scheme-independent four-loop PMC prediction, whose darker-shaded band is for ∆ = ±|r̂4,0â
4
Q⋆

|.

We present the value of each loop-term, LO, NLO, N2LO, or N3LO, for the four-loop prediction δ
(0)
4 using conven-

tional (Conv.) and PMC scale-settings in Table II. Here κi stands for the ratio of the ith-order term over the total

contributions to δ
(0)
4 , where i = 1 indicates the LO-order term, etc. The pQCD convergence for the conventional

MS-scheme is moderate. The pQCD convergence for the optimal C-scheme (C = −1.638) does not suffer from the

usual αs-suppression, |δ
(0),LO
4 | ≫ |δ

(0),NLO
4 | ∼ |δ

(0),N2LO
4 | ∼ |δ

(0),N3LO
4 |. On the other hand, by applying the PMC, a

much better pQCD convergence is naturally achieved due to the elimination of divergent renormalon-like terms. The
value of C = −0.882 is determined by fixing the renormalization scale µ = Q and requiring the magnitude of the

last known-term ĉ5(Q/Q)ânQ to be the minimum (Boito et al., 2016). Fig.9 shows δ
(0)
5 (M2

τ , C) as a function of C for
µ = Q = Mτ by using the approximate five-loop term r5 ≃ 283; its predicted optimal C is −0.882. Fig.9 shows there
are two C values, C = −1.629 and C = −0.882, lead to ĉ5(Mτ/Mτ )â

5
Mτ

= 0, and the optimal scheme is chosen for

C = −0.882 which has a minimum value for |ĉ4(Mτ/Mτ )â
4
Mτ

|. We note the conventional prediction with C = −0.882
is in agreement with the PMC prediction; a similar pQCD convergence has also been observed in Table II. Thus
the PMC provides an underlying reason for the correctness of the optimal scheme for a high-order prediction using
conventional scale-setting.

V. SUMMARY

We have shown that the scheme-and-scale ambiguities introduced by conventional scale-setting are unnecessary by
combining the single-scale PMC procedure with the newly suggested scheme-independent C-scheme coupling. We
have demonstrated that using the C=-scheme, together with the single-scale PMC-s, leads to perturbative QCD
predictions which are explicitly independent of the initial renormalization scale and the choice of the renormalization
scheme at all orders.
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This method for eliminating the scale and scheme ambiguities relies heavily on how well we know the precise
value and analytic properties of of the strong coupling αs. An extended RGE can be adopted to determine the
αs scheme-and-scale running behaviors simultaneously; however, these dependences are usually entangled with each
other and can only be solved perturbatively or numerically. In contrast, the scheme-and-scale running behavior of
a C-scheme coupling α̂s can be exactly separated; it satisfies a RGE free of scheme-dependent {βi≥2}-terms. The
choice of the parameter C is chosen to match a conventional coupling αs. The resulting scheme-independent RGE
for the C-scheme coupling α̂s provides scheme-independent predictions. In fact, by using the C-scheme coupling, we
have shown that explicitly scheme-independent predictions are obtained for any choice of the renormalization scheme
for the conventional coupling.
Perturbative QCD predictions based on PMC scale setting satisfy the standard RGI and all the self-consistency

conditions of the renormalization group. Because the divergent renormalon terms are eliminated, the convergence of
the PMC series depends on conformal coefficients which are more convergent than conventional pQCD series. The
PMC utilizes the RGE recursively to identify the occurrence and pattern of nonconformal {βi}-terms in a pQCD
expansion. The PMC scales are then fixed at each order, as in Gell-Mann-Low scale setting for QED. We can also
extend the PMC method to assign a single effective renormalization scale for all orders. The resulting PMC single-scale
approach not only makes the implementation and automation of PMC scale-setting simpler and more transparent,
but it also achieves precise scheme-and-scale independent predictions simultaneously. As shown by Eqs.(43, 51), the

(lnQ2
∗/ lnQ

2) expansion coefficients Si and Ŝi do not depend on the initial renormalization scale µ; thus the PMC
and PMC-s predictions are not only scheme independent, but also free of the choice for µ.
As we have shown, one can utilize a novel C-scheme coupling (Boito et al., 2016) whose scheme-and-scale running

behaviors are both governed by a single RGE which is free of scheme-dependent {βi≥2}-terms. The value of the
parameter C can be chosen to match any conventional renormalization scheme By using the C-scheme coupling
instead of the conventional coupling, we have demonstrated that the C-dependence of the PMC predictions can be
eliminated up to any fixed order; since the value of C is arbitrary, it means the PMC prediction is independent of
any renormalization scheme. The approach is independent of the specific use of dimensional regularization. Two
four-loop PMC examples confirm these observations. Thus combining the C-scheme coupling with the PMC single-
scale approach (PMC-s), the resulting predictions become completely independent of the choice of the renormalization
scheme and the initial renormalization scale, thus satisfying all of the conditions of RGI.
The PMC procedure thus systematically eliminates the scheme and scale ambiguities of pQCD predictions, greatly

improving the precision of tests of the Standard Model and the sensitivity of collider experiments to new physics.
Furthermore, since the perturbative coefficients obtained using the PMC are identical to those of a conformal theory,
one can derive all-orders commensurate scale relations between physical observables evaluated at specific relative
scales. An example is the Generalized Crewther Relation, which shows that the product of Re+e−(s) times the
integral over the spin-dependent structure functions g1(x,Q

2) which enters the Bjorken sum rule at a specific value
of Q2/s has no leading-twist radiative QCD corrections at all orders.
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