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Abstract: We compute dual-conformally invariant ladder integrals that are capped off by

pentagons at each end of the ladder. Such integrals appear in six-point amplitudes in planar

N = 4 super-Yang-Mills theory. We provide exact, finite-coupling formulas for the basic

double pentaladder integrals as a single Mellin integral over hypergeometric functions. For

particular choices of the dual conformal cross ratios, we can evaluate the integral at weak

coupling to high loop orders in terms of multiple polylogarithms. We argue that the integrals

are exponentially suppressed at strong coupling. We describe the space of functions that

contains all such double pentaladder integrals and their derivatives, or coproducts. This

space, a prototype for the space of Steinmann hexagon functions, has a simple algebraic

structure, which we elucidate by considering a particular discontinuity of the functions that

localizes the Mellin integral and collapses the relevant symbol alphabet. This function space

is endowed with a coaction, both perturbatively and at finite coupling, which mixes the

independent solutions of the hypergeometric differential equation and constructively realizes

a coaction principle of the type believed to hold in the full Steinmann hexagon function space.
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1 Introduction

Despite substantial progress, our understanding of particle scattering in perturbative quantum

field theory remains incomplete. One might think that this is to be expected, and that

perturbation theory inherently limits us to order-by-order progress in the number of loops.

However, the last decade has seen the development of powerful new methods to address

scattering at the multi-loop level in both gauge and gravity theories — see, for example,

refs. [1–14] and refs. [12, 15–19]. Many of these methods are expected to function up to any

desired order in perturbation theory. In the case of planar N = 4 super-Yang Mills (SYM)

theory [20, 21] there is even an all-orders geometric formulation [7].

Rather, our understanding is incomplete because most of these methods supply, not

scattering amplitudes, but integrands depending on loop momenta. Evaluating the multi-loop

Feynman integrals produced by these methods is a substantial endeavor in its own right, with

two loops only just beginning to yield to systematic analysis [22–40]. In general, perturbative

scattering amplitudes are complicated transcendental functions of momentum invariants. If

we want to understand these amplitudes to all orders, then we need to understand how

to compute these functions order by order, and further, how to sum them into all-orders

expressions.

It is not obvious that this is possible in general. However, in the planar limit of N = 4

SYM we have unique evidence that it should be, due to the presence of integrability [41].

Integrability has been used to compute the theory’s cusp anomalous dimension for finite cou-

pling [42] and has been instrumental in the Pentagon Operator Product Expansion, which

calculates finite-coupling amplitudes in an expansion around a kinematic limit [43–49]. No-

tably, the perturbative expansion of these formulas has a finite radius of convergence in the

coupling. The kinematic dependence of four- and five-particle amplitudes in planar N = 4

SYM is also captured to all loop orders by the BDS ansatz [50], which is uniquely dictated

by the theory’s dual conformal symmetry [1, 51–55]. While this symmetry does not uniquely

fix the form of amplitudes involving more than five particles, it does restrict the problem to

a special class of dual conformally invariant (DCI) integrals [51, 56–58], and by extension

restricts the form and kinematic dependence of these amplitudes at finite coupling.

As a consequence, a great deal is known about the space of functions that can con-

tribute to six- and seven-particle perturbative amplitudes in planar N = 4 SYM. When these
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amplitudes are normalized by the BDS ansatz, they can be written in terms of dual supercon-

formal invariants (that encode the helicity structure) multiplied by multiple polylogarithms

that have known kinematic dependence and branch cuts only in physical channels [59–63].

Additional physical constraints come from the Steinmann relations, which imply that double

discontinuities of amplitudes must be zero when taken in overlapping channels [64–66]. These

relations are obeyed by the polylogarithmic part of the amplitude when it is normalized by

the BDS-like ansatz (which contains only two-particle kinematic invariants) [67–69]. We refer

to this space of multiple polylogarithms as the space of Steinmann hexagon functions (H)

and Steinmann heptagon functions for six- and seven-point kinematics, respectively. These

function spaces have proven sufficient to describe maximally helicity violating (MHV) and

next-to-MHV (NMHV) amplitudes at six points through six loops [60, 61, 68–74], and at

seven points through four loops [63, 75]. While the fact that only multiple polylogarithms

show up in these amplitudes remains conjectural, there exists evidence that it holds to all

loop orders [5]. Also, the specific arguments of the polylogarithms in the six-point case are

consistent with a recent all-orders analysis of the Landau equations [76].

In this article, we will focus on a particular class of DCI integrals inside the space of

Steinmann hexagon functions. These integrals have a ‘double pentaladder’ (hereafter just

‘pentaladder’) topology, meaning they take the form of a ladder integral capped on each end

by a pentagon with three external massless legs, for a total of six massless legs. Starting at two

loops, there are two integrals with this topology, denoted by Ω(L) and Ω̃(L), corresponding to

two inequivalent numerator factors that render the pentagon integration infrared finite. These

integrals constitute the most nontrivial part of the amplitude at two loops, and contribute

to the amplitude at all loop orders [3]. Moreover, members of these classes of integrals are

known to be related to each other at adjacent loop orders by a pair of second-order differential

equations [70, 77].

Armed with these differential equations, we consider finite-coupling versions of Ω(L) and

Ω̃(L) by summing over the loop order weighted by (−g2)L, as was done previously for a re-

lated box ladder integral [78]. While these quantities are not the full finite-coupling six-point

amplitude, they do constitute well-defined contributions to it that sum up an infinite class

of Feynman integrals. By exploiting the symmetries that preserve the dual coordinates on

each side of their ladders, variables can be found that simplify the differential equations these

integrals obey. Remarkably, after performing a separation of variables, we obtain compact

representations of the finite-coupling versions of Ω(L) and Ω̃(L) in terms of a single Mellin inte-

gral over products of hypergeometric functions. These representations are valid for any value

of the coupling. Factoring the second-order differential operators into first-order operators,

we are led to consider two additional classes of integrals, O(L) and W(L), that inherit this

finite-coupling description. In order to generate more Steinmann hexagon functions, we go

on to consider the enveloping space of polylogarithmic functions that is generated by taking

all possible derivatives of these integrals at arbitrarily high loop order. We refer to this space

of functions as the Ω space. It is graded by an integer weight, where for example Ω(L) has

weight 2L.
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Surprisingly, the nontrivial part of the Ω space is entirely encoded in the discontinuity

of these integrals with respect to the channel carrying momentum along the ladder. After

taking this discontinuity, the finite-coupling representation of each integral can be rewritten

as a contour integral over a branch cut that collapses to a pole in the weak coupling expansion.

Perturbatively, the dependence on the kinematic variables reduces to powers of logarithms

in one variable and single-valued harmonic polylogarithms (SVHPLs) [79] in the other two

variables. This simplicity allows us to recursively construct the function space corresponding

to this discontinuity to arbitrary weight. Promoting this space to the full Ω space also

turns out to be incredibly simple, since the kernel of the discontinuity operation within that

subspace contains only two functions at each weight.

Using similar methods, we also resum the pentabox ladder integrals, which are capped

by a pentagon on one end of the ladder and an off-shell box on the other end. These integrals

contribute to seven- and higher-particle amplitudes in planar N = 4 SYM. There is an

analogous enveloping space of polylogarithmic functions associated with these integrals, which

can be easily constructed by taking a kinematic limit of the Ω space.

These new finite-coupling representations give us formidable control over the original L-

loop integrals. In various kinematical limits, they lead to explicit formulae for the integrals

to high loop orders. They also give us a handle on the structure of the Ω space, which

(as a space of multiple polylogarithms) is endowed with a Hopf algebra and an associated

coaction [80–86]. In particular, the relevant discontinuities of the Ω(L), Ω̃(L), O(L), and W(L)

integrals are related to each other by first-order differential operators, and this system of

differential equations is encoded in the coaction. The coaction can thus be realized as a 4× 4

matrix that acts on the vector of the discontinuities of these integrals. (The coaction on the

integrals themselves maps to a slightly larger space of functions, and must be described by a

larger matrix.)

The coaction on the discontinuity of these integrals can also be defined at finite coupling

(that is, nonperturbatively) in the form of a matrix product of path-ordered exponentials.

By construction, this nonperturbative coaction satisfies a coaction principle [87–89], meaning

that the first entry of the coaction always maps to the original space of discontinuity functions,

while the second entry can map to a larger space, in general. We expect that this structure

can be lifted to the full Ω space. A similar coaction principle also seems to be at work in

perturbative string theory [90, 91], φ4 theory [89], QED [92], and the full space of Steinmann

hexagon functions (where data currently exist through six loops) [69, 74]. The finite-coupling

structure of the Ω space lends weight to the conjecture that H is endowed with a similar

structure to all orders. In many ways, the Ω space thus serves as an instructive toy model

for the full space of hexagon functions, as well as for quantum field theory more generally.

In studying these integrals, we hope to inaugurate a new approach to Feynman integrals

that goes beyond order-by-order progress in perturbation theory. The Ω(L) and Ω̃(L) integrals

can now be described analytically to any order, as well as at finite coupling — the already

substantial all-orders understanding of this class of integrands is now complemented by a

thorough understanding of the type of functions to which they integrate. Similar types of
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functions can be expected to appear in planar N = 4 more generally, at least in the MHV

and NMHV sectors. We hope that other infinite families of integrals can be identified and

characterized in a similar manner, eventually extending such an all-orders description to

scattering amplitudes themselves.

The remainder of this paper is organized as follows. In section 2 we define the Ω(L) and

Ω̃(L) integrals. We also define the related pentabox and box ladder integrals, for which the

pentagon at one or both ends of the ladder is replaced by an off-shell box. We then introduce

the differential equations these integrals satisfy. In section 3 we leverage the symmetries of

the Ω(L) integrals, as well as their single-valuedness in the region where all cross ratios are

close to 1, to resum them into a one-fold Mellin integral over hypergeometric functions. We

do the same for Ω̃(L), and introduce a family of related functions. In section 4 we show

that the finite-coupling representations of these integrals may be equivalently recast as an

infinite series, corresponding to the Taylor expansion around a particular kinematic limit. By

further expanding the coefficients of this series at weak coupling, we may resum it away from

the limit for certain two-dimensional slices of the space of kinematics, in terms of multiple

polylogarithms. Then, in section 4.6 we analyze our integrals at strong coupling, finding

evidence that they become exponentially suppressed for a large chunk of the Euclidean region.

Section 5 describes the Ω space of functions appearing in the coaction of the basic inte-

grals. It showcases a space of functions relevant to the six-point scattering amplitude that

can be constructed explicitly to all loop orders. First we consider the discontinuity of the

functions with respect to the channel carrying momentum along the ladder. This discontinu-

ity is simpler to analyze, yet it contains nearly all the information about the full space. In

particular, the discontinuity space can be efficiently reconstructed from its coaction, which

we formulate nonperturbatively. We conclude in section 6 with a discussion of these results

and possible directions for future work.

This paper includes three appendices: Appendix A collects relations between different

sets of kinematic variables; appendix B describes some “extended Steinmann relations” that

have been found in the full space of hexagon functions H; and appendix C describes analogous

relations for the spaces Ω and Ωc, as well as coproduct relations between the various integrals,

and how a curious “double coproduct” operator acts on the Ω space. We also provide three

ancillary files. Two of them, omega1vwL0-8.m and omegauv0L0-8.m, give the integral Ω(L)

on the surfaces u = 1 and w = 0, respectively, through eight loops in terms of multiple

polylogarithms. The third, omegacdiscwt0-12.m, gives the c-discontinuity of all the functions

in the Ω space through weight 12.

2 Finite Dual Conformal Invariant Integrals

2.1 Dual conformal symmetry

In addition to the superconformal symmetry that follows from its Lagrangian formulation,

N = 4 SYM develops a dual conformal symmetry in the planar limit [51–55]. This new sym-

metry is associated with conformal transformations acting on the dual (or region) coordinates

– 4 –



xαα̇i , defined via

pαα̇i = λαi λ̃
α̇
i = xαα̇i − xαα̇i+1 , (2.1)

where pαα̇i is the momentum of the ith scattering particle, and xαα̇n+1 ≡ xαα̇1 . Planarity implies

that these coordinates can only appear in integrals via the squared differences

x2
ij ≡ (xi − xj)2 = det(xαα̇i − xαα̇j ), (2.2)

where x2
i,i+1 = 0 when leg i is massless.

The planar loop integrand also depends on dual coordinates xr, xs, etc., associated with

the interior region of each loop. After dividing out by the tree-level MHV superamplitude, the

loop integrand multiplied by the integration measure becomes dual conformal invariant [55,

93]. In particular, such an object must be invariant under the dual conformal inversion

operator I,

I[xαα̇i ] =
xαα̇i
x2
i

⇒ I[x2
ij ] =

x2
ij

x2
ix

2
j

, I[d4xr] =
d4xr
(x2
r)

4
. (2.3)

As a consequence, external dual coordinates should appear the same number of times in the

numerator and denominator of the integrand, while the dual loop coordinates should appear

four more times in the denominator.

For example, the two-loop pentaladder integrals can be written in terms of the integral

I(2)
dpl ∝

∫
d4xr
iπ2

d4xs
iπ2

x2
arx

2
bs

(x2
1rx

2
2rx

2
3rx

2
4r)x

2
rs(x

2
4sx

2
5sx

2
6sx

2
1s)

, (2.4)

where, in addition to dual coordinates associated with each loop, we have introduced a pair

of points xαα̇a and xαα̇b that solve the null-separation conditions x2
a1 = x2

a2 = x2
a3 = x2

a4 = 0

and x2
b4 = x2

b5 = x2
b6 = x2

b1 = 0 [77]. This choice suppresses the integrand in each of the limits

where the denominator vanishes, rendering the integral infrared (IR) finite.

These conditions each admit two parity-conjugate solutions, namely

xαα̇a1 =
λα1

(
λ3β x

βα̇
3

)
− λα3

(
λ1β x

βα̇
1

)
〈13〉

, xαα̇a2 =

(
xαβ̇3 λ̃3β̇

)
λ̃α̇1 −

(
xαβ̇1 λ̃1β̇

)
λ̃α̇3

[13]
, (2.5)

xαα̇b1 =
λα4

(
λ6β x

βα̇
6

)
− λα6

(
λ4β x

βα̇
4

)
〈46〉

, xαα̇b2 =

(
xαβ̇6 λ̃6β̇

)
λ̃α̇4 −

(
xαβ̇4 λ̃4β̇

)
λ̃α̇6

[46]
, (2.6)

where 〈ij〉 ≡ εαβλ
α
i λ

β
j and [ij] ≡ εα̇β̇λ̃

α̇
i λ̃

β̇
j . These solutions seem to give us four possible

choices of numerator in the pentaladder integral (2.4). However, only two of these choices

give rise to different integrals, because replacing both xαα̇a and xαα̇b with their parity conjugates

gives rise to integrals that differ only by terms that vanish after integration [77].

Choosing pairs (xa1 , xb1) or (xa2 , xb2) that are related by the cyclic shift i→ i+ 3 gives

rise to the integral Ω(2) (up to a kinematic prefactor required to make it DCI, given below).

On the other hand, choosing the pair (xa1 , xb2) gives rise to the integral Ω̃(2) (again, up to a

kinematic prefactor), which is parity conjugate to the integral (xa2 , xb1).
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These integrals can also be expressed in terms of momentum twistors [94, 95]

ZRi = (λαi , x
βα̇
i λiβ) , (2.7)

where R = (α, α̇) is a combined SU(2, 2) index. Momentum twistors live in the projective

space CP3, as they are invariant under the independent little group rescalings, Zi → tiZi for

each i. They are related to the squared differences defined in eq. (2.2) by

x2
ij =

〈i− 1, i, j − 1, j〉
〈i− 1, i〉〈j − 1, j〉

, (2.8)

where the four-bracket 〈ijkl〉 ≡ 〈ZiZjZkZl〉 = εRSTUZ
R
i Z

S
j Z

T
k Z

U
l is invariant under SU(2, 2),

but is not projectively invariant. The spinor products 〈ij〉 are not DCI, but cancel out in

projectively-invariant, DCI ratios. Using eq. (2.8), the expression for Ω(2) can be written in

terms of momentum twistors as

Ω(2) =

∫
d4ZAB
iπ2

d4ZCD
iπ2

〈AB13〉(
〈AB61〉〈AB12〉〈AB23〉〈AB34〉

)
× 〈CD46〉〈1256〉〈2345〉〈6134〉
〈ABCD〉

(
〈CD34〉〈CD45〉〈CD56〉〈CD61〉

) , (2.9)

which has been made projectively invariant and DCI by the inclusion of the kinematic factor

〈1256〉〈2345〉〈6134〉. The modified index structure of the integration variables, from single

dual indices to pairs of momentum twistor labels, encodes the fact that points in dual space

map to lines in momentum twistor space. We have additionally used the replacements xa →
Z1Z3, xb → Z4Z6, which selects out xαα̇a1 and xαα̇b1 from eqs. (2.5) and (2.6). Notice that this

integral is invariant under the dihedral transformation that exchanges momentum twistors

(legs) 1↔ 3 and 4↔ 6 while leaving 2 and 5 invariant.

To write Ω̃(2) in the language of momentum twistors, we use the fact that parity maps

Zi to the ray orthogonal to Zi−1, Zi, and Zi+1. In particular, mapping Zi and Zj to their

parity conjugates sends the four-bracket 〈ZiZjZkZl〉 → 〈(i − 1ii + 1) ∩ (j − 1jj + 1)ZkZl〉,
where (i − 1ii + 1) ∩ (j − 1jj + 1) denotes the intersection of the hyperplanes spanned by

{Zi−1, Zi, Zi+1}, and {Zj−1, Zj , Zj+1}, respectively. Using this map to send xαα̇b1 to xαα̇b2 in

eq. (2.9), we arrive at the expression

Ω̃(2) =

∫
d4ZAB
iπ2

d4ZCD
iπ2

〈AB13〉(
〈AB61〉〈AB12〉〈AB23〉〈AB34〉

)
×
(
〈D345〉〈C561〉 − 〈C345〉〈D561〉

)
〈1246〉〈2346〉

〈ABCD〉
(
〈CD34〉〈CD45〉〈CD56〉〈CD61〉

) , (2.10)

where we have made use of the identity

〈ij(klm) ∩ (nop)〉 = 〈iklm〉〈jnop〉 − 〈jklm〉〈inop〉 , (2.11)

and have replaced the previous kinematic factor by 〈1246〉〈2346〉. (We have additionally

multiplied by an overall minus sign to stay consistent with the definition in the literature [70].)

Unlike Ω(2), which is parity even, Ω̃(2) has both a parity even and parity odd part. Like Ω(2),

it is symmetric under the dihedral transformation 1↔ 3, 4↔ 6.
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x1

x3

x5

x7

Figure 1. The eight- or higher-point L-loop ladder integral, labelled by dual coordinates.

2.2 The Box Ladder, Pentabox Ladder, and (Double) Pentaladder Integrals

Before introducing the L-loop generalizations of Ω(2) and Ω̃(2), let us first consider the simpler

‘box ladder’ integrals shown in fig. 1. The box ladder integrals involve only four dual coor-

dinates, but none are null separated, so the first all-massless scattering amplitude to which

they could contribute would be an eight-point amplitude.

The representative of this class at one loop is just the DCI four-mass box integral,

I(1)
l (x1, x3, x5, x7) =

∫
d4xr
iπ2

x2
15x

2
37

x2
1rx

2
3rx

2
5rx

2
7r

. (2.12)

The L-loop integral can be defined iteratively by integrating over the appropriate dual coor-

dinate in the (L− 1)-loop integral,

I(L)
l (x1, x3, x5, x7) =

∫
d4xr
iπ2

x2
15x

2
37

x2
1rx

2
3rx

2
5rx

2
7r

I(L−1)
l (x1, x3, x5, xr) , (2.13)

weighted by the appropriate propagator factors.

The box ladder integrals depend on only two cross ratios, conventionally expressed in

terms of the variables z and z̄ defined by

x2
13x

2
57

x2
15x

2
37

=
1

(1− z)(1− z̄)
,

x2
17x

2
35

x2
15x

2
37

=
zz̄

(1− z)(1− z̄)
, (2.14)

where z̄ = z∗ on the Euclidean sheet where the cross ratios are real and positive.

In general, for a sequence of L-loop ladder integrals I(L), we define the finite-coupling,

or resummed, version by

I(g2) =
∞∑
L=0

(−g2)L I(L) , (2.15)

i.e. we just drop the (L) superscript. Typically the integral can be normalized so that I(L) is

a pure function, that is, an iterated integral with no rational prefactor, for L ≥ 1, while the

tree quantity I(0) is rational.
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x3
x4

x6

x1
x2

Figure 2. The seven- or higher-point pentabox ladder integral, labelled by dual coordinates, where

the ladder is formed out of L − 1 loops. The dashed line represents a numerator factor that renders

the integral DCI.

The box ladder integrals have long been known to all loop orders [96, 97], and can be

written as [96, 98, 99]

I(L)
l (x1, x3, x5, x7) =

(1− z)(1− z̄)
z − z̄

f (L)(z, z̄), (2.16)

where

f (L)(z, z̄) =
L∑
r=0

(−1)r(2L− r)!
r!(L− r)!L!

lnr(zz̄) (Li2L−r(z)− Li2L−r(z̄)) . (2.17)

This class of integrals has been evaluated at finite coupling, i.e. resummed to all orders [78]:

f(z, z̄) =

∞∑
L=0

(−g2)Lf (L)(z, z̄) =

∫ ∞
2g

ζdζ√
ζ2 − 4g2

2 cos

(
1

2

√
ζ2 − 4g2 ln

1

zz̄

)
sinh[(π − φ)ζ]

i sinh(πζ)
.

(2.18)

Here we have changed normalization by multiplying the result given in eq. (21) of [78] by

tµ/i, and changed integration variables from z to ζ to avoid confusion with our variables z

and z̄ (in our variables, φ = arg z). Finally, we have taken κ2 → 4g2 in order to match our

coupling and normalization conventions. This result will provide a cross-check of the method

used to obtain our main finite-coupling results in section 3.

We can promote the ladder integrals to the pentabox integrals shown in fig. 2 by attaching

a pentagon to the end of one of the ladder integrals. This is done by carrying out a single

integration on the ladder integral of the form

I(L)
pl (x1, x2, x3, x4, x6) =

x2
14x

2
26x

2
36

x2
6a

∫
d4xr
iπ2

x2
ar

x2
1rx

2
2rx

2
3rx

2
4rx

2
6r

I(L−1)
l (x1, xr, x4, x6) , (2.19)

where the point xa should be chosen to be null-separated from the dual variables x1, x2, x3,

and x4. Choosing xa1 or xa2 in eq. (2.5) gives the same result, i.e. this integral is parity-even.
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The pentabox ladder integrals involve five dual coordinates. Since two pairs of coordinates

are not null separated, the first all-massless scattering amplitude they can appear in is a

seven-point amplitude.

The pentabox ladder integrals can be alternatively defined by attaching L − 1 boxes to

the one-loop pentagon integral,

I(1)
pl (x1, x2, x3, x4, x6) =

x2
14x

2
26x

2
36

x2
6a

∫
d4xr
iπ2

x2
ar

x2
1rx

2
2rx

2
3rx

2
4rx

2
6r

, (2.20)

where the boxes are added iteratively by the integration

I(L)
pl (x1, x2, x3, x4, x6) =

x2
14x

2
26x

2
36

x2
6a

∫
d4xr
iπ2

x2
ar

x2
1rx

2
2rx

2
3rx

2
4rx

2
6r

I(L−1)
pl (x1, x2, x3, x4, xr) . (2.21)

The pentabox ladder integrals depend on the cross-ratios

u =
x2

16x
2
24

x2
26x

2
14

, v =
x2

46x
2
13

x2
36x

2
14

. (2.22)

Our main interest in this paper is in the (double) pentaladder integrals, which involve six

dual coordinates, all null separated from their neighbors, so that these integrals will appear

in all-massless six-point amplitudes.

There are two classes of pentaladder integrals that can be defined, corresponding to

the two inequivalent numerator choices highlighted in the last section. The diagram for the

first class of integrals, Ω(L), is shown in fig. 3. The dashed lines in this diagram indicate

the numerator factors xαα̇a1 and xαα̇b1 , although we could have equivalently chosen xαα̇a2 and

xαα̇b2 (which, in our convention, would have swapped these dashed lines for wavy lines). The

diagram for Ω̃(L) differs by the exchange of just one of these numerator factors for its parity

conjugate—or, graphically, by the exchange of one of the dashed lines for a wavy line.

These pentaladder integrals can be most easily defined in momentum twistor space, as

repeated insertions of a box into Ω(2) and Ω̃(2). For example, the three loop integrals may be

obtained from eqs. (2.9) and (2.10) by the replacement

Ω(2) → Ω(3)

Ω̃(2) → Ω̃(3) :
1

〈ABCD〉
→
∫
d4ZEF
iπ2

〈6134〉
〈ABEF 〉〈EF61〉〈EF34〉〈EFCD〉

, (2.23)

with an obvious generalization to higher loops.

Six-point DCI integrals can in general depend on the three cross ratios

u =
x2

13 x
2
46

x2
14 x

2
36

, v =
x2

24 x
2
51

x2
25 x

2
41

, w =
x2

35 x
2
62

x2
36 x

2
52

. (2.24)

As at two loops, Ω(L) and Ω̃(L) are both symmetric under the simultaneous exchange of legs

1 ↔ 3 and 4 ↔ 6. This transformation exchanges u and v, but we will have to be careful

about signs when transforming the parity-odd part of Ω̃(L). The distinction between these

integrals in terms of their numerator factors follows the same rule as at two loops—namely,

Ω(L) picks out pairs of points xa and xb that are related by the cyclic shift i→ i+ 3 in their

dual indices, while for Ω̃(L) these points are related by i→ i+ 3 plus parity conjugation.
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x3

x4

x5

x6

x1

x2

Figure 3. The six-point integral Ω(L), labelled by dual coordinates, where the ladder is formed out

of L− 2 loops. The dashed lines represent numerator factors that render the integral DCI.

2.3 Climbing the ladders with differential equations

These ladder integrals all share one crucial attribute: they satisfy a set of differential equations

that relate adjacent loop orders [77]. For the box ladders, this differential equation is quite

simple to write down, and has been known for some time:[
z∂z z̄∂z̄ − g2

]
f(z, z̄, g2) = 0 . (2.25)

We have rearranged the traditional presentation of this relation, which relates f (L) to f (L−1),

to the all-loop expression f(z, z̄, g2) in order to emphasize that it really is valid for finite

coupling.

A similar, if slightly more complicated, differential equation applies to the pentabox

ladders. We define the quantity

Ψ(L)(u, v) = (1− u− v) I(L)
pl (x1, x2, x3, x4, x6) , (2.26)

and its finite-coupling version Ψ(u, v, g2) via eq. (2.15). Then Ψ(u, v, g2) obeys the differential

equation [
(1− u− v)uv∂u∂v + g2

]
Ψ(u, v, g2) = 0. (2.27)

Each of the (double) pentaladders also satisfies a differential equation, which we first

give at fixed loop order L. The differential equation relating Ω(L) and Ω(L−1) was derived in

momentum-twistor space, and reads [77]

〈1234〉〈2345〉
〈6134〉

Z1·
∂

∂Z2

(
1

〈2345〉
Z6·

∂

∂Z1
Ω(L)

)
= −Ω(L−1) . (2.28)

The corresponding relation between Ω̃(L) and Ω̃(L−1) is

〈1234〉〈2346〉
〈6134〉

Z1 ·
∂

∂Z2

(
1

〈2346〉
Z6 ·

∂

∂Z1
Ω̃(L)

)
= −Ω̃(L−1) . (2.29)
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This equation was given in ref. [70] for L = 2, but the same derivation holds for any L > 2,

except that the sign of the right-hand side needs to be flipped; we also redefine Ω̃(1) → −Ω̃(1)

with respect to ref. [70]. Note that Ω(1) and Ω̃(1) are one-loop hexagon integrals with double

numerator insertions [70, 93].

We define the finite-coupling versions of Ω(L) and Ω̃(L) by,

Ω =
∑
L

(−g2)L Ω(L) , Ω̃ =
∑
L

(−g2)L Ω̃(L) . (2.30)

The finite-coupling analogs of the above differential equations will be discussed in section 3,

after we introduce some new kinematic variables which dramatically simplify them.

3 Ladders at Finite Coupling

3.1 Separated form of the differential equations

The ladder in the Ω(L) and Ω̃(L) integrals is framed by the dual coordinates x1 and x4, as can

be seen in fig. 3. We will exploit the symmetries that preserve these two points in order to

write a finite-coupling expression for these integrals. The same technique will also be applied

to other systems containing the same ladder.

Thanks to dual conformal symmetry we can put x1 and x4 at zero and infinity, respec-

tively. It is then easy to see that the symmetry preserving their location consists of SO(4)

rotations and scale transformations. Writing the SO(4) algebra as a product of two SU(2)’s,

this indicates that the ladders are controlled by a SU(2)L×SU(2)R×GL(1) symmetry. The

idea will be to find variables which transform as simply as possible under each factor of this

group.

Let us first parametrize the hexagon kinematics explicitly in this frame using the embed-

ding formalism. Each dual coordinate xµi ≡ σµαα̇x
αα̇
i (where σ are the usual Pauli matrices)

is encoded as a null six-vector Xi ≡ (xµi , X
+
i , X

−
i ), with respect to the metric Xi · Xj ≡

X+
i X

−
j +X−i X

+
j − xi · xj :

Xi =

 0 pµ2 −pµ4 0 pµ5 −pµ1
0 0 −p2·p4 1 −p1·p5 0

1 1 0 0 0 1

 , (3.1)

where i labels the columns of the matrix. Here we have put the points X1 and X4 at 0 and

∞, respectively. Because the six external momenta in the ladder integral are massless, in

addition to X2
i = 0 for each i, we also have that Xi ·Xi+1 = 0. This forces many components

to vanish, and implies in addition that p2
i = 0. Note that the pi are related to, but not equal

to, the momenta in the original frame.

The ladder integrals depend only on the cross ratios (2.24), which now evaluate to

u ≡ X1 ·X3X4 ·X6

X1 ·X4X3 ·X6
=

p2 · p4

(p1 + p2) · p4
, v ≡ X2 ·X4X5 ·X1

X2 ·X5X4 ·X1
=

p1 · p5

(p1 + p2) · p5
,

w ≡ X3 ·X5X6 ·X2

X3 ·X6X5 ·X2
=

p1 · p2 p4 · p5

(p1 + p2) · p4 (p1 + p2) · p5
. (3.2)
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Notice that these variables are invariant under separate rescalings of p4 and p5, and are also

invariant under a common rescaling of p1 and p2.

Let us now look at the action of the SU(2)L×SU(2)R×GL(1) symmetry on one endpoint

of the ladder, that is, on X2 and X3, which according to eq. (3.1) depend on p2 and p4. The

GL(1) scale transformations act simply by rescaling p2. Using the spinor helicity factorization

for null vectors, pi = λiαλ̃iα̇, the first SU(2) factor acts on holomorphic spinors λ2α and λ4α,

and the second on anti-holomorphic spinors λ̃2α̇ and λ̃4α̇. This motivates introducing the

following variables:

x ≡ 〈14〉〈25〉
〈15〉〈24〉

, y ≡ [14][25]

[15][24]
, z ≡ p2 · p4 p2 · p5

p1 · p4 p1 · p5
, (3.3)

with 〈14〉 = εαβλ
α
1λ

β
4 , [14] = −εα̇β̇λ̃

α̇
1 λ̃

β̇
4 , so that 〈14〉[41] = 2p1 ·p4, and similarly for the other

spinor products. Each of x and y is invariant under one of the SU(2)’s but not the other, and

scale transformations act only on z.

To find the change of variables between (u, v, w) and (x, y, z), first note from eq. (3.2)

that
1− u
u

=
p1 · p4

p2 · p4
,

1− v
v

=
p2 · p5

p1 · p5
, (3.4)

which readily yields

xy =
(1− u)(1− v)

uv
, z =

u(1− v)

v(1− u)
. (3.5)

Using the Schouten identity in eq. (3.3) one similarly finds

(1− x)(1− y) =
w

uv
. (3.6)

Solving eqs. (3.5) and (3.6) for x and y in terms of u, v, w, we get

x = 1 +
1− u− v − w +

√
∆

2uv
, y = 1 +

1− u− v − w −
√

∆

2uv
, (3.7)

with ∆ = (1− u− v −w)2 − 4uvw as usual. The choice of sign in front of
√

∆ in eq. (3.7) is

somewhat arbitrary; parity flips this sign and exchanges x↔ y.

The differential equations (2.28) and (2.29) are expressed in terms of momentum twistors,

so it is useful to write x, y, z in terms of ratios of momentum-twistor four-brackets. In ap-

pendix A we recall the momentum-twistor representations of the cross ratios u, v, w, and also

of the variables yu, yv, yw. Both u, v, w and x, y, z are rational functions of yu, yv, yw; see

eqs. (A.5) and (A.7)–(A.9). Using eqs. (A.5) and (A.6) in eq. (3.7), the momentum-twistor

representations of x, y, z are

x =
〈1246〉〈1356〉
〈1236〉〈1456〉

, y =
〈1345〉〈2346〉
〈1234〉〈3456〉

, z =
〈1236〉〈1246〉〈1345〉〈3456〉
〈1234〉〈1356〉〈1456〉〈2346〉

. (3.8)

In this representation, it is easy to show that the dihedral flip Zi ↔ Z4−i that leaves Ω(L)

and Ω̃(L) invariant transforms the above variables as x ↔ y and z → 1/z. Also notice that

– 12 –



under the cyclic transformation Zi → Zi+3, x is exchanged with y, while z is left invariant,

allowing us to identify this transformation with parity. This transformation also sends the

dual coordinates xi → xi+3. Inspecting fig. 3, we see that Ω(L) is invariant under parity

because the left and right numerator factors transform into each other under i → i + 3. In

contrast, Ω̃(L) has both parity-even and parity-odd parts.

The x, y, z variables simplify the momentum-twistor differential operators appearing in

eqs. (2.28) and (2.29). Using the Schouten identity for four-brackets and the chain rule, we

have

Z6 ·
∂

∂Z1
=
〈1346〉〈2345〉
〈1234〉〈1345〉

(y∂y + z∂z) , (3.9)

Z1 ·
∂

∂Z2
=
〈1346〉
〈2346〉

(y∂y − z∂z) . (3.10)

Using these relations, the differential equation (2.28) for Ω becomes

− 〈2345〉
〈1345〉

〈1346〉
〈2346〉

(y∂y − z∂z)(y∂y + z∂z)Ω
(L) = −Ω(L−1) (3.11)

which can be expressed in terms of y and z only as

1− y
y

[
(y∂y)

2 − (z∂z)
2
]
Ω(L) = −Ω(L−1) . (3.12)

At finite coupling, using the definition (2.30), the Ω ladders thus satisfy the equations:[
1− y
y

(
(y∂y)

2 − (z∂z)
2
)
− g2

]
Ω(x, y, z, g2) = 0 , (3.13)[

1− x
x

(
(x∂x)2 − (z∂z)

2
)
− g2

]
Ω(x, y, z, g2) = 0 , (3.14)

where we have also used the fact that Ω(x, y, z, g2) is even under parity, x ↔ y, to add the

second equation. This form of the equations will be very convenient because they now take

on a separated form, thanks to switching to the x, y, z variables.

The corresponding differential equations for Ω̃(x, y, z, g2), derived in a similar way from

eq. (2.29), are[
1− y
y

(
(y∂y)

2 − (z∂z)
2
)
− 1

y
(y∂y + z∂z)− g2

]
Ω̃(x, y, z, g2) = 0 , (3.15)[

1− x
x

(
(x∂x)2 − (z∂z)

2
)
− 1

x
(x∂x − z∂z)− g2

]
Ω̃(x, y, z, g2) = 0 . (3.16)

In particular, expressing (2.29) in terms of the x, y, z variables leads to (3.15), whereas (3.16)

follows from the latter by a flip transformation, as discussed under (3.8). Notice from the

momentum-twistor forms (2.28) and (2.29) that the second-order part of the differential op-

erator is exactly the same for Ω and Ω̃, because the 〈2345〉 and 〈2346〉 factors cancel in the

second-order terms. The extra linear term for Ω̃ arises when the operator Z1 · ∂/∂Z2 acts on

the factor 〈2345〉/〈2346〉.

– 13 –



3.2 Pentaladders

We now turn to the solution of the differential equations (3.13) and (3.14) for Ω, and (3.15) and

(3.16) for Ω̃. We begin by diagonalizing z∂z using a Mellin representation. (A related double

Mellin representation of the box ladder integral has been obtained using integrability [98].)

We seek separated solutions for Ω(x, y, z, g2) of the form

ziν/2Fν(x, y). (3.17)

Equation (3.14) then gives[
(1− x)(x∂x)2 + 1

4(1− x)ν2 − xg2
]
Fν(x, y) = 0, (3.18)

while eq. (3.13) gives the identical equation for F in y. The four independent solutions to the

pair of differential equations can be labeled by the signs of ν:

F
j(ν)
±ν (x)F

j(ν)
±ν (y), j(ν) ≡ i

√
ν2 + 4g2 , (3.19)

where F jν are hypergeometric functions, normalized to F jν (1) = 1:

F jν (x) ≡
Γ(1 + iν+j

2 )Γ(1 + iν−j
2 )

Γ(1 + iν)
xiν/2 2F1( iν+j

2 , iν−j2 , 1 + iν, x). (3.20)

Below when discussing the box ladders we will find that j(ν) − 1 is the SO(4) spin, which

suggests viewing the differential equations (3.13) and (3.14) intuitively as two relations among

the three Casimir invariants of SU(2)L×SU(2)R×GL(1).

To find the physically relevant combination of the solutions (3.19), we impose the fact

that Ω must be smooth in the entire positive octant u, v, w > 0. In particular, consider the

neighborhood of the point (u, v, w) = (1, 1, 1), where x and y are both small. The function

should admit a regular Taylor series expansion. However only the combination xy is regular:

x/y depends in a complicated way on the angle of approach. From the behavior of eq. (3.20)

near the origin, we see that requiring the leading term in this limit to be a power of xy leaves

only two acceptable solutions: F
j(ν)
+ν (x)F

j(ν)
+ν (y) and F

j(ν)
−ν (x)F

j(ν)
−ν (y).

To get a further constraint, we note from eqs. (3.5) and (3.6) that:

w

uv
= (1− x)(1− y), (x− 1) + (y − 1) =

1− u− v − w
uv

, (3.21)

which imply that (1 − x) and (1 − y) can both switch sign in the positive octant. They

can only switch simultaneously when 1 − u − v − w switches sign. However, the individual

hypergeometric functions contain singular logarithms of the form ln(1 − x) in their Taylor

series.1 Smoothness in the positive octant thus requires that they combine into the regular

combination ln[(1 − x)(1 − y)] = ln w
uv . This singles out a unique linear combination of the

1These logarithms can be identified using the relations (3.36), (3.46), (3.47) and (3.48). While F jν (x) is

finite as x→ 1, its derivative behaves like −g2 ln(1− x).
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above two functions. We conclude that an integral representation of the following form must

hold:

Ω(u, v, w, g2) =

∫ ∞
−∞

dν c(ν, g2) ziν/2
F
j(ν)
+ν (x)F

j(ν)
+ν (y)− F j(ν)

−ν (x)F
j(ν)
−ν (y)

sinh(πν)
, (3.22)

where we have integrated over the dilatation eigenvalue ν with a yet undetermined coefficient

c(ν, g2). The insertion of the explicit factor of 1/ sinh(πν) is motivated by the following con-

sideration: Regularity of the Taylor series at (u, v, w) = (1, 1, 1) implies that the singularities

of c(ν,g2)
sinh(πν) can be at most single poles at imaginary integers, since in this limit x, y → 0 and

the integral can be done by residues (closing the contour below the real axis on the first term,

and above in the second term). Thus c(ν, g2) is an entire function.

To fix this function, we find a boundary condition at large ν. At large ν, the integral

simplifies dramatically, because one of the indices on the hypergeometric functions, iν − j,
goes to zero, so using eq. (3.5) we get simply

ziν/2 F j+ν(x)F j+ν(y)→
(
u(1− v)

v(1− u)

)iν/2 ((1− u)(1− v)

uv

)iν/2
=

(
1− v
v

)iν
. (3.23)

We see that for the above term, the large ν region dominates2 the limit v → +∞. Choosing

the phase, say,

log

(
1− v
v

)
→ log

(
v − 1

v

)
− iπ , (3.24)

the integrand numerator acquires a factor eπν , canceling the same factor from the sinh(πν)

in the denominator and making it marginally convergent. Thus

lim
v→+∞

Ω(u, v, w, g2) =

∫ ∞
∼1

dν 2c(ν, g2)e−iν/v . (3.25)

If c approaches a constant, we get linear growth in v as v →∞. Now, at tree level (g2 = 0),

we have that Ω(u, v, w, 0) = 1 − u − v. (We didn’t define Ω(0) as an integral but it can be

found by acting on the known one-loop integral Ω(1) with the differential operator (3.14).)

Hence the tree-level quantity does grow linearly in the limit. On the other hand, the loop

corrections Ω(L) with L ≥ 1 grow at most logarithmically in this limit, since they are uniform

transcendental functions. We conclude that the missing coefficient must be independent of

the coupling, and equal to c(ν, g2) = 1/(2i).

Our final result is therefore:

Ω(u, v, w, g2) =

∫ ∞
−∞

dν

2i
ziν/2

F
j(ν)
+ν (x)F

j(ν)
+ν (y)− F j(ν)

−ν (x)F
j(ν)
−ν (y)

sinh(πν)
(3.26)

where x, y, z are defined in eqs. (3.5) and (3.7), j(ν) = i
√
ν2 + 4g2, and the hypergeometric

functions F are defined in eq. (3.20). This formula is the main result of this section.

2Similarly, for the second term in eq. (3.22) the limit of large ν governs the u → +∞ limit. For our

purposes, it will be sufficient to focus on the v → +∞ limit.
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As a simple check, at tree level, g2 = 0, the hypergeometric functions become trivial and

F
j(ν)
ν (x)→ xiν/2. From eq. (A.10),

√
xy/z = (1− u)/u and

√
xyz = (1− v)/v, so we get

Ω(u, v, w, 0) =

∫ ∞
−∞

dν

2i sinh(πν)

[(
1− v
v

)iν
−
(

1− u
u

)−iν]
. (3.27)

Performing the integral by closing the contour in the lower half-plane and summing over

residues at ν = −ik, we reproduce the result Ω(u, v, w, 0) = 1 − u − v. In general, it is

straightforward to expand the integral (3.26) around (u, v, w) = (1, 1, 1), since x and y are

both small and so only the residues at a finite number of poles contribute. The residues give

hypergeometric functions and only a finite number of terms in their Taylor expansions are

needed. The expansion coefficients can therefore be obtained exactly in g2. At one loop, we

have resummed the series around (1, 1, 1), finding as expected:

Ω(1)(u, v, w) ≡ −d
dg2

Ω(u, v, w, g2)
∣∣
g2=0

= Li2(1− u) + Li2(1− v) + Li2(1−w) + lnu ln v − 2ζ2.

(3.28)

Section 4 discusses how to perform such expansions at higher loop orders.

The pentaladder integral Ω̃ with mixed numerators can be analyzed in an identical fash-

ion. The only change is that the solutions to the differential equation (3.16) with the separated

form (3.17) are now F
j(ν)′
+ν (x) and F

j(ν)′
−ν−2i(x) with

F j′ν (x) ≡
Γ( iν+j

2 )Γ( iν−j2 )

Γ(iν)
xiν/2 2F1( iν+j

2 , iν−j2 , iν, x) (3.29)

instead of eq. (3.20). These functions are to be multiplied by the solutions to (3.15), which

are found (by letting x→ y and ν → −ν) to be F
j(ν)′
−ν (y) and F

j(ν)′
ν−2i(y). As in the case of Ω,

imposing regularity in the positive octant fixes a unique combination of these solutions. It

first requires the pairings F
j(ν)′
+ν (x)F

j(ν)′
+ν−2i(y) and F

j(ν)′
−ν−2i(x)F

j(ν)′
−ν (y), and then it imposes a

relative minus sign between the two.

We also require that the large-v limit is saturated by its tree-level expression. The one-

loop result [93] is

Ω̃(1)(u, v, w) = − ln
( u
w

)
ln v +

1− yv
1− yuyv

ln
(u
v

)
lnw , (3.30)

normalized with the opposite sign as eq. (E.4) of ref. [70]. We note that this is not a pure tran-

scendental function, although Ω̃(L) is pure for L ≥ 2. The integral Ω̃(L) has only been defined

so far for L ≥ 1 but we can define it at L = 0 by applying the differential equation (3.15),

which gives us, after simplification using formulas in appendix A:

Ω̃(0)(u, v, w) = −(1− u)(1− v)− v(1− u)
1− yv
1− yu

(
1 +

lnw

1− w

)
. (3.31)

This expression has a strange form for a “tree” object, since it contains a logarithm. However,

hitting Ω̃(0) once more with the differential operator gives zero, confirming that it is indeed

the leading term of the Ω̃ family.
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In the limit of large v (choosing the branch of the square root where x→ 1, corresponding

to yv → 0, yu → ∞ with yuyv → y), we have 1−yv
1−yu → 0. Hence Ω̃(0) is dominated by the

first term, which grows linearly like v(1− u). The one-loop result (3.30) and the higher loop

orders grow at most logarithmically, so the large-v limit is again tree-level exact. Matching

the integral representation with this limit, our final result for Ω̃ is

Ω̃(u, v, w, g2) = g2

∫ ∞
−∞

dν

2i
ziν/2

F
j(ν)′
+ν (x)F

j(ν)′
+ν−2i(y)− F j(ν)′

−ν−2i(x)F
j(ν)′
−ν (y)

sinh(πν)
. (3.32)

We note the asymmetry between x and y, which originates from the differential equations (3.15)

and (3.16): Ω̃ is not invariant under parity.

3.3 Differential relations among pentaladder integrals

It turns out that the functions Ω and Ω̃ are not independent, but rather they appear as deriva-

tives of one another. These relations can be understood as properties of the hypergeometric

functions entering eqs. (3.26) and (3.32).

It will prove useful to first introduce other auxiliary integrals, O(u, v, w, g2), which we

call the odd ladder because it has odd parity and its perturbative coefficients O(L) all have

odd weight, and an even companion W(u, v, w, g2). The odd ladder will be a generalization

of the one-loop six-dimensional integral Φ̃6 studied in ref. [100]. (See also ref. [101].) The

latter integral satisfies √
∆∂wΩ(2) = −Φ̃6 , (3.33)

and it is the first parity odd function in the space of hexagon functions.

By analogy with eq. (3.33), we now define

O(L−1) ≡
√

∆∂wΩ(L) = (−x∂x + y∂y)Ω
(L) , (3.34)

using eq. (A.13) and identifying O(1) = −Φ̃6. The corresponding finite-coupling definitions

of O and its even companion W are

O ≡ 1

g2
(x∂x − y∂y)Ω , W ≡ (x∂x + y∂y)Ω . (3.35)

This normalization of W will prove convenient in section 5.

Given the finite-coupling solution for Ω, eq. (3.26), we can obtain one for the odd ladder

integral simply by acting with the differential operator on the products F j±ν(x)F j±ν(y) in the

integrand. The hypergeometric function satisfies

x
d

dx
F j(ν)
ν (x) =

iν

2
F j(ν)
ν (x) + g2F

j(ν)′
ν−2i(x), (3.36)

which can be verified, for example, using the hypergeometric function series representa-

tion (4.2). Note that here we used that −ν2 − [j(ν)]2 = 4g2.
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When we apply eq. (3.36) to eq. (3.35), using eq. (3.26), the iν/2 terms cancel, and we

are left with:

O(u, v, w, g2) =

∫ ∞
−∞

dν

2i

ziν/2

sinh(πν)

[
F
j(ν)′
+ν−2i(x)F

j(ν)
+ν (y)− F j(ν)

+ν (x)F
j(ν)′
+ν−2i(y)

− F j(ν)′
−ν−2i(x)F

j(ν)
−ν (y) + F

j(ν)
−ν (x)F

j(ν)′
−ν−2i(y)

]
. (3.37)

Similarly,

W(u, v, w, g2) = g2

∫ ∞
−∞

dν

2i

ziν/2

sinh(πν)

[
F
j(ν)′
+ν (x)F

j(ν)
+ν (y) + F

j(ν)
+ν (x)F

j(ν)′
+ν−2i(y)

− F j(ν)′
−ν−2i(x)F

j(ν)
−ν (y)− F j(ν)

−ν (x)F
j(ν)′
−ν (y)

]
. (3.38)

We are now in a position to discuss several first-order differential relations among the

integrals. If we take the difference between eq. (3.13) and eq. (3.14) so as to cancel the z

derivative, then the x and y derivatives factorize as (x∂x)2− (y∂y)
2 = (x∂x+y∂y)(x∂x−y∂y),

which shows that Ω can also be written as a first derivative of the odd ladder integral,

Ω =
(1− x)(1− y)

x− y
(x∂x + y∂y)O . (3.39)

This equation generalizes a relation found between Ω(1) and a derivative of Φ̃6 in ref. [100].

However, we also find empirically, to high orders in perturbation theory, that the x and y

derivatives of O also contain the parity-even part of Ω̃, which we call Ω̃e, and the z derivative

of O generates the parity-odd part, Ω̃o, where

Ω̃ = Ω̃e + Ω̃o. (3.40)

In particular, we find that

x∂xO = −Ω̃e +
x

1− x
Ω , (3.41)

y∂yO = Ω̃e −
y

1− y
Ω , (3.42)

which gives back eq. (3.39) and also

Ω̃e =
xy

x− y

[
(1− x)∂x + (1− y)∂y

]
O . (3.43)

The parity-odd relation is just

Ω̃o = −z∂zO . (3.44)

These two empirical relations combine to

Ω̃ =

(
xy

x− y

[
(1− x)∂x + (1− y)∂y

]
− z∂z

)
O . (3.45)
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In appendix C.3, we provide additional relations of a similar nature.

We would like to derive these differential relations from the finite-coupling integral repre-

sentations. In order to do so, it is useful to consider the derivatives of F
j(ν)′
ν−2i(x) and F

j(ν)′
ν (x).

If we apply the differential operator (1−x)x d/dx to the left- and right-hand sides of eq. (3.36),

we can use the second-order differential equation (3.18) satisfied by F jν to simplify the left-

hand side, obtaining a formula for the derivative of F
j(ν)′
ν−2i(x):

d

dx
F
j(ν)′
ν−2i(x) = − iν

2x
F
j(ν)′
ν−2i(x) +

1

1− x
F j(ν)
ν (x). (3.46)

Furthermore, only two out of the three functions F
j(ν)′
+ν−2i(x), F

j(ν)′
+ν (x) and F

j(ν)
+ν (x) can be

linearly independent; indeed, hypergeometric identities can be used to show that

F
j(ν)′
+ν−2i(x) = F

j(ν)′
+ν (x)− iν

g2
F
j(ν)
+ν (x). (3.47)

Combining eqs. (3.46) and (3.47), we obtain an equation for the derivative of F
j(ν)′
ν (x):

d

dx
F j(ν)′
ν (x) =

iν

2x
F j(ν)′
ν (x) +

1

1− x
F j(ν)
ν (x). (3.48)

The physical significance of the four functions we have introduced is now clear: they form

a complete basis for products of F and F ′ with arguments x and y that are smooth in the

Euclidean region. More precisely, we can form the four-vector

Vi(ν, g
2) =

{
W, Ω, Ω̃e, O

}
ν
, i = 1, 2, 3, 4, (3.49)

where the subscript ν means to focus on the ν-integrand (i.e. to drop
∫
dν/(2i) in each of the

integrals in eq. (3.38), eq. (3.26), eq. (3.32) and eq. (3.37)). Because this basis is complete,

all the x, y and z derivatives of the Vi can be expressed as linear combinations of the Vi,

allowing the total differential to be written in matrix form:

dVi(ν, g
2) = (dMij(ν, g

2))Vj(ν, g
2) . (3.50)

Computing the derivatives, we find the following explicit form for the matrix M :

M =


iν
2 ln z −g2 ln c− ν2

2 ln(xy) g2 ln(xy) 0
1
2 ln(xy) iν

2 ln z 0 g2

2 ln x
y

−1
2 ln c 0 iν

2 ln z g2

2 ln 1−x
1−y + ν2

4 ln x
y

0 − ln 1−x
1−y − ln x

y
iν
2 ln z

 (3.51)

where we have abbreviated c ≡ (1− x)(1− y).

The matrix M provides us with first-order differential relations between integrals. Since

the variable ν is to be integrated over, to find these relations we should take combinations of

x and y derivatives that are independent of ν. For example, the x and y derivatives of the
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second row of M give us back the definitions eq. (3.35), whereas the x and y derivatives of

the fourth row give the two nontrivial relations eq. (3.39) and eq. (3.43). Finally, from the

first and third row we find two additional first-order relations:

(1− x)(1− y)

x− y
(x∂x − y∂y)W = g2Ω, (3.52)

2(1− x)(1− y) (x∂x + y∂y) Ω̃e = (x+ y − 2xy)W − g2(x− y)O . (3.53)

The first follows readily from the factorized form of the Ω differential equation. Using

eq. (3.44), the second-order eq. (3.15) for Ω̃ could also be readily rederived from the ma-

trix M .

This discussion shows that Ω and Ω̃ naturally fit inside a common system. In section 5

we will use the matrix M to define an enlarged set of transcendental functions, which will be

closed under the action of taking any derivative.

3.4 Pentabox ladders

Consider now the similar integral in fig. 2 where we chop off the pentagon on the right and

replace it by a box. The two light-like-separated dual coordinates of the right pentagon are

replaced by a single point q = x6 which is not light-like separated from x1 or x4.

At one loop, for example, the integral we consider is given in eq. (2.20), or in terms of

seven momentum twistors,

Ψ(1) =

∫
d4ZAB
π2

〈AB13〉〈56(712) ∩ (234)〉
〈AB71〉〈AB12〉〈AB23〉〈AB34〉〈AB56〉

. (3.54)

Using the embedding formalism as in eq. (3.1), and again putting the sides of the ladder at

0 and ∞, we parametrize the external kinematics as

Xi =

 0 pµ2 −pµ4 0 qµ

0 0 −p2·p4 1 q2/2

1 1 0 0 1

 , (3.55)

where q2 6= 0 reflects the external masses on one side of the ladder. The two cross-ratios are

now:

u ≡ x2
16x

2
24

x2
26x

2
14

=
q2

(q − p2)2
, v ≡ x2

46x
2
13

x2
36x

2
14

=
p2 · p4

(p2 − q) · p4
. (3.56)

Scale transformations act by rescaling q, which leaves invariant the variable

(1− u)(1− v)

uv
=

2p2 · q
q2

q · p4

p2 · p4
. (3.57)

Therefore we make an ansatz for Ψ as a sum of terms

ziν/2 F (x), x ≡ (1− u)(1− v)

uv
, z ≡ u(1− v)

v(1− u)
. (3.58)
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Using the chain rule, we can rewrite u and v partial derivatives in terms of x and z derivatives,

− (1− v)v∂v = x∂x + z∂z , −(1− u)u∂u = x∂x − z∂z . (3.59)

Applying also the identity (1 − u − v)/[(1 − u)(1 − v)] = −(1 − x)/x, the differential equa-

tion (2.27) for Ψ(u, v, g2) (defined via eq. (2.26)) becomes[
1− x
x

(
(x∂x)2 − (z∂z)

2
)
− g2

]
Ψ(x, z, g2) = 0, (3.60)

which has exactly the same form as eq. (3.14) for Ω(x, y, z, g2)! Thus for the ansatz (3.58) we

get exactly the equation for F (x) given in eq. (3.18); that is, the partial wave decomposition

of Ψ gives a sum of F
j(ν)
±ν terms. As in the double pentagon case, here we could again argue

that the relative coefficient is fixed by analyticity around u, v = 1 and u + v = 1, up to an

entire function, itself fixed from the v →∞ limit.

In fact the equivalence of the two problems was already understood from the differential

equation in ref. [77]: we can get to the pentabox ladders by taking the w → 0 limit of the

result (3.26), where y → 1 and thus F j±ν(y)→ 1. This gives immediately:

Ψ(u, v, g2) = Ω(u, v, 0, g2) =

∫ ∞
−∞

dν

2i
ziν/2

F
j(ν)
+ν (x)− F j(ν)

−ν (x)

sinh(πν)
. (3.61)

3.5 Box ladders

We can conduct a similar analysis for the box ladders depicted in fig. 1. In this case a

finite-coupling expression was already derived in ref. [78]. We will show that we reproduce

this expression, which we presented in our conventions in eq. (2.18). We consider the ladder

whose long sides are labelled by x1 and x5, as in fig. 1, so again we set these points to zero

and infinity. The data then are the ratio x2
3/x

2
7 and the angle between x3 and x7, which are

the norm and phase of the complex variable z defined in eq. (2.14). The conventional cross

ratios u and v are defined by

u =
x2

13x
2
57

x2
15x

2
37

=
zz̄

(1− z)(1− z̄)
, v =

x2
35x

2
17

x2
15x

2
37

=
1

(1− z)(1− z̄)
; (3.62)

note that u/v = zz̄. The sequence of ladders obeys the differential equation:[
z∂z z̄∂z̄ − g2

]
f(z, z̄, g2) = 0, (3.63)

as previously presented in eq. (2.25). The one-loop case is

f (1)(z, z̄) = 2(Li2(z)− Li2(z̄))− ln(zz̄)
(
Li1(z)− Li1(z̄)

)
. (3.64)

The differential equation then requires f (0) = (z − z̄)/[(1 − z)(1 − z̄)]. Again we make an

ansatz for f as a sum of terms of the form:

(zz̄)iν/2F (φ), eiφ ≡
√
z/z̄ ; (3.65)
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that is, φ = arg z when z is complex, and the differential equation becomes

(ν2 − ∂2
φ + 4g2)F (φ) = 0. (3.66)

The general solution is a combination of F±j(φ) = e±ijφ, with j(ν) = i
√
ν2 + 4g2 as before.

Because j(ν) is conjugate to φ, the angle between x3 and x7, it should be interpreted as SO(4)

spin.3

To find the correct combination of solutions F±j(φ), we wish to impose that the loop

corrections to f vanish when z = z̄, as a consequence of the factor (z − z̄) removed in

eq. (2.16). Working in the Euclidean region z̄ = z∗, this occurs for two different values of the

phase: φ = 0, π. As we will see below, the proper interpretation of the vanishing at φ = 0

turns out to be subtle, because there is a singularity at z = z̄ = 1. In fact the restriction to

φ = 0 at tree level results in a nonvanishing distribution supported at that point. However,

f vanishes identically at φ = π. This means that for each value of ν only the combination of

solutions F±j(φ) that vanishes at φ = π contributes, so that we can write:

f(z, z̄, g2) =

∫ ∞
−∞

dν (zz̄)iν/2
sin[(π − φ)j(ν)]

sin(πj(ν))
c(ν, g2). (3.67)

The symmetries of the integral imply that c(ν, g2) is an even function of ν. Now consider

single-valuedness as (zz̄)→ 0. There the ν-integral will be done by residues in the lower-half

plane and each residue should correspond to an integer spin j in order to be single-valued.

This implies that the only singularities of c(ν,g2)
sin(πj) are single poles at integer spin, and therefore

c(ν, g2) is an entire function.

To fix the asymptotics of c(ν, g2) we consider the limit z̄ → 1 (with z otherwise fixed).

We get a power divergence at tree level, but only logs at loop level; in the above expression

this divergence will come from large positive ν, where j ≈ iν:

1

z̄ − 1
∼
∫ ∞
∼1

dν c(ν, g2)eiν(z̄−1) ⇒ c(ν, g2)→ 1

i
. (3.68)

Because c(ν, g2) is entire, this behavior determines it uniquely:

f(z, z̄, g2) =

∫ ∞
−∞

dν (zz̄)iν/2
sin[(π − φ)j(ν)]

i sin(πj(ν))
, j(ν) = i

√
ν2 + 4g2. (3.69)

We can now understand the vanishing at φ = 0 more precisely. The sine factors cancel in

this limit and the integral produces a delta-function δ(|z|−1) that is independent of g2. This

reproduces precisely the singular behavior of the tree-level function, and otherwise it vanishes

for generic |z|.
We remark that eq. (3.69) resembles an integrability-based representation of the box

ladder integral [98], in which the variables analogous to ν are spectral parameters.

3More precisely, comparing with the Gegenbauer polynomials with spin `, C
(1)
` (cosφ) = sin((`+1)φ)

sinφ
, with

the denominator corresponding to the (z− z̄) factored out in eq. (2.16), we see that j(ν)−1 should be identified

with SO(4) spin.
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Let us compare with eq. (2.18). Setting ν =
√
ζ2 − 4g2, ζ = −ij(ν) in this integral, we

get

f(z, z̄) =

∫ ∞
0

dν 2 cos

(
1

2
ν ln

u

v

)
sin[(π − φ)j]

i sin(πj)
, (3.70)

which is precisely the same as eq. (3.69). We conclude that the method works for the box

ladders as well, although it involves an additional subtlety because of the tree level singularity

at z, z̄ → 1.

4 Sum Representation and Perturbative Evaluation as Polylogarithms

The integral representations presented in the previous section capture the Ω integrals fully

at finite coupling. If one is interested in extracting numerical values, or in finding Ω(L) at

a particular loop order, it is useful to derive alternate representations in terms of infinite

sums. In this section we will derive a representation of this sort, and use it to efficiently find

polylogarithmic expressions for Ω(L) in specific limits.

4.1 Sum representation

In eq. (3.26), we may change the sign of the integration variable ν in the term containing

F j−ν , and rewrite the integral as

Ω(u, v, w, g2) = P

(∫ +∞

−∞

dν

2i
(ziν/2 + z−iν/2)

F j+ν(x)F j+ν(y)

sinhπν

)
, (4.1)

where P denotes the Cauchy principal value, which is necessary because now the integrand

has a pole on the integration contour, at ν = 0. This simply amounts to the prescription of

including half the contribution of this pole to the integral.

Using the power series definition of the 2F1 Gauss hypergeometric function4,

2F1(a, b, c, x) =
∞∑
n=0

Γ(a+ n)

Γ(a)

Γ(b+ n)

Γ(b)

Γ(c)

Γ(c+ n)

xn

Γ(n+ 1)
, (4.2)

we can deduce that F jν (x) will produce poles when (iν± j)/2 +n = −k, or equivalently when

ν = i

(
g2

k + n
+ k + n

)
, k ≥ 0 , (4.3)

namely only in the upper-half ν-plane. We may thus choose to evaluate eq. (4.1) by closing

the contour in the lower-half plane, picking up poles at ν = −ik from the sinh(πν) factor in

the denominator. Redefining

F jν (x) = xiν/2F̂ jν (x) , (4.4)

4From the definition, it is evident that the function is symmetric in a↔ b.
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we thus arrive at the following series representation of the all-loop Ω,

Ω(u, v, w, g2) = −
∞∑
k=1

[(−√xyz)k + (−
√
xy/z)k]F̂ j−ik(x)F̂ j−ik(y)− F̂ 2ig

0 (x)F̂ 2ig
0 (y) . (4.5)

By virtue of eq. (4.2), as well as the following argument transformation formula,

2F1(a, b, c, x) = (1− x)c−a−b 2F1(c− a, c− b, c, x) , (4.6)

we may express the functions F̂ as

F̂ j−ik(x) =
Γ(1 + k+j

2 )Γ(1 + k−j
2 )

Γ(1 + k)
+ g2

∞∑
n=1

Γ(k+j
2 + n)Γ(k−j2 + n)

Γ(1 + k + n)Γ(n+ 1)
xn , (4.7)

F̂ j−ik(x) = (1− x)
∞∑
n=0

Γ(k+j
2 + 1 + n)Γ(k−j2 + 1 + n)

Γ(1 + k + n)Γ(n+ 1)
xn , (4.8)

where j =
√
k2 − 4g2. With the help of these formulas, and the sum representation (4.5), we

may easily obtain kinematic expansions of Ω around x = y = 0 to the desired order. Through

eq. (A.10), these expansions are equivalent to expansions in (u, v, w) around (1, 1, 1).

In a similar way, we can expand the integrals O, Ω̃o, Ω̃e and W around x = y = 0. For

this purpose, we also need the expansion of F
j(ν)′
ν−2i . We define

x−iν/2F
j(ν)′
ν−2i(x)

∣∣∣
ν=−ik

≡ F̂ j′−ik(x) =
∞∑
n=1

Γ(k+j
2 + n)Γ(k−j2 + n)

Γ(1 + k + n)Γ(n)
xn . (4.9)

Note that F̂ j′−ik only differs from F̂ j−ik by a factor of n in the nth term, and an overall factor

of 1/g2. The two series expansions are related by

x
d

dx
F̂ j−ik(x) = g2F̂ j′−ik(x), (4.10)

(1− x)
d

dx

[
xk F̂ j′−ik(x)

]
= xk F̂ j−ik(x), (4.11)

the latter result following from eq. (4.8).

Then the series expansion of the all-orders odd ladder integral O is:

O(u, v, w, g2) = −
∞∑
k=1

[(−√xyz)k + (−
√
xy/z)k]

[
F̂ j′−ik(x)F̂ j−ik(y)− F̂ j−ik(x)F̂ j′−ik(y)

]
− F̂ 2ig ′

0 (x)F̂ 2ig
0 (y) + F̂ 2ig

0 (x)F̂ 2ig ′
0 (y) . (4.12)

The expansion of the odd part of Ω̃ can be found by applying −z∂z to eq. (4.12):

Ω̃o(u, v, w, g2) =

∞∑
k=1

k

2
[(−√xyz)k − (−

√
xy/z)k]

[
F̂ j′−ik(x)F̂ j−ik(y)− F̂ j−ik(x)F̂ j′−ik(y)

]
. (4.13)
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The expansion of the even part of Ω̃ can be found by expanding the all orders result (3.32)

for Ω̃ and then subtracting off the odd part (4.13). The result is

Ω̃e(u, v, w, g
2) = −

∞∑
k=1

[(−√xyz)k + (−
√
xy/z)k]

{
k

2

[
F̂ j′−ik(x)F̂ j−ik(y) + F̂ j−ik(x)F̂ j′−ik(y)

]
+ g2F̂ j′−ik(x)F̂ j′−ik(y)

}
− g2F̂ 2ig ′

0 (x)F̂ 2ig ′
0 (y) . (4.14)

Finally, the expansion of the even ladder integral W is given by

W(u, v, w, g2) = −g2

{ ∞∑
k=1

[(−√xyz)k + (−
√
xy/z)k]

[
F̂ j′−ik(x)F̂ j−ik(y) + F̂ j−ik(x)F̂ j′−ik(y)

]
+ F̂ 2ig ′

0 (x)F̂ 2ig
0 (y) + F̂ 2ig

0 (x)F̂ 2ig ′
0 (y)

}

−
∞∑
k=1

k[(−√xyz)k + (−
√
xy/z)k]F̂ j−ik(x)F̂ j−ik(y) . (4.15)

4.2 Weak coupling expansion

Let us now discuss how to perform the weak coupling expansion of eq. (4.5), as well as its

kinematic resummation to multiple polylogarithms, at least in some limits. We begin with

the rightmost term in eq. (4.5), coming from the ν = 0 residue where j = 2ig. The F 2ig
0

functions appearing in this term are given by the all-order relation

F̂ 2ig
0 (x) =

πg

sinhπg
2F1(ig,−ig, 1, x) , (4.16)

where the factor involving Γ functions in eq. (3.20) was eliminated with the help of the

reflection formula,

Γ(1− x)Γ(x) =
π

sinπx
. (4.17)

For its weak-coupling expansion, it will be more convenient to use the representation (4.7),

together with the identity

Γ(n+ ε) = Γ(1 + ε)Γ(n)

∞∑
i=0

εiZ1, . . . , 1︸ ︷︷ ︸
i times

(n− 1) , (4.18)

where

Zm1,...,mj (n) =
∑

n≥i1>i2>...>ij>0

1

im1
1 im2

2 · · · imjj
(4.19)

are Euler-Zagier sums, or particular values of Z-sums [102]. Inserting eq. (4.18) twice into

the series expansion for the 2F1 in eq. (4.16), we find

F̂ 2ig
0 (x) =

πg

sinhπg

1 + g2
∞∑
n=1

xn

n2

∞∑
j,k=0

(−1)j(ig)j+kZ1, . . . , 1︸ ︷︷ ︸
j

(n− 1)Z1, . . . , 1︸ ︷︷ ︸
k

(n− 1)

 . (4.20)
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After reexpressing the product of Euler-Zagier sums as a linear combination thereof, with the

help of the quasi-shuffle (also known as stuffle) algebra relations, for example

Z1(n)Z1(n) = 2Z1,1(n) + Z2(n) , (4.21)

eq. (4.20) may be immediately evaluated at any loop order in terms of harmonic polyloga-

rithms (HPLs) [103] with argument x,

Hm1,m2,...,mj (x) =

∞∑
n=1

xn

nm1
Zm2,...,mj (n− 1). (4.22)

Let us now look at the remaining terms in eq. (4.5). Since F̂ is symmetric in j ↔ −j, see

for example eq. (4.7), the choice of branch when we expand j in the coupling is immaterial,

and we may pick

j(k) = k

√
1− 4g2

k2
= k

∞∑
l=0

(
1/2

l

)(
−4g2

k2

)l
. (4.23)

Separating the contribution that is small at weak coupling,

ε(k, g2) =
j − k

2
, (4.24)

we may again use the identities (4.17) and (4.18), this time for ε(k, g2), in order to rewrite

eq. (4.7) as

F̂ j−ik(x) =
πε

sinπε

[ ∞∑
i=0

εiZ1, . . . , 1︸ ︷︷ ︸
i

(k) (4.25)

+ g2
∞∑
n=1

xn

n(k + n)

∞∑
i,j=0

(−1)iεi+jZ1, . . . , 1︸ ︷︷ ︸
i

(n− 1)Z1, . . . , 1︸ ︷︷ ︸
j

(k + n− 1)

]
.

This formula allows us to obtain the weak coupling expansion of F̂ j−ik most efficiently, by first

expanding in ε(k, g2), and then in g with the help of eqs. (4.23)–(4.24). In this manner, it is

evident that the most complicated sums in eq. (4.5) will always be of the form

∑
k,n,m

(−r)k

kp
xn

n(k + n)
Z1,...,1(n− 1)Z1,...,1(k+ n− 1)

ym

m(k +m)
Z1,...,1(m− 1)Z1,...,1(k+m− 1) ,

(4.26)

for r =
√
xyz or r =

√
xy/z and p any positive integer. The lengths of the strings of 1’s in

this expression are arbitrary.

4.3 Kinematic resummation of Ω(L)(1, v, w) and Ω(L)(u, v, 0)

To our knowledge, no algorithm currently exists for directly evaluating these kinds of sums

in terms of multiple polylogarithms. It would be very interesting to develop one based on
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our understanding of hexagon functions. However, it turns out that it is indeed possible to

resum eq. (4.5) in the limit y → 0 and z → ∞, with x and r =
√
xyz held fixed. Inspecting

eq. (A.10), we see that this limit corresponds to the following two-dimensional subspace of

hexagon kinematics,

u = 1 , v =
1

1 + r
, w =

1− x
1 + r

. (4.27)

In this subspace, only the first term in eq. (4.25) survives in F̂ j−ik(y = 0). We let (−r)k =

xk × (−r/x)k, replace the summation variable n with n′ = n+ k in the other F̂ j−ik(x) factor,

and exchange the order of summation. Then the most complicated sums take the form

∞∑
n′=1

xn
′

n′
Z1,...,1(n′ − 1)

n′−1∑
k=1

(−r/x)k

kp
Z1,...,1(k)

1

(n′ − k)
Z1,...,1(n′ − k − 1) . (4.28)

Crucially, the rightmost sum can be done with the help of algorithm B of ref. [102]. This

algorithm has been implemented in the nestedsums library [104] within the GiNaC framework,

and by interfacing it with Mathematica we are able to replace all sums in k of the form (4.28)

with Z-sums with outer summation index n′ − 1 (possibly accompanied by rational factors

(r/x)n
′
). With the help of the quasi-shuffle algebra relations, we may rewrite their products

with the leftmost Z-sum in eq. (4.28) as linear combinations of Z-sums, similarly to what we

did for F̂ 2ig
0 in eq. (4.20). Finally, we evaluate the remaining sum over n′ in terms of multiple

polylogarithms with the help of their sum representation,

Lim1,...,mj (x1, . . . , xj) =

∞∑
i=1

xi1
im1

Z(i− 1;m2, . . . ,mj ;x2, . . . , xj) , (4.29)

where

Z(n;m1, . . . ,mj ;x1, . . . , xj) ≡
∑

n≥i1>i2>...>ij>0

xi11
im1
1

. . .
x
ij
j

i
mj
j

. (4.30)

Very similar techniques have been used to evaluate [105, 106] the leading, and part of the

subleading, contribution to the hexagon Wilson loop OPE near the collinear limit, as well as

to resum [107] all single-particle gluon bound states contributing to the double scaling limit,

v → 0 with u,w fixed.

The systematic procedure we have described works in principle at any loop order, sub-

ject to limitations in computer power. We have used it to obtain explicit expressions for

Ω(L)(1, v, w) through L = 8 loops. We quote here the first two loop orders,

Ω(1)(1, v, w) =− 2H1,1(−r) + Li1,1

(
−r,−x

r

)
− 2H2(−r) +H2(x)− 2ζ2 , (4.31)

Ω(2)(1, v, w) = H2,2(−r)− 2H3,1(−r)− 2 (H2,2(−r) + 2H2,1,1(−r))−H2,2(x)

+ Li2,2

(
−r,−x

r

)
+ 2Li2,2

(
x,− r

x

)
+ Li3,1

(
−r,−x

r

)
+ Li3,1

(
x,− r

x

)
+ 2Li2,1,1

(
−r, 1,−x

r

)
+ Li2,1,1

(
−r,−x

r
,− r

x

)
+ 2Li2,1,1

(
x,− r

x
, 1
)

− Li2,1,1

(
x,− r

x
,−x

r

)
+H4(−r) + 2ζ2 (H2(x)−H2(−r))− 6ζ4 , (4.32)

– 27 –



where

r =
1

v
− 1 , x = 1− w

v
. (4.33)

Results through eight loops are contained in the ancillary file omega1vwL0-8.m provided with

this paper.

In precisely the same fashion, we may also resum Ω(L)(u, v, 0), which, as discussed around

eq. (3.61), is equivalent to the dual conformal pentabox ladder Ψ(L)(u, v) defined in (2.26)

and shown in fig. 2. Starting from the sum representation (4.5), as already mentioned the

limit in question amounts to letting y → 1. In this limit, the way F jν are normalized implies

that F̂ j−ik(y)→ 1, also for k = 0. Up to two loops we obtain

Ψ(1)(u, v) =−H1,1

(
−
√
x

z

)
−H1,1

(
−
√
xz
)

+ Li1,1

(
−
√
x

z
,−
√
xz

)
+ Li1,1

(
−
√
xz,−

√
x

z

)
− ζ2 −H2

(
−
√
x

z

)
−H2

(
−
√
xz
)

+H2(x) , (4.34)

Ψ(2)(u, v) =−H2,1,1

(
−
√
x

z

)
−H2,1,1

(
−
√
xz
)
−H2,2(x) + Li2,2

(
x,−

√
z

x

)
+ Li2,2

(
x,− 1√

xz

)
+ Li2,2

(
−
√
x

z
,−
√
xz

)
+ Li2,2

(
−
√
xz,−

√
x

z

)
+ Li2,1,1

(
x,−

√
z

x
, 1

)
− Li2,1,1

(
x,−

√
z

x
,−
√
x

z

)
+ Li2,1,1

(
x,− 1√

xz
, 1

)
− Li2,1,1

(
x,− 1√

xz
,−
√
xz

)
+ Li2,1,1

(
−
√
x

z
, 1,−

√
xz

)
− 7ζ4

4

+ Li2,1,1

(
−
√
xz, 1,−

√
x

z

)
+ ζ2H2(x)− ζ2H2

(
−
√
x

z

)
− ζ2H2

(
−
√
xz
)

+H4

(
−
√
x

z

)
+H4

(
−
√
xz
)
, (4.35)

where

x =
(1− u)(1− v)

uv
, z =

u(1− v)

v(1− u)
,

√
x

z
=

1− u
u

,
√
xz =

1− v
v

. (4.36)

The polylog arguments are all rational in u, v in this case. Here as well we have carried out

the computation up to L = 8; the resulting expressions may be found in the ancillary file

omegauv0L0-8.m.

4.4 The line (1, 1, w)

The line (u, v, w) = (1, 1, w) corresponds to taking y → 0 at fixed x and z, with w = 1−x on

this line. Examining the series expansions found in section 4.1, we see that only the k = 0
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terms involving F̂ 2ig
0 and F̂ 2ig ′

0 survive, since
√
xyz → 0 and

√
xy/z → 0. Also, F̂ 2ig ′

0 (0) = 0.

Therefore both the even and odd parts of Ω̃ vanish on this line,

Ω̃e(1, 1, w) = Ω̃o(1, 1, w) = 0. (4.37)

The vanishing of Ω̃o is also a consequence of its antisymmetry under u↔ v.

For Ω, the k = 0 term in eq. (4.5) gives, using eq. (4.16),

Ω(1, 1, w, g2) = −F̂ 2ig
0 (0)F̂ 2ig

0 (x)

= −
(

πg

sinhπg

)2

2F1(ig,−ig, 1, x)

= −
(

πg

sinhπg

)2 ∞∑
n=0

∏n−1
k=0(k2 + g2)

(n!)2
xn

= −1 +
∞∑
L=1

(g2)L
[
−H2, . . . , 2︸ ︷︷ ︸

L

(x) +
L∑

m=1

(−1)m(2− 4m)ζ2mH2, . . . , 2︸ ︷︷ ︸
L−m

(x)

]
,

(4.38)

with x = 1 − w. At x = 0, the term in eq. (4.38) with m = L supplies the value of Ω at

(u, v, w) = (1, 1, 1):

Ω(1, 1, 1, g2) = −
(

πg

sinhπg

)2

= −1 +
∞∑
L=1

(−g2)L(2− 4L)ζ2L . (4.39)

At x = 1, we have

Ω(1, 1, 0, g2) = −
(

πg

sinhπg

)2

2F1(ig,−ig, 1, 1)

= − πg

sinhπg
= −1−

∞∑
L=1

(−g2)L
22L−1 − 1

22L−2
ζ2L . (4.40)

Note that the HPLs obey

w
d

dw

[
(1− w)

d

dw
H2, . . . , 2︸ ︷︷ ︸

N

(1− w)

]
= H2, . . . , 2︸ ︷︷ ︸

N−1

(1− w). (4.41)

Therefore Ω(1, 1, w, g2) satisfies the differential equation

w
d

dw

[
(1− w)

d

dw
Ω(1, 1, w, g2)

]
= g2 Ω(1, 1, w, g2). (4.42)

The first few perturbative orders for Ω(L)(1, 1, w) are:

Ω(0)(1, 1, w) = −1 , (4.43)

Ω(1)(1, 1, w) = H2(1− w)− 2ζ2 , (4.44)

Ω(2)(1, 1, w) = −H2,2(1− w) + 2ζ2H2(1− w)− 6ζ4 , (4.45)

Ω(3)(1, 1, w) = H2,2,2(1− w)− 2ζ2H2,2(1− w) + 6ζ4H2(1− w)− 10ζ6 . (4.46)
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The one- and two-loop formulae can be recovered from eqs. (4.31) and (4.32) by letting r → 0,

which leaves only the HPLs with argument x = 1− w.

Similarly, the odd ladder integral becomes

O(1, 1, w, g2) = −F̂ 2ig
0 (0)F̂ 2ig ′

0 (x)

=
1

g2
x
d

dx
Ω(1, 1, 1− x, g2)

=
∞∑
L=1

(g2)L−1

[
−H1, 2, . . . , 2︸ ︷︷ ︸

L

(x) +
L∑

m=1

(−1)m(2− 4m)ζ2mH1, 2, . . . , 2︸ ︷︷ ︸
L−m

(x)

]
,

= − 1

g2
(1− w)

d

dw
Ω(1, 1, w, g2), (4.47)

so it sits in the middle of the differential equation (4.42). On the line (1, 1, w), the even ladder

integral is simply related to the odd one at one higher loop:

W(1, 1, w, g2) = g2O(1, 1, w, g2). (4.48)

As we will see in subsection 4.6, the (1, 1, w) limit offers us insight into the strong-coupling

analysis of the integrals. In addition, we can study the radius of convergence in the g plane

of the perturbative expansion for Ω(1, 1, w, g2) using eq. (4.38). The same arguments that

lead to eq. (4.3) show that the hypergeometric function 2F1(ig,−ig, 1, x) has poles at g = ±i,
which are the poles in the g plane closest to the origin. They also match the location of

the closest poles of the prefactor πg/ sinh(πg). Therefore the radius of convergence of the

perturbative expansion of Ω(1, 1, w, g2) is unity for all w. We can check this result at w = 1

and w = 0 by observing that the ratio of successive loop orders in eqs. (4.39) and (4.40) goes

to −1 as L→∞.

We remark here that the resummed integral Ω(u, v, w, g2) appears correctly weighted

in the full BDS-like normalized MHV amplitude E(u, v, w, g2), when g2 is identified with

the standard coupling parameter in planar N = 4 SYM, g2 = Ncg
2
YM/(4π)2, where gYM

is the Yang-Mills coupling and the gauge group is SU(Nc). In order to establish that it is

correctly weighted, one can use the “rung rule” for performing two-particle cuts in planar

N = 4 SYM [108, 109]. This rules provides the normalization of the Ω(L) terms within the

L-loop integrand, relative to the normalization at one lower loop. Therefore it makes sense

to compare the unit radius of convergence for Ω(1, 1, w, g2) with the radius of convergence

for amplitudes. The latter is not firmly established [68, 69, 71], but it appears to be closer to

1/16, the value for the cusp anomalous dimension [42], and much smaller than 1. It would

be interesting to use our finite-coupling representation (3.26) to investigate the perturbative

radius of convergence of Ω(u, v, w, g2) for more general kinematics than just the line (1, 1, w).

4.5 The line (1, v, 1)

Next we consider the line (u, v, w) = (1, v, 1). From eqs. (4.33) and (A.10), this corresponds

to letting y → 0 with x and yz fixed, and then letting r =
√
xyz = −x, where v = 1/(1− x),
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x = 1− 1/v. Applying this substitution to the series representation of the ladder integrals in

eqs. (4.5), (4.12)–(4.15), and using F j′−ik(0) = 0, yields

Ω(1, 1/(1− x), 1, g2) = −F̂ 2ig
0 (0)F̂ 2ig

0 (x)−
∞∑
k=1

xkF̂ j−ik(0)F̂ j−ik(x) , (4.49)

O(1, 1/(1− x), 1, g2) = −F̂ 2ig
0 (0)F̂ 2ig ′

0 (x)−
∞∑
k=1

xkF̂ j−ik(0)F̂ j′−ik(x) , (4.50)

Ω̃e(1, 1/(1− x), 1, g2) = −
∞∑
k=1

k

2
xkF̂ j−ik(0)F̂ j′−ik(x) , (4.51)

Ω̃o(1, 1/(1− x), 1, g2) = −Ω̃e(1, 1/(1− x), 1, g2), (4.52)

W(1, 1/(1− x), 1, g2) = −g2

[
F̂ 2ig

0 (0)F̂ 2ig ′
0 (x) +

∞∑
k=1

xkF̂ j−ik(0)F̂ j′−ik(x)

]

−
∞∑
k=1

kxkF̂ j−ik(0)F̂ j−ik(x) . (4.53)

Hence Ω̃ = Ω̃e + Ω̃o vanishes on the line (1, v, 1), and using eqs. (4.10) and (4.11) we have

(1− x)
d

dx
O(x) = Ω(x), (4.54)

x
d

dx
Ω(x) = W(x). (4.55)

So it is enough to specify the loop expansion of Ω(1, v, 1) below.

Now Ω, Ω̃e, O andW are symmetric under u↔ v (z ↔ 1/z), while Ω̃o is anti-symmetric.

Therefore, on the line (u, 1, 1), with u = 1/(1−x), we can also use the above formulas, except

that the sign of Ω̃o is reversed so that in Ω̃ it doubles Ω̃e instead of cancelling it:

Ω̃o(1/(1− x), 1, 1, g2) = Ω̃e(1/(1− x), 1, 1, g2) = Ω̃e(1, 1/(1− x), 1, g2), (4.56)

Ω̃(1/(1− x), 1, 1, g2) = 2 Ω̃e(1, 1/(1− x), 1, g2). (4.57)
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On the line (1, v, 1), the first few orders of explicit results for Ω(L) are:

Ω(1)(1, v, 1) = −H2 −H1,1 − 2ζ2 , (4.58)

Ω(2)(1, v, 1) = H4 +H2,2 − 6ζ4 , (4.59)

Ω(3)(1, v, 1) = −2H6 −H4,2 −H3,3 −H2,4 −H2,2,2 + 6ζ4H2 − 10ζ6 , (4.60)

Ω(4)(1, v, 1) = 5H8 + 2(H6,2 +H5,3 +H4,4 +H3,5 +H2,6)

+H4,2,2 +H3,3,2 +H3,2,3 +H2,4,2 +H2,3,3 +H2,2,4 +H2,2,2,2

− 6ζ4(H4 +H2,2) + 10ζ6H2 − 14ζ8 , (4.61)

Ω(5)(1, v, 1) = −14H10 − 5(H8,2 +H7,3 +H6,4 +H5,5 +H4,6 +H3,7 +H2,8)

− 2(H6,2,2 +H5,3,2 +H5,2,3 +H4,4,2 +H4,3,3 +H4,2,4 +H3,5,2 +H3,4,3

+H3,3,4 +H3,2,5 +H2,6,2 +H2,5,3 +H2,4,4 +H2,3,5 +H2,2,6)

−H4,2,2,2 −H3,3,2,2 −H3,2,3,2 −H3,2,2,3 −H2,4,2,2 −H2,3,3,2

−H2,3,2,3 −H2,2,4,2 −H2,2,3,3 −H2,2,2,4 −H2,2,2,2,2

+ 6ζ4(2H6 +H4,2 +H3,3 +H2,4 +H2,2,2)

− 10ζ6H2,2 + 14ζ8H2 − 18ζ10 , (4.62)

where x = 1 − 1/v is the implicit argument of H~w = H~w(x). These formulae can be ob-

tained from the results obtained on (1, v, w) by letting r → −x, which collapses the multiple

polylogarithms, for example,

Li2,1,1

(
x,− r

x
,−x

r

)
→ Li2,1,1(x, 1, 1) = H2,1,1(x), (4.63)

using eq. (4.22).

In the coefficients of the non-ζ terms in eqs. (4.58)–(4.62), one can see the emergence of

the Catalan numbers,

Cn =
(2n)!

(n+ 1)!n!
= 2

(2n− 1)!

(n+ 1)!(n− 1)!
= 1, 2, 5, 14, 42, 132, 429, . . . . (4.64)

Although it is not really apparent yet, the coefficients of the ζ2(k+1) terms for k > 1 are

controlled by a 2k-fold convolution of the Catalan numbers. Define

Cn,k ≡
k

2n− k

(
2n− k
n

)
, (4.65)

which satisfies

Cn,k =
∑

i1+i2+···+ik=n

Ci1−1Ci2−1 . . . Cik−1 , (4.66)

with Cn ≡ 0 for n < 0. It also obeys Cn+1,1 = Cn+1,2 = Cn. Also note from eqs. (4.59)–(4.62)

that the Catalan number required is related to the depth, i.e. the length of the (compressed)

HPL weight vector. All weight vectors having the same depth appear with the same coefficient,

which is nonzero if all entries are ≥ 2. (The only exception is at L = 1, which contains H1,1.)
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We find that, for L > 1, Ω(L)(1, v, 1) is given by

Ω(L)(1, v, 1) = (−1)L
[
X

(L)
0 +

L∑
k=2

(2− 4k)ζ2kX
(L−k)
k

]
, (4.67)

where the no-ζ term is

X
(L)
0 = H2, 2, . . . , 2︸ ︷︷ ︸

L

(x) +

L−1∑
m=1

CL−m
∑

~w∈gm,2L

H~w(x) , (4.68)

and the ζ terms are

X
(0)
k = (−1)k , (4.69)

X
(L)
k = (−1)kH2, 2, . . . , 2︸ ︷︷ ︸

L

(x) +
L−k+1∑
m=1

CL+k−1−m,2(k−1)

∑
~w∈gm,2L

H~w(x) L > 0 . (4.70)

Here gm,n is the set of weight vectors ~w = (w1, w2, . . . , wm) of depth m and weight
∑m

i=1wi =

n, with all wi ≥ 2.

Note that the first term of X
(L)
0 also appears in eq. (4.38) for Ω(1, 1, w). Also, using

Cn+1,2 = Cn we see thatX
(L)
2 = X

(L)
0 ; that is, the ζ4 terms are controlled byX

(L−2)
2 = X

(L−2)
0 ,

which is exactly the same function describing the no-ζ terms at two lower loops. The ζ6 terms

are the first to require a true convolution of the Catalan numbers, i.e. Cn,4.

We have checked eq. (4.67) exactly through six loops, and through 13 loops via the series

expansion (4.49) to order x10. At 13 loops, the full answer contains 75,025 non-ζ terms,

10,946 ζ4 terms, 4,136 ζ6 terms, 1,351 ζ8 terms, 246 ζ10 terms, 13 ζ12 terms, and one each of

the ζ14, ζ16, . . . , ζ26 terms.

Note that the non-Catalan term in Ω(L)(1, v, 1) is equal to the much simpler expression

for Ω(L)(1, 1, w), after identifying 1−x = w = 1/v. This is simply the k = 0 term in eq. (4.49),

while the terms containing the Catalan numbers come from the k > 0 terms.

4.6 Strong-coupling behavior

A remarkable feature of the finite-coupling Ω, Ω̃ integrals (3.26) and (3.32) is that we can

evaluate them outside the radius of convergence of the weak-coupling region we used to

derive them, all the way to strong coupling. Here we provide evidence that the functions

become exponentially suppressed as g → ∞ for a large subspace of the Euclidean domain.

This is very similar to the observed strong-coupling behavior of the box ladder integrals for

general kinematics [78].

For simplicity, let us begin with the (1, 1, w) line, which we also analyzed in section 4.4

where we focused on weak coupling. At w = 1, the exponential suppression is clear from

eq. (4.39):

Ω(1, 1, 1, g2) = −
(

πg

sinhπg

)2

∼ −4π2g2 exp(−2πg), as g →∞, (4.71)
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and similarly for w = 0, from eq. (4.40):

Ω(1, 1, 0, g2) = − πg

sinhπg
∼ −2πg exp(−πg), as g →∞. (4.72)

Generally, going from w = 1 to w = 0 the absolute value of the function increases monoton-

ically between these two limits. To study in detail the behavior between the endpoints, the

problem is reduced to the asymptotic analysis of the (normalized) hypergeometric functions

F 2ig
0 (x) defined in eq. (3.20), which enters on the first line of (4.38). Fortunately, a very de-

tailed saddle point analysis of this precise class of hypergeometric functions has been carried

out in ref. [110], see in particular Theorems 3.1 and 3.2, which are valid in the region x < 0

and 0 < x < 1 respectively. Focusing on the region 0 < x < 1, we can write their result as:

lim
g→∞

F j(ν)
ν (x) =

√
πg
(

1
x − 1

)1/4
e−gφ(x) , φ(x) = arccos(2x− 1) , (4.73)

which in fact holds for any fixed value of |ν| � g, up to relative corrections of order 1/g. The

angle φ varies continuously and monotonically from φ(0+) = π to φ(1−) = 0. Including the

second hypergeometric factor in (4.38), which gives F 2ig
0 (0) = πg

sinh(πg) , we thus get:

Ω(1, 1, w, g2 →∞) = −2(πg)3/2
(

1
x − 1

)1/4 × e−g(φ(x)+π) × (1 +O(1/g)) (4.74)

where x = 1 − w. The dependence of the exponent on w could also be obtained simply by

solving the hypergeometric differential equation at leading order in g.5 We observe that the

exponent smoothly interpolates between eq. (4.71) and eq. (4.72). The prefactors do not quite

go smoothly, but this can be understood as a breakdown of the saddle point approximation

for extreme values of x very close to the endpoints, see ref. [110] for details.

For the other integrals in our basis, it follows from equations (4.47) and (4.48) that

O(1, 1, w, g2) and W(1, 1, w, g2) are also exponentially suppressed for all x < 1 (w > 0),

whereas we recall that Ω̃ vanishes identically on this line.

In more general kinematics, we can analyze the integral representation in (3.26), which

we reproduce here for convenience:

Ω(u, v, w, g2) =

∫ ∞
−∞

dν

2i
ziν/2

F
j(ν)
+ν (x)F

j(ν)
+ν (y)− F j(ν)

−ν (x)F
j(ν)
−ν (y)

sinh(πν)
. (4.75)

By plotting the integrand for various values of x, y, z we find that it is generally dominated

by the region near the origin, where |ν| ∼ 1 � g. In this regime we can use the limit in

eq. (4.73) to deduce the following exponential suppression of the integrand:

F
j(ν)
+ν (x)F

j(ν)
+ν (y) ∼ e−g(φ(x)+φ(y)), (4.76)

where we have focused on the exponent. Thus, assuming that the region |ν| ∼ 1 indeed

dominates as suggested by the numerics, Ω is itself suppressed by at least the same factor:∣∣∣Ω(u, v, w, g2 →∞)
∣∣∣ ∼< e−g(φ(x)+φ(y)). (4.77)

5We thank Bob Cahn for this observation.
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Remarkably, the true behavior of Ω for generic x, y appears to be even more strongly sup-

pressed. This can be seen from the fact that the asymptotic expansion (4.73) to all orders

in 1/g turns out to contain only even powers of ν, so there is a cancellation between the two

terms in the numerator of (4.75), causing the dominant behavior to come from subleading

exponential corrections to (4.73). While these could in principle be analyzed using formulas in

ref. [110], we will simply conclude this subsection with the observation that Ω is exponentially

suppressed at strong coupling.

5 The Ω Space

In this section we analyze the Ω integrals in general kinematics, working perturbatively in

the coupling. We define the Ω space of functions to be that containing all iterated derivatives

(more precisely, all iterated {n−1, 1} coproducts) of theW, Ω, Ω̃ and O integrals to arbitrary

loop orders. We are interested in studying the Ω space primarily as a model for the full space

of Steinmann hexagon functions [69, 74]. If we can characterize the functions that appear in

the Ω integrals to all orders, we will have encompassed a substantial slice of the full space of

Steinmann hexagon functions, and this may give hints as to their overall structure. We will

achieve this by first showing that a certain discontinuity of the Ω integrals is simple, then

using this insight to build the full Ω space.

5.1 Coproduct formalism and hexagon function space

Like MHV and NMHV amplitudes in planar N = 4 sYM, the integrals defined in section 2.2

are expected to evaluate to multiple polylogarithms. This implies that they are endowed with

a Hopf algebra. In particular, there is a coproduct operation which breaks functions apart

into simpler ones. This yields various concrete representations as iterated integrals.

For a more complete review of how Hopf algebras and the coproduct show up in am-

plitudes, see ref. [111]. The key property for us will be that derivatives only act on objects

appearing in the second entry of the coproduct ∆:6

∆
∂

∂z
F =

(
id⊗ ∂

∂z

)
∆F. (5.1)

In particular, we can define a set of functions F s by the coproduct action

∆n−1,1F =
∑
s∈S

F s ⊗ ln s (5.2)

for any multiple polylogarithm F of weight n that involves symbol letters in the set S. The

functions F s are then iterated integrals of weight n− 1. The derivative of F with respect to

6We use the term “coproduct” somewhat loosely; in many cases “coaction” would be more appropriate

because the spaces to the left and right of “⊗” are actually different. Note also that here ∆ denotes the

coproduct, and not the kinematical quantity defined below eq. (3.7).
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an underlying kinematic variable z (say) is

∂zF =
∑
s∈S

F s∂z ln s. (5.3)

By repeating this operation n times and integrating along various paths with appropriate

boundary conditions, one obtains concrete integral representations of F . The coproduct

unifies these representations in a canonical way.

In six-particle kinematics, the traditional symbol alphabet is given by [60, 83]

Shex = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (5.4)

The list of iterated integrals with this alphabet at any given weight is finite, and is called the

hexagon function space. However, constructing this space is nontrivial and currently unsolved

beyond weight 12, even after imposing the Steinmann conditions [69] and further restricting

to the level of the symbol.

For our discussion it will be convenient to parametrize the same space with a new alphabet

S ′hex = {a, b, c,mu,mv,mw, yu, yv, yw} , (5.5)

where a = u
vw , mu = 1−u

u , and the others are defined by cyclic permutations of u, v, w, as in

eq. (A.16). The letters a, b, c are physically significant due to the Steinmann relations, which

state that amplitudes (or individual Feynman integrals) can’t have simultaneous discontinu-

ities in overlapping channels. Each contains a single three-particle Mandelstam invariant:

a ∝ (x2
25)2, b ∝ (x2

36)2, c ∝ (x2
14)2 (see the definitions of the cross ratios in eq. (2.24)). In the

new alphabet the Steinmann relations state simply that a can never appear next to b in the

first two entries of the symbol (or b next to c, or a next to c) [74]. We discuss this condition

further in appendix B.

From the kinematic relations (A.10) and (A.16) in appendix A, we see that five of the

nine hexagon letters can be taken to be simple combinations of the variables x, y, z which

simplify the ladders:

c = (1− x)(1− y), mu =

√
xy

z
, mv =

√
xyz, yuyv =

y

x
, yw =

x(1− y)

y(1− x)
. (5.6)

These five letters are equivalent under multiplication to

Sdisc = {x, 1− x, y, 1− y, z}, (5.7)

which are the only letters appearing in the matrix M introduced in eq. (3.51). As we will

now show, after taking a discontinuity in c, the ladder integrals collapse to a space with just

these five letters, which will enable their complete description.
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5.2 The box ladders and their discontinuities

It is helpful to first describe the analogous, simpler, space for the box ladder integrals. The

pure functions entering these integrals are given explicitly in terms of classical polylogarithms

in eq. (2.17). An alternate representation, which exposes their coproduct structure a bit

better, is in terms of single-valued harmonic polylogarithms (SVHPLs) [79].

Recall that the ordinary HPLs [103] with uncompressed arguments ~w, wi ∈ {0, 1}, obey

the differential relations,

∂

∂z
H0~w(z) =

H~w(z)

z
,

∂

∂z
H1~w(z) =

H~w(z)

1− z
, (5.8)

along with the “initial conditions”

H1(z) = − ln(1− z), H0, . . . , 0︸ ︷︷ ︸
n

(z) =
1

n!
lnn z . (5.9)

The SVHPLs, L~w, wi ∈ {0, 1}, are functions of z and z̄ that are linear combinations of

products ∼ H~w(z)H~w′(z̄) and are real analytic in the complex plane minus the punctures at

0, 1,∞. They satisfy a similar set of differential relations,

∂

∂z
L0~w(z, z̄) =

L~w(z, z̄)

z
,

∂

∂z
L1~w(z, z̄) =

L~w(z, z̄)

1− z
, (5.10)

with

L1(z, z̄) = − ln |1− z|2 , L0, . . . , 0︸ ︷︷ ︸
n

(z, z̄) =
1

n!
lnn |z|2 . (5.11)

Their symbol alphabet is

Sf = {z, 1− z, z̄, 1− z̄}, (5.12)

along with the single-valuedness requirement that the first entry is either zz̄ or (1− z)(1− z̄).
In terms of the L~w functions, the box ladders become [99, 112],

f (L)(z, z̄) = (−1)L
[
L0, . . . , 0, 1, 0, 0, . . . , 0︸ ︷︷ ︸

2L

− L0, . . . , 0, 0, 1, 0, . . . , 0︸ ︷︷ ︸
2L

]
. (5.13)

These are depth 1 SVHPLs [113], where the single “1” in the weight vector appears in one of

the two middlemost slots.

Now we ask, what is the f space of functions that contains all coproducts of the f (L)(z, z̄)

as L→∞? This is a minimal space in which we can construct all f (L)’s as iterated integrals.

Taking the derivative z∂z simply clips off the first “0”. Taking the anti-holomorphic derivative

z̄∂z̄ can be a bit complicated for a generic SVHPL, but at depth 1 it just clips off the last

“0”. Iterating this procedure, the “1” can slide forward and backward to any location in the

string, until it reaches either end, where it is clipped off by taking a 1− z or 1− z̄ coproduct

instead of a z or z̄ one. In summary, by taking coproducts using the letters in Sf , we generate
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weight n 0 1 2 3 4 5 6 7 8

fn functions 1 2 3 4 5 6 7 8 9

Disc fn functions 0 1 2 3 4 5 6 7 8

Table 1. Number of weight n functions in the f space, and in the space of functions after taking a

discontinuity in 1− z, holding 1− z̄ fixed. Only a single function gets lost in the process.

all depth 1 weight n SVHPLs, of which there are n, as well as the single depth 0 function at

this weight, L0,...,0. The dimension of this space at weight n is n+ 1, as illustrated in table 1.

The last line in table 1 shows what happens to the dimension if we take the discontinuity

in 1− z, holding 1− z̄ fixed, for all functions in the f space. This discontinuity is associated

with the cut in the channel carrying momentum along the ladder [99]. It will be analogous

to the c-discontinuity of the pentaladder integrals. The discontinuity of f (L) (defined as the

difference of its value for z > 1 taken above or below the branch cut) is given by

1

2πi
Disc f (L)(z, z̄) =

(−1)L

L!(L− 1)!
ln(z/z̄) (ln z ln z̄)L−1 . (5.14)

It is depth 0, since the discontinuity removed the “1”. That is, the symbol entries belong to

SDisc f = {z, z̄}. (5.15)

The discontinuity Disc f (L) is itself not a single-valued function. Because of this, when we

take derivatives to fill out the full Disc f space, using the fact that discontinuities commute

with derivatives, we get all n monomials at weight n − 1: lnk z lnn−1−k z̄, k = 0, 1, . . . n − 1.

Thus the dimension of the space f is reduced by only one in passing to Disc f , even though

the symbol alphabet is halved in size.

This means there is very little loss of information in going to Disc f : any function in f can

be recovered from its discontinuity at the price of a single boundary condition. Indeed the only

combinations of SVHPLs with vanishing z = 1 discontinuity are the simple logarithms lnk(zz̄).

The ladder integral f(z, z̄) can be characterized as the unique combination of SVHPLs with

the discontinuity (5.14) and which vanishes at z, z̄ → 0.

Before we discuss the pentaladders, it is instructive to understand this simplification from

the perspective of the integral representation in eq. (3.69). We fix z̄ to a value between 0

and 1 while we analytically continue to z > 1. The argument of the sine is then complex,

π−φ ≡ π− 1
2i ln(z/z̄), with a real part that approaches ±π depending on whether we approach

the cut from above or from below. The discontinuity thus gives a simpler integral with the

sin(πj) denominator canceled:

1

2πi
Disc f(z, z̄, g2) = −

∫ ∞
−∞

dν

2π
(zz̄)iν/2

[(z
z̄

)j(ν)/2
+
(z
z̄

)−j(ν)/2
]
. (5.16)

The integrand is now an entire function of ν. This is so despite the branch points of j(ν) =

i
√
ν2 + 4g2 at ν = ±2ig, because it is even in j. It is convenient to use this property to shift
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the contour slightly below the two branch points. One can then integrate over the two terms

separately: closing the contour in the upper-half plane for the first term, where it decays, and

below for the second term. The discontinuity thus reduces to a small contour integral over

the cut in the first term: letting s = iν/2,

1

2πi
Disc f(z, z̄, g2) = −

∮
[−g,g]

ds

iπ
zs+
√
s2−g2 z̄s−

√
s2−g2 . (5.17)

It is now easy to see why the discontinuity involves only powers of ln z and ln z̄ in perturbation

theory: both exponents are uniformly small over the integration contour, and so can be series-

expanded. Expanding the integrand at small coupling and taking the coefficient of (−g2)L,

we indeed find a pole in 1/s whose residue reproduces eq. (5.14).7

Notice that an alternative evaluation of eq. (5.16) would have been to move the contour

to slightly above the two branch points, closing it in the lower half-plane, and picking up the

contribution from the second term in eq. (5.16) instead. In this version, we would have the

same formula with j → −j and an opposite overall sign from the reversed contour orientation.

Thus eq. (5.17) must be odd under j = 2
√
s2 − g2 → −j. Since this symmetry exchanges z

and z̄, it is consistent with eq. (5.14) being odd under z ↔ z̄.

5.3 The pentaladder integrals and their c-discontinuity

By investigating the first few loop orders, we observed that the c-discontinuity of the penta-

ladders is similarly very simple. Here we will derive such a simplification directly from the

integral representation of section 3, where the discontinuity will collapse the ν integral onto

a small circle as in the preceding example.

The c-discontinuity represents a cut along the channel carrying momentum along the

ladder, from switching the sign of x2
14 from spacelike to timelike. In terms of the cross ratios

u, v, w in eq. (2.24), it can be implemented by

u→ e−iπ u, v → e−iπ v, w → w. (5.18)

Normalizing it so that ln c has discontinuity 1, the discontinuity is properly defined as

DisccΩ(a, b, c) ≡ 1

4πi

[
Ω(a, b, e2πic)− Ω(a, b, e−2πic)

]
. (5.19)

To translate this to the x, y, z variables we use eqs. (3.5) and (3.6):

xy =
(1− u)(1− v)

uv
, (1− x)(1− y) = c, z =

u(1− v)

v(1− u)
. (5.20)

After the continuation we have u, v < 0, which corresponds to x > 1 and y > 1, with x just

below the x > 1 branch cut in the e2πic term, and similarly for y. Because both u and v

7 The integral can be computed exactly as a Bessel function, g ln(z/z̄)/
√

ln z ln z̄ × I1(2g
√

ln z ln z̄), repro-

ducing the resummation of eq. (5.14).
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rotate in the same way in eq. (5.18), we also need xy to acquire the phase 2πi. This phase can

be put in either x or y, with z not rotating; the result will be physically equivalent due to the

single-valuedness constraint enforced in section 3.2. We conclude that a valid continuation

path for the e2πic term is to take x > 1 and y > 1 below the cut, but with a prior rotation of

y around the origin.

The discontinuity in the finite-coupling formula (3.26) for Ω is trickier to compute than

that for the box ladder f because x > 1 ends up outside the radius of convergence of the

hypergeometric series. We deal with this complication by using the standard hypergeometric

transformation law under x → 1/x to express the result in terms of new functions with

argument 1/x. Applied to eq. (3.20), this transformation yields hypergeometric functions

with spin and dimension effectively interchanged:

F̃ νj (x) ≡ F iνij (1/x) =
Γ(1− j+iν

2 )Γ(1− j−iν
2 )

Γ(1− j)
xj/2 2F1(− j+iν

2 , −j+iν2 , 1− j, 1
x). (5.21)

(Note that the transformation ν → ij, j → iν is equivalent to ν2 → ν2 + 4g2, g2 → −g2

in eq. (3.18), which is also equivalent to letting x → 1/x in the differential operator. See

ref. [114] for further examples of such transformations.)

The analytic continuation of F to x > 1− i0 is then written as

F jν (x)→
eiπ(j−iν)/2 sin(π j+iν2 )

sin(πj)
F̃ νj (x) +

e−iπ(j+iν)/2 sin(π j−iν2 )

sin(πj)
F̃ ν−j(x) , (5.22)

while for y we get an additional factor of e−πν , accounting for the rotation around the origin.

For the e−2πic term the phases just get reversed, allowing us to compute the discontinuity:

Discc F
j
ν (x)F jν (y) =

sin2(π j+iν2 )

2π sin(πj)
F̃ νj (x)F̃ νj (y)−

sin2(π j−iν2 )

2π sin(πj)
F̃ ν−j(x)F̃ ν−j(y) . (5.23)

When we subtract the ν → −ν term in the integral (3.26), after noting that F̃ νj |ν→−ν = F̃ νj ,

the trigonometric factors simplify dramatically and we end up with only:

Discc Ω(x, y, z, g2) =

∫ ∞
−∞

dν

4π
ziν/2

(
F̃ νj(ν)(x)F̃ νj(ν)(y) + F̃ ν−j(ν)(x)F̃ ν−j(ν)(y)

)
. (5.24)

This result should be compared with eq. (5.16): the power laws for the box ladders have

simply been replaced by hypergeometric functions.

A further simplification, as in the box ladder case, is that the integral can be rewritten

as a contour integral. Because the integrand is symmetrical in j = i
√
ν2 + 4g2 ↔ −j, it does

not have branch points at ν = ±2ig, but to discuss its terms separately we need to choose a

branch. We pick the one with j ∼ iν at large |ν|. By the analysis leading to eq. (4.5), the

function F̃ νj(ν)(x) then only has poles in the lower-half-plane and is analytic in the upper half-

plane (for x > 1). The function F̃ ν−j(ν)(x) has the opposite properties. Shifting the contour

to an imaginary part just below −2ig, and closing the contour as in the box ladder case, we

– 40 –



conclude that the c-discontinuity is saturated by the integral over the short cut from −2ig to

2ig of the first term:

Discc Ω(x, y, z, g2) =

∮
[−2ig,2ig]

dν

4π
ziν/2F̃ νj(ν)(x)F̃ νj(ν)(y). (5.25)

This formula is the main result of this subsection. An immediate consequence is that the

dependence on z in perturbation theory occurs solely through powers of ln z.

More generally, at weak coupling, the integrand of eq. (5.25) can be series expanded in

ν and j, which are uniformly small over the contour. Just as for the box ladder discontinu-

ity (5.17), only odd powers of j contribute to the integral. It is helpful to explicitly pick out

the odd part and divide it by j. At this point we also recall that the Ω pentaladders were

identified in eq. (3.49) as one component of a four-vector. Repeating the calculation for the

other integrals, we write

Discc {W(g2),Ω(g2), Ω̃e(g
2),O(g2)} =

∮
[−g,g]

ds

iπ

√
s2 − g2 Discc Vi(s, g2) (5.26)

where we have set s = iν/2 for future convenience. The result eq. (5.25) then implies that

Discc V2(s, g2) ≡ zs

4
√
s2 − g2

(
F̃−2is
j (x)F̃−2is

j (y)− (j → −j)
)
j=2
√
s2−g2

. (5.27)

The other entries share the generic form

Discc Vi(s, g2) =
zs

4
√
s2 − g2

(
X−2is
i,j −X−2is

i,−j

)
j=2
√
s2−g2

, (5.28)

and are given explicitly as

Xν
1,j = g2

(
F̃ ν′j (x)F̃ νj (y) + F̃ νj (x)F̃−ν′j (y)

)
, Xν

2,j = F̃ νj (x)F̃ νj (y), (5.29)

Xν
3,j =

g2

2

(
F̃ ν′j (x)F̃−ν′j (y) + F̃−ν′j (x)F̃ ν′j (y)

)
, Xν

4,j = F̃ ν′j (x)F̃ νj (y)− F̃ νj (x)F̃ ν′j (y) , (5.30)

where F̃ ν′j is the hypergeometric function entering the x→ 1/x transform of eq. (3.29):

F̃ ν′j ≡
Γ(1− j+iν

2 )Γ(−j+iν2 )

Γ(1− j)
xj/2 2F1(1− j+iν

2 , −j+iν2 , 1− j, 1
x). (5.31)

We now describe this result explicitly at weak coupling.

5.4 Perturbative expansions and coproducts of c-discontinuities

The discontinuity integrand in eq. (5.26) can be doubly Taylor-expanded in s and g2:

Ṽi(s, g2) ≡ Discc Vi(s, g2) =

∞∑
L=1

∞∑
k=0

(−g2)L−1skṼ(L)
i,k . (5.32)
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In general, we expect each term to involve powers of ln z, as mentioned, as well as poly-

logarithms of x and y originating from the expansion of the hypergeometric functions. For

example, taking the g2 → 0, s→ 0 limit of eq. (5.28) using the methods of section 4, we get

Ṽ(1)
1,0 = 1, Ṽ(1)

2,0 = 1
2 ln(xy), Ṽ(1)

3,0 = −1
2 ln c, (5.33)

and

Ṽ(1)
4,0 = Li2(1− x)− Li2(1− y) + 1

2 ln x
y ln c , (5.34)

where as usual c = (1 − x)(1 − y). More generally, we find that the functions have uniform

transcendental weights

weight Ṽ(L)
i,k = 2L+ k + {−2,−1,−1, 0} . (5.35)

A good way to see these weights and to compute the higher-order terms is to use the differential

equation that the Ṽ(L)
i,k satisfy. Before taking the discontinuity, by using the properties of the

hypergeometric functions we found a set of four coupled first-order equations, eqs. (3.50)

and (3.51). Not surprisingly, since discontinuities and derivatives commute, Discc Vi(s, g2)

satisfies precisely the same coupled equations. Using eq. (5.3) we can rewrite the system as

a coaction

∆•,1

(
Ṽi(s, g2)

)
=
(
Ṽj(s, g2)

)
⊗Mij(s, g

2), (5.36)

where we recall the definition

Mij(s, g
2) =


s ln z −g2 ln c+ 2s2 ln(xy) g2 ln(xy) 0

1
2 ln(xy) s ln z 0 g2

2 ln x
y

−1
2 ln c 0 s ln z g2

2 ln x−1
y−1 − s

2 ln x
y

0 − ln x−1
y−1 − ln x

y s ln z

 . (5.37)

Although the entries of this matrix are all weight one transcendental functions, we see that

the relative weights of the Ṽ(L)
i,k functions are encoded in the powers of g and s. Namely, if

we assign these expansion parameters both transcendental weight minus one, the diagonal

terms in the matrix have weight zero, the upper-triangular entries have weight minus one,

and the lower-triangular terms have weight one. For fixed L and k, coacting on Ṽ(L)
j,k with

Mij(s, g
2) will thus increase the weight of the iterated integrals in each entry by one, but

the resulting entries should be interpreted as multiplying different powers of s and g in the

expansion (5.32).

This coaction can be used to construct the functions Ṽ(L)
i,k iteratively, using a single

boundary condition, which we will describe shortly. One begins with the transcendental

weight 0 vector and coacts on it using the matrix M to get the complete weight-one component
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of Ṽi(s, g2):

Ṽi(s, g2)
∣∣∣
weight 0

=


1

0

0

0

 ⇒ ∆0,1Ṽi(s, g2) =


s(1⊗ ln z)

1
2(1⊗ ln(xy))

−1
2(1⊗ ln c)

0

 . (5.38)

Reading off the second and third element, we reproduce Ṽ(1)
2,0 = 1

2 ln(xy) and Ṽ(1)
3,0 = −1

2 ln c.

The first element has a factor of s, so it corresponds to a term with k = 1, in particular

Ṽ(1)
1,1 = ln z.

Following this procedure further, one can construct the c-discontinuity of our basis func-

tions to any weight by iteratively coacting with matrix M . At each step one has to sup-

plement the information from the coproduct with one boundary condition, because (being

effectively a derivative operator) ∆•,1 kills all constants. A convenient limit can be given at

(x, y, z) = (1, 1, 1) (corresponding to (u, v, w) = (−∞,−∞, 1)). There we find from eq. (5.28)

that Ṽ2 and Ṽ4 vanish, while

lim
x,y,z→1

Ṽ1(s, g2) =
2πg2 sin(πj)

j(cos(πj)− cos(2πs))
, (5.39)

lim
x,y,z→1

Ṽ3(s, g2)

Ṽ1(s, g2)
= −1

2

(
ψ(s+ j

2) + ψ(s− j
2) + ψ(−s+ j

2) + ψ(−s− j
2) + 4γE

)
, (5.40)

where j = 2
√
s2 − g2 as above, and γE is the Euler-Mascheroni constant. For Ṽ3 we have

dropped the singular logarithm ln c in this limit, in order to focus on the constant piece. Up

to weight 4, these can be expanded explicitly as

lim
x,y,z→1

[
Ṽi(s, g2)

]
=


1 + 2g2ζ2 + (8g2s2 − 2g4)ζ4 + . . .

0

(4s2 − 2g2)ζ3 + . . .

0

 . (5.41)

In general, we find that the top row and ratio of the first and third can be expanded into

even and odd zeta values respectively:

lim
x,y,z→1

Ṽ1(s, g2) = 1− 2

∞∑
k=1

ζ2k

k∑
L=1

(−g2)L(2s)2k−2L (2k − L− 1)!

(2k − 2L)!(L− 1)!
, (5.42)

lim
x,y,z→1

Ṽ3(s, g2)

Ṽ1(s, g2)
= 2

∞∑
k=1

ζ2k+1

k∑
L=0

(−g2)L(2s)2k−2L (2k − L− 1)!k

(2k − 2L)!L!
. (5.43)

Referring back to eq. (5.33), we see that the functions there match eq. (5.41), modulo ln c

terms, in the limit x, y, z → 1 without the addition of any constants, as needed (remember

that the first entry in (5.38) should be compared to the g0s1 term in (5.41)).
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To get Ṽ(1)
4,0 and the weight-two contributions to the other functions, we now coact with

M on the weight-one vector in (5.38), which we have promoted to a vector of full functions.

This gives

∆1,1Ṽi(s, g2) =


s2
(

ln(xy)⊗ ln(xy) + ln z ⊗ ln z
)
− g2

2

(
ln(xy)⊗ ln c+ ln c⊗ ln(xy)

)
s
2

(
ln(xy)⊗ ln z + ln z ⊗ ln(xy)

)
− s

2

(
ln c⊗ ln z + ln z ⊗ ln c

)
1
2

(
ln c⊗ ln x

y − ln(xy)⊗ ln x−1
y−1

)

 ,

(5.44)

the fourth component of which is indeed the coproduct of eq. (5.34). The other three entries

can be promoted to products of logs, which can be matched to the boundary condition (5.41)

to give

Ṽ(1)
1,2 = 1

2 ln2(xy) + 1
2 ln2 z , Ṽ(1)

2,1 = 1
2 ln z ln(xy) , Ṽ(1)

3,1 = −1
2 ln z ln c ,

Ṽ(2)
1,0 = 1

2 ln(xy) ln c− 2ζ2 . (5.45)

The space of functions generated by this procedure turns out to be one we have already

encountered—the space of SVHPLs introduced in eqns. (5.10) and (5.11), where z and z̄ are

now equal to 1−x and 1−y. For instance, we can rewrite all the functions we have computed

above as

Ṽ(1)
2,0 = −1

2L1 , Ṽ(1)
3,0 = −1

2L0 , Ṽ(1)
1,2 = L1,1 + 1

2 ln2 z , Ṽ(1)
2,1 = −1

2L1 ln z ,

Ṽ(1)
3,1 = −1

2L0 ln z , Ṽ(1)
4,0 = 1

2L0,1 − 1
2L1,0 , Ṽ(2)

1,0 = −1
2L0,1 − 1

2L1,0 − 2ζ2 , (5.46)

where we have left the SVHPL arguments {z, z̄} = {1− x, 1− y} implicit.

We wish to show that the dependence on x and y for arbitrary weight is captured by

SVHPLs with arguments 1−x and 1−y. Given the letters Sdisc in eq. (5.7), the main issue is

to show that the functions Ṽ(L)
i,k (x, y, z) are single-valued at 0, 1,∞ in the complex plane for

(x, y). It is sufficient to look at two of the three limits, say where x and y both approach 1 or

both approach ∞. We can probe the first limit with the boundary conditions (5.41), which

tell us that the monodromies around this point are dictated by the first and third columns

of the matrix M in eq. (5.37). The first and third columns contain only ln z, ln(xy), ln(x/y)

and ln c = ln[(x − 1)(y − 1)]. The first three of these functions are smooth or vanish as

(x, y)→ (1, 1), and the fourth is real analytic (single valued). In other words, the potentially

problematic entry ln[(x−1)/(y−1)] in the second and fourth columns is killed by the boundary

condition (5.41). (This boundary condition is for z = 1, but the z dependence factorizes.) The

single-valuedness at x, y →∞ can be seen by considering eqns. (5.28), (5.29), and (5.30), as

well as the expansions (5.21) and (5.31), whereby the dependence on x and y in Discc Vi(s, g2)

takes the form (xy)±j times a regular expansion in powers of 1/x and 1/y in each term. Thus,

the functions in Discc Vi(s, g2) are single-valued in 1− x and 1− y, making them SVHPLs.
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In an ancillary file, omegacdiscwt0-12.m, we provide the SVHPL representation of all

the c-discontinuity functions Ṽ(L)
i,k (x, y, z) through weight 12.

Finally, to return to the ladder integrals themselves, we insert the series expansion of

DisccVi(s, g2) in eq. (5.32) and the series expansion of the square root in terms of Catalan

numbers,

s−
√
s2 − g2 =

g2

2s

∞∑
n=0

(
−1

4

)n
Cn

(
−g2

s2

)n
, (5.47)

into eq. (5.26). Performing the contour integral in s by residues at the origin, we obtain an

expression for the c-discontinuity of all pentaladder integrals in terms of the Ṽ(L)
i,k :

Discc {W(L),Ω(L), Ω̃(L)
e ,O(L)} =

L−1∑
n=0

(
−1

4

)n
CnṼ(L−n)

i,2n . (5.48)

The chief advantage of the enlarged set of Ṽ(L)
i,k , as opposed to looking only at the combinations

in eq. (5.48), is that this set is closed under the coaction. This allows the Ṽ(L)
i,k to be computed

recursively in an efficient manner, and will be critical to “undoing” the discontinuity.

5.5 The Ω-functions in the coproduct formalism

Having now constructed a basis of functions describing the c-discontinuities of the Ω sys-

tem and their derivatives, our next task is to “undo” the discontinuity to get the full func-

tions. As in the box ladder example, the key is that Steinmann hexagon functions without

c-discontinuity are extremely constrained.

A function with no c-discontinuity must have first entries in {a, b}. Using eqs. (B.15)

and (B.16) one can check that such functions can only have symbol letters in the set {a, b,mw}.
Functions of this type were classified in ref. [69]; they are a subset of the functions called K

functions there. These K functions can be expressed simply as products of logarithms lnk(a/b)

and HPLs in mw. Thus, the c-discontinuity uniquely fixes the coproducts of our functions of

interest, up to a few such K functions!

Since all the non-log, harmonic-polylogarithmic behavior of these K functions depends on

w, they are naturally probed by values of the i loop integral Ω(i) on the line where u = v = 1,

namely Ω(i)(1, 1, w) as given in eq. (4.38). In fact, with a bit of trial and error, we find that

a special combination always occurs,

fk(u, v, w) = −
bk/2c∑
i=0

1

(k − 2i)!
lnk−2i

(u
v

)
Ω(i)(1, 1, w) , (5.49)

where bxc is the greatest integer less than or equal to x, and f0(u, v, w) = 1. Note that

ln(u/v) = 1
2 ln(a/b). For the Ω space, we need only two additional transcendental K functions

at each weight:

κk = fk + (1− w)∂wfk+1, κ̃k = −fk + (1− w)∂wfk+1 . (5.50)
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These two functions can be constructed recursively from their nonvanishing coproducts:

κak = κk−1, κ̃bk = −κ̃k−1, κmwk = −κ̃mwk = −1
2 (κk−1 + κ̃k−1) , (5.51)

together with the boundary condition at (u, v, w) = (1, 1, 1):

fk(1, 1, 1) = κk(1, 1, 1) = −κ̃k(1, 1, 1) =

{
0 k odd,

−Ω(k/2)(1, 1, 1) = (2k − 2)ζk k even.
(5.52)

For k = 0, κ0 = −κ̃0 = 1, since f0(1, 1, 1) = 1 and the derivatives (1 − w)∂wfk+1 vanish

uniformly at this point.

The functions V(L)
i,k ≡ {W

(L)
k ,Ω

(L)
k , Ω̃

(L)
e,k ,O

(L)
k } are defined for k ≥ 0 and L ≥ 1 (if k < 0

or L < 1, they are set to zero, with the exception of Ω
(0)
0 ≡ 1). Given the formula (5.35) for

the weight of these functions, the complete set of functions appearing at weight n is:

κn, κ̃n,

W(L)
n+1−2L, L = 1, 2, . . . , bn+1

2 c,

Ω
(L)
n−2L, L = 1, 2, . . . , bn2 c,

Ω̃
(L)
e,n−2L, L = 1, 2, . . . , bn2 c,

O(L)
n−1−2L, L = 1, 2, . . . , bn−1

2 c. (5.53)

The dimension of the space is

2 + bn+1
2 c+ 2× bn2 c+ bn−1

2 c = 2n+ 1. (5.54)

The coproducts of the V(L)
i,k functions contain two types of terms. The first type involves

other functions in V; they are determined by the matrix (5.37), which in the alphabet (5.5)

reads

M(s, g2) =


s ln mv

mu
−g2 ln c+ 2s2 ln(mumv) g2 ln(mumv) 0

1
2 ln(mumv) s ln mv

mu
0 −g2

2 ln(yuyv)

−1
2 ln c 0 s ln mv

mu
−g2

2 ln(yuyvyw) + s2 ln(yuyv)

0 ln(yuyvyw) ln(yuyv) s ln mv
mu

 .

(5.55)

The second type of terms involves κ and κ̃, and we have determined them by solving integra-

bility conditions. (By “integrability” here we refer to the commutativity of partial derivatives,

not to be confused with quantum integrability.)

Given the nonvanishing coproducts of these functions, one can define the Ω system re-

cursively. The most complicated of these involve mu and mv for the even functions, and yu
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and yv for the odd functions:

W(L)mu
k = −W(L)

k−1 + 2Ω
(L)
k−2 − Ω̃

(L−1)
e,k + c

(L−2)
k κ̃2L+k−2, (5.56)

Ω
(L)mu
k = −Ω

(L)
k−1 +

1

2
W(L)
k + c

(L−1)
k κ̃2L+k−1, (5.57)

Ω̃
(L)mu
e,k = −Ω̃

(L)
e,k−1 + c

(L)
k−1κ̃2L+k−1, (5.58)

O(L)yu
k = Ω

(L)
k + Ω̃

(L)
e,k + c

(L)
k κ̃2L+k, (5.59)

and

W(L)mv
k = W(L)

k−1 + 2Ω
(L)
k−2 − Ω̃

(L−1)
e,k − c(L−2)

k κ2L+k−2 (5.60)

Ω
(L)mv
k = Ω

(L)
k−1 +

1

2
W(L)
k + c

(L−1)
k κ2L+k−1 (5.61)

Ω̃
(L)mv
e,k = Ω̃

(L)
e,k−1 + c

(L)
k−1κ2L+k−1 (5.62)

O(L)yv
k = Ω

(L)
k + Ω̃

(L)
e,k − c

(L)
k κ2L+k . (5.63)

The first three terms on the first line of these, for example, come from the mu and mv terms

in the first row of eq. (5.55). The remaining nonvanishing coproducts are then:

W(L)c
k = Ω

(L−1)
k , Ω

(L)yu
k = Ω

(L)yv
k = 1

2O
(L−1)
k , (5.64)

Ω̃
(L)c
e,k = −1

2
W(L)
k , Ω̃

(L)yu
e,k = Ω̃

(L)yv
e,k = 1

2O
(L−1)
k +O(L)

k−2, (5.65)

Ω̃
(L)mw
e,k = 1

2c
(L−1)
k

(
κ2L+k−1 + κ̃2L+k−1

)
, Ω̃

(L)yw
e,k = 1

2O
(L−1)
k , (5.66)

O(L)mu
k = −O(L)mv

k = −O(L)
k−1, O(L)yw

k = Ω
(L)
k − c(L)

k

(
κ2L+k − κ̃2L+k

)
. (5.67)

The binomial coefficients c
(L)
k , which intertwine the V and κ systems, are:

c
(L)
k = 2k−1

(
k + L− 1

k

)
. (5.68)

There are a few exceptional cases at low weights:

c
(−1)
1 = −1, c

(0)
0 =

1

2
; otherwise c

(L)
k = 0 for k < 0 or L < 1. (5.69)

This concludes the complete recursive definition of the Ω space of functions to all weights.

Remarkably, when evaluated on the line (1, 1, w), every function in the Ω space approaches

an integer multiple of either Ω(m)(1, 1, w) (for even weight 2m) or (1 − w)dΩ(m)(1, 1, w)/dw

(for odd weight 2m− 1). The integer multiples are given by the binomial coefficients c
(L)
k :

κk → −1, κ̃k → (−1)k

{W(L)
k ,Ω

(L)
k , Ω̃

(L)
e,k ,O

(L)
k } → {0, 0, 0, 0}, k odd,

{W(L)
k ,Ω

(L)
k , Ω̃

(L)
e,k ,O

(L)
k } → {−c

(L−2)
k+1 , c

(L−1)
k+1 , c

(L)
k , c

(L)
k+1}, k even. (5.70)
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In other words, we can fix the boundary conditions for the coproduct description along the

entire line (1, 1, w), not just at the point (1, 1, 1) given in eqs. (4.37), (4.39) and (4.48).

Finally, let us be explicit as to how the actual ladder integrals sit inside this basis, as

Catalan-weighted sums along the same lines as eq. (5.48):

{W(L), Ω(L), Ω̃(L)
e , O(L)} =

L−1∑
n=0

(
−1

4

)n
Cn {W(L−n)

2n , Ω
(L−n)
2n , Ω̃

(L−n)
e,2n , O(L−n)

2n }, (5.71)

and

Ω̃(L)
o = −

L−1∑
n=1

(
−1

4

)n
CnO(L−n)

2n−1 . (5.72)

Note that Ω̃
(1)
e is not pure, so we should use eq. (3.30), not eq. (5.71) for that case. Also, the

first two instances of W(L) and the first instance of Ω(L) are exceptional, needing additional

κ contributions:

W(1) =W(1)
0 + v κ1 + u κ̃1, W(2) =W(2)

0 − 1
4W

(1)
2 + 1

2(κ3 + κ̃3), (5.73)

Ω(1) = Ω
(1)
0 + 1

2(κ̃2 − κ2). (5.74)

Apart from these exceptions, eqs. (5.71) and (5.72) locate the five integrals per loop perfectly

inside the Ω space for all L ≥ 1.

The space of Ψ functions for the pentabox ladders has an analogous description, which

is not surprising since the Ψ integral is obtained from the Ω integral by letting w → 0,

Ψ(L)(u, v) = Ω(L)(u, v, 0). However, not all of the integrals are nonsingular in this limit.

Instead of the (2n+ 1)-dimensional space (5.53) at weight n, the following subspace survives,

κ̂n ≡ 1
2(κn − κ̃n),

Ŵ(L)
n+1−2L ≡ W

(L)
n+1−2L −O

(L−1)
n+1−2L + c

(L−1)
n+1−2L(κn + κ̃n), L = 1, 2, . . . , bn+1

2 c,

Ω̂
(L)
n−2L ≡ Ω

(L)
n−2L, L = 1, 2, . . . , bn2 c, (5.75)

with a total dimension of

1 + bn+1
2 c+ bn2 c = n+ 1. (5.76)

Note that, while this dimension matches the size of the box ladder space, these spaces cannot

be isomorphic because they involve a different number of symbol letters.

The 4× 4 matrix M collapses to a 2× 2 matrix M̂ acting on (Ŵ , Ω̂):

M̂(s, g2) =

 s ln z −g2 ln(1− x) + s2 lnx

1
2 lnx s ln z

 . (5.77)

The reduction to a two-dimensional matrix occurs because there is only a single hypergeo-

metric function of x in the finite-coupling formula (3.61) for Ψ, in contrast to the product of

functions of x and y in the corresponding formula for Ω.
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

L = 2 1 3 5 5 3 1 − − − − − − − −

L = 2, P odd 0 0 0 1 1 1 − − − − − − − −

L = 3 1 3 5 7 7 5 3 1 − − − − − −

L = 3, P odd 0 0 0 1 1 2 1 1 − − − − − −

L = 4 1 3 5 7 9 9 7 5 3 1 − − − −

L = 4, P odd 0 0 0 1 1 2 2 2 1 1 − − − −

L = 5 1 3 5 7 9 11 11 9 7 5 3 1 − −

L = 5, P odd 0 0 0 1 1 2 2 3 2 2 1 1 − −

L = 6 1 3 5 7 9 11 13 13 11 9 7 5 3 1

L = 6, P odd 0 0 0 1 1 2 2 3 3 3 2 2 1 1

Table 2. The dimensions of the spaces of {n, 1, . . . , 1} coproducts of the odd ladder integral O(L),

and also that of the parity odd subspace. They are both palindromic sequences.

We remark that the perturbative Ω space is much smaller at each weight than what

would be obtained solely by imposing proper branch cuts (at weight one) and the constraints

of the Steinmann relations at weight two. As we describe in appendix C, there are additional

constraints on pairs of adjacent letters in the Ω space, that are reminiscent of the Steinmann

relations. In appendix B, we mention that there are similar “extended Steinmann relations”

that apply to the more general space of hexagon functions [74], and are related to the cluster

adjacency principle [115].

5.6 Other Ω space properties and embedding into hexagon function space

Although we have given a complete construction of the Ω space in the previous subsection,

we can also ask how many functions can be obtained just as coproducts of a single function.

This enumeration was useful for our initial understanding of the Ω space, before the above

construction was discovered.

In particular, we can examine all the coproducts of the L loop odd ladder integral O(L).

Of the five ladder integrals at L loops, it has the highest weight, 2L + 1. We iteratively

construct all of the {n, 1, 1, . . . , 1} coproducts of O(L) at weight n. These coproducts are

highly degenerate, so we only keep the linearly independent span of them at each weight.

Then we differentiate each of those functions to go to the next lower weight, and again keep

only the linearly independent ones, and so on. The results for the dimensions of these spaces,

and for just the parity-odd subspaces, are tabulated in table 2 for each L ≤ 6.

Table 2 shows a few interesting properties. First of all, the dimensions are “palindromic”:

The number of independent functions increases by two with each successive differentiation,
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ω space dimension 1 3 5 7 9 11 13 15 17 19 21 23 25 27

P even 1 3 5 6 8 9 11 12 14 15 17 18 20 21

P even, K 1 3 5 6 6 6 6 6 6 6 6 6 6 6

P odd 0 0 0 1 1 2 2 3 3 4 4 5 5 6

Table 3. Dimension of the full weight-n Ω space, and decomposed into even and odd subspaces under

parity P. In the P-even sector we also list the number of K functions, which have no yu, yv, yw letters

in their symbol.

tracing the odd natural numbers, until it peaks and then declines again by two at each step,

tracing out the same set of numbers.8 The same palindromic property holds for just the

subspace that is odd under parity P, although the peak position is shifted up in weight.

Secondly, once the number of functions has reached its peak for a given L, the dimensions

for weights below that peak equal the dimension of the full Ω space at that weight. We say that

the space of coproducts becomes “saturated” below a given weight ne,o
s (L), which depends on

whether the parity is even (e) or odd (o). Higher loop orders do not give additional functions

for weight n ≤ ne,o
s (L), and the dimension nΩ(n) of the full Ω space can be read off. From

table 2, we see that the dimensions saturate for even (or all) and odd functions at

ne
s(L) = L, no

s(L) = L+ 2. (5.78)

The total number of Ω functions at weight n is seen to be nΩ(n) = 2n + 1, matching the

number in eq. (5.54).

In table 3 we list the dimensions of the even and odd subspaces for weight n ≤ 13. Parity-

odd functions necessarily contain the parity-odd letters yi ≡ {yu, yv, yw} in their symbols.

The P-even subspace has a further subspace of “K” functions [69] whose symbols contain no

parity-odd letters. These functions are simply HPLs with arguments 1 − 1/u, 1 − 1/v, and

1 − 1/w in some cases combined with logarithms. We have already identified two of them,

κn and κ̃n, but there are four more “secret” K functions in the Ω space, for a total of six at

each weight n (for n > 3):

{κn, κ̃n, W(1)
n−1, W

(2)
n−3, Ω

(1)
n−2, Ω

(2)
n−4 − 1

2 Ω̃
(1)
e,n−2}. (5.79)

8The space of coproducts of the L-loop box ladder integral, which lives in the space enumerated in table 1,

has the same palindromic property, except using all natural numbers instead of just the odd ones.
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weight n 0 1 2 3 4 5 6 7 8

H, P even, K 1 3 6 12 22 39 67 114 190

Ωcyc, P even, K 1 3 6 12 18 16 15 15 15

H, P even, non-K 0 0 0 0 3 9 25 56 123

Ωcyc, P even, non-K 0 0 0 0 3 8 15 18 24

H, P odd 0 0 0 1 2 6 13 30 59

Ωcyc, P odd 0 0 0 1 2 6 6 9 9

Table 4. Dimension of the full weight-n hexagon function space H, decomposed into even and odd

subspaces under parity P, and compared with the corresponding dimensions for Ωcyc. In the P-even

sector we divide the space into non-K and K functions.

In terms of HPLs, the four secret K functions at weight n are

Hn

(
1− 1

u

)
, Hn

(
1− 1

v

)
,

ln
v

w
Hn−1

(
1− 1

u

)
+

n−2∑
i=1

Hi,n−i

(
1− 1

u

)
,

ln
u

w
Hn−1

(
1− 1

v

)
+
n−2∑
i=1

Hi,n−i

(
1− 1

v

)
. (5.80)

We have referred to the Ω space as a prototype or model for the full space of Steinmann

hexagon functions H. How many of the functions in H does it capture or miss, as we go up in

weight? The Ω space has a particular orientation, while H is closed under all permutations of

(u, v, w). We define Ωcyc to also include cyclic permutations of the Ω space functions under

(u, v, w)→ (v, w, u) and (u, v, w)→ (w, u, v). For the most part, these permuted functions are

independent. However, the top line of eq. (5.80) has two K functions, which after including

cyclic permutations, become only three K functions in all, Hn(1 − 1/ui), i = 1, 2, 3. So we

lose three K functions at each weight, and the number of K functions in Ωcyc is 3×6−3 = 15

at weight 6 and above. There is a similar degeneracy under cyclic permutation for the few

parity-odd functions at weights 3 and 4, and for the non-K parity-even functions at weights

4 and 5. (In the latter case, certain linear combinations of cyclic permutations of non-K

functions are actually K functions.) Beyond weight 5 there are no non-K degeneracies, and

so the dimension of the weight n part of Ωcyc is 3(2n+ 1)− 3 = 6n for n ≥ 6. This dimension

grows only linearly with n, whereas the dimension of the weight n part of N grows much

faster, roughly like 1.7n.

In table 4 we compare the dimensions of the full hexagon function space H, which has

been trimmed to remove all inessential functions [74], with the dimensions of Ωcyc through

weight 8. We have split the functions into P even and P odd, and we have further split
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the P-even functions into K functions and non-K functions. The space Ωcyc spans the full

hexagon function space through weight 3. At weight 4 it only misses 4 K functions, one of

which is the constant ζ4. At weight 5 it misses numerous K functions, and a single P-even,

non-K function, but it still captures all the P-odd functions at weight 5. The single missing

P-even, non-K function evaluates to 5ζ5−2ζ2ζ3 at (u, v, w) = (1, 1, 1), while the weight 5 part

of Ωcyc vanishes at (1, 1, 1). Presumably this weight 5 function is aW-like seed for non-ladder

DCI integral topologies beginning at three loops, in which three pentagons with appropriate

numerators are joined together at a common vertex.

5.7 A nonperturbative coaction

That the dimensions of the Ω space saturate has an interesting implication: it allows us to de-

fine the coaction nonperturbatively. This can be illustrated by returning to the discontinuity

functions DisccVi(s, g2), defined nonperturbatively in eq. (5.28). Using the differential equa-

tion these functions satisfy, we see they can also be defined by a path-ordered exponential,

where the argument of the exponential is a 4× 4 matrix:

Uij(s, g2;x, y, z) =

[
P exp

(∫ (x,y,z)

(1,1,1)
dMT (s, g2;x, y, z)

)]
ij

. (5.81)

Dotting Uij on the left with the initial condition in eq. (5.41) reproduces the vector DisccVi,
but this matrix contains additional transcendental functions. Roughly speaking, we expect

this space of functions to be necessary and sufficient to describe all the possible analytic

continuations of the Ṽi. A nonperturbative coaction can then be defined simply as a matrix

product:

∆Uij(s, g2;x, y, z) =
∑
k

[
Uik(s, g2;x, y, z)

]
⊗
[
Ukj(s, g2;x, y, z)

]
. (5.82)

(See refs. [116, 117] for related constructions also involving hypergeometric functions.) The

∆•,1 coproduct component from eq. (5.82) is easily seen to reproduce eq. (5.36), and perturba-

tively the ∆1,...,1 components reproduce the symbol of these functions. However, this equation

defines ∆ nonperturbatively, and in particular for all ∆•,k and ∆k,• for k ≥ 1. (We haven’t

discussed boundary conditions, and in principle the definition in eq. (5.81) might need to be

“twisted” by ζ-valued constants so as to match the ordinary coproduct of polylogarithms.

We leave this exploration to future work.)

Note that, by construction, the coaction (5.82) satisfies a coaction principle [87–89]. That

is, the first entry of the coaction is always contained within the original space of functions.

A similar (perturbative) coaction principle has been observed in the full space of Steinmann

hexagon functions, where it constrains the transcendental constants that can appear in the

first entry in addition to restricting the symbols of these objects [69, 88]. The consequences of

this coaction principle thus extend beyond what is currently understood in terms of physical

principles (since only the symbol-level constraints are understood in terms of allowed branch

cuts of Feynman integrals), as will be described in more detail in a forthcoming work [74].
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The first entry of the coaction (5.82) manifestly realizes this same property. In particular,

the first entry of the coaction maps to the same space of functions for any initial conditions

one dots into Uij (after which the coaction principle more closely resembles those discussed

in [88], since the second entry of the coaction will in general map to a larger space).

The nonperturbative coaction for the Ω system can be defined in an analogous fash-

ion, writing in matrix form the general solution to the differential equations following from

eqs. (5.56)–(5.69). The appearance of the κ and κ̃ functions in this space implies that U will

now appear as a 4× 4 sub-block of a bigger matrix.

It is remarkable that the set of all coproducts of the Ω integrals (loosely speaking, the

space of all their possible derivatives and analytic continuations) can be encoded nonpertur-

batively in a single matrix.

6 Conclusions

We have investigated a class of integrals, Ω(L) and Ω̃(L), that have representatives at each loop

order. In doing so, we have found something remarkable: that their all-orders behavior can

be expressed in terms of beautifully simple integral formulas, given in eqs. (3.26) and (3.32).

Using these expressions, we can extract any desired loop coefficient, and have control over

the full behavior of the functions via infinite sums.

We have also investigated the coproducts of these functions to all orders, allowing us to

characterize the complete space of polylogarithms that envelops the Ω(L) and Ω̃(L) integrals

and their derivatives. As a consequence, we can now efficiently construct a subspace of

the Steinmann hexagon functions to arbitrarily high weight. This space is equipped with a

coaction both perturbatively and at finite coupling, and obeys a coaction principle.

The inevitable next question is, can we characterize the full Steinmann hexagon space H
in a similar way? For example, can we find a systematic definition of the hexagon function

coproducts, analogous to eqs. (5.56)–(5.64), which solves the integrability conditions to all

orders? Or perhaps are there other subspaces of H, larger than Ω, that we can describe to all

orders, that capture a wider set of functions that are not in Ωcyc? Does the amplitude itself

have a form like the Ω(L) and Ω̃(L) integrals, and could it be written as a finite-coupling ex-

pression involving (several) Mellin integrals? We suspect that this might be possible, although

presumably it will have to include the full flux-tube dispersion relations [43, 49].

One reason for suspecting this is that the radius of convergence of the perturbative

expansion of the Ω integrals appears to be much larger than that for amplitudes, as discussed

in section 4.4. The radius of convergence for amplitudes is relatively close to that for the cusp

anomalous dimension, which also controls the behavior of the flux-tube expansion at finite

excitation number. Thus it seems likely that the large-order behavior of six-point amplitudes

is controlled by other families of integrals that grow more quickly than the ladders.

In the past, several of the authors have observed differential equations linking the am-

plitude at different loop orders [69, 73]. While some of these relations do not hold at higher
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orders [74] they still suggest that a larger piece of the Steinmann hexagon space has an

iterative or recursive structure which awaits exploitation.
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Physique Théorique Philippe Meyer, the Higgs Centre at U. Edinburgh, the Simons Founda-

tion and the Hausdorff Institute for Mathematics for hospitality. AM is grateful to the Higgs

Centre at U. Edinburgh for hospitality, and LD, MvH, AM, and GP thank the Kavli Institute

for Theoretical Physics for hospitality. Research at Perimeter Institute is supported by the

Government of Canada through Industry Canada and by the Province of Ontario through

the Ministry of Economic Development and Innovation.

A Hexagon Variables

The three cross ratios u, v, w used to describe hexagon functions are,

u =
x2

13 x
2
46

x2
14 x

2
36

, v =
x2

24 x
2
51

x2
25 x

2
41

, w =
x2

35 x
2
62

x2
36 x

2
52

. (A.1)

The hexagon-function symbol alphabet is given by

Shex = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} (A.2)

where [60]

yu =
u− z+

u− z−
, yv =

v − z+

v − z−
, yw =

w − z+

w − z−
, (A.3)

and

z± =
1

2

[
−1 + u+ v + w ±

√
∆
]
, ∆ = (1− u− v − w)2 − 4uvw. (A.4)

The cross ratios u, v, w are rational in terms of yu, yv, yw,

u =
yu(1− yv)(1− yw)

(1− yuyv)(1− yuyw)
, v =

yv(1− yw)(1− yu)

(1− yvyw)(1− yvyu)
, w =

yw(1− yu)(1− yv)
(1− ywyu)(1− ywyv)

,

1− u =
(1− yu)(1− yuyvyw)

(1− yuyv)(1− yuyw)
, etc.,

√
∆ =

(1− yu)(1− yv)(1− yw)(1− yuyvyw)

(1− yuyv)(1− yvyw)(1− ywyu)
. (A.5)

– 54 –



The corresponding momentum-twistor representations are

u =
〈6123〉〈3456〉
〈6134〉〈2356〉

, 1− u =
〈6135〉〈2346〉
〈6134〉〈2356〉

,

yu =
〈1345〉〈2456〉〈1236〉
〈1235〉〈3456〉〈1246〉

,
√

∆ =
〈1234〉〈1256〉〈3456〉 − 〈2345〉〈1236〉〈1456〉

〈2356〉〈1346〉〈1245〉
. (A.6)

The representations for v, 1 − v, yv, and so on, can be obtained by cycling Zi → Zi+1,

remembering that under this transformation u→ v → w → u, while yu → 1/yv → yw → 1/yu.

As discussed in section 3, for many purposes, a better set of variables for the Ω integrals

is {x, y, z}, where

x = 1 +
1− u− v − w +

√
∆

2uv
=

1− yuyvyw
yuyv(1− yw)

, (A.7)

y = 1 +
1− u− v − w −

√
∆

2uv
=

1− yuyvyw
(1− yw)

, (A.8)

z =
u(1− v)

v(1− u)
=
yu(1− yv)2

yv(1− yu)2
. (A.9)

The inverse relations are,

u =
1

1 +
√
xy/z

, v =
1

1 +
√
xyz

, w =
(1− x)(1− y)

(1 +
√
xy/z)(1 +

√
xyz)

,

yu =
1 +

√
y/(xz)

1 +
√
x/(yz)

, yv =
1 +

√
yz/x

1 +
√
xz/y

, yw =
x(1− y)

y(1− x)
. (A.10)

Notice that x and y depend only on yuyv and yw. That is, the only dependence on yu/yv is

through z.

Parity sends the dual coordinates xi → xi+3 (mod 6) and the momentum twistors Zi →
Zi+3 (mod 6). Parity does not affect the cross ratios u, v, w but it exchanges

√
∆ ↔ −

√
∆,

so that z+ ↔ z− and yu, yv, yw are inverted: yi ↔ 1/yi. Eqs. (A.7)–(A.10) show that parity

exchanges x and y, leaving z invariant.

The u derivative of a function F , holding v, w fixed, is given in terms of first coproducts

by

∂F

∂u
=
F u

u
− F 1−u

1− u
+

1− u− v − w
u
√

∆
F yu +

1− u− v + w

(1− u)
√

∆
F yv +

1− u+ v − w
(1− u)

√
∆

F yw , (A.11)

and derivatives with respect to v and w are obtained by cyclic permutations of this equation.

Derivatives with respect to x, y, z are related to these derivatives by,

x∂x + y∂y = −u(1− u)∂u − v(1− v)∂v + (1− u− v)(1− w)∂w , (A.12)

x∂x − y∂y = −
√

∆∂w , (A.13)

z∂z =
1

2

[
u(1− u)∂u − v(1− v)∂v − w(u− v)∂w

]
. (A.14)
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In discussing the Ω space of functions in section 5, it is very useful to change the hexagon

alphabet from Shex in eq. (A.2) to

S ′hex = {a, b, c,mu,mv,mw, yu, yv, yw} , (A.15)

where

a =
u

vw
, b =

v

wu
, c =

w

uv
, mu =

1− u
u

, mv =
1− v
v

, mw =
1− w
w

. (A.16)

Given coproducts labelled using S ′hex, we can convert them to those using Shex, by

F u = F a − F b − F c − Fmu , F 1−u = Fmu , (A.17)

plus the relations obtained by cyclic permutations. To go in the opposite direction, we use,

F a = −1

2
(F v + F 1−v + Fw + F 1−w) , Fmu = F 1−u , (A.18)

plus the cyclic relations.

For example, the z derivative, using eq. (A.14) and expressed in terms of coproducts

using the alphabet S ′hex, is

z
∂F

∂z
= (1−v)F a−(1−u)F b− 1

2
(Fmu−Fmv)+

u− v
2(1− w)

Fmw+

√
∆

2(1− w)
(F yu−F yv) . (A.19)

The x and y derivatives are more complicated, but are a bit more simply expressed in terms

of the yi variables and using the following combinations with opposite parity:

(x∂x − y∂y)F =
(1− yw)(1− yuyvyw)

yw(1− yuyv)
(F a + F b − F c) +

(1− yuyw)(1− yvyw)

yw(1− yuyv)
Fmw

− F yu − F yv +
yu − yv
1− yuyv

(F yu − F yv)− (1− yw)(1 + yuyvyw)

yw(1− yuyv)
F yw , (A.20)

(x∂x + y∂y)F = −(1 + yvyw)(1− yw)(1− yuyvyw)

yw(1− yuyv)(1− yvyw)
F a − (1 + yuyw)(1− yw)(1− yuyvyw)

yw(1− yuyv)(1− yuyw)
F b

+
(1 + yw)(1− yuyvyw)

yw(1− yuyv)
F c

+ Fmu + Fmv − 1− yuyvy2
w

yw(1− yuyv)
Fmw +

(1− yw)(1− yuyvyw)

yw(1− yuyv)
F yw . (A.21)

B Extended Steinmann Relations in the Full Hexagon Function Space

In this appendix we discuss properties of adjacent symbol entries in the full hexagon function

space H, as a prelude to a similar discussion for the Ω space and its c-discontinuity in the

following appendix.

– 56 –



One advantage of the alphabet S ′hex is that the Steinmann relations are made transparent,

insofar as each letter a, b, c contains a unique three-particle invariant [69]:

a =
x2

13x
2
46

x2
24x

2
35x

2
51x

2
62

(x2
25)2 , b =

x2
24x

2
51

x2
35x

2
46x

2
62x

2
13

(x2
36)2 , c =

x2
35x

2
62

x2
46x

2
51x

2
13x

2
24

(x2
41)2 . (B.1)

A similar simplification occurs in the heptagon letters used in [63, 75], where each three-

particle invariant only appears in a single letter a1j . Thus the Steinmann constraints [69],

Discx225(Discx236A6) = 0, (B.2)

and permutations thereof, are solved (at symbol level) simply by requiring that the first two

entries of the symbol do not contain any of the six combinations,

a⊗ b⊗ . . . , b⊗ c⊗ . . . , c⊗ a⊗ . . . ,
b⊗ a⊗ . . . , c⊗ b⊗ . . . , a⊗ c⊗ . . . . (B.3)

However, by examining the double coproducts of functions obtained by taking multiple co-

products of high loop six-point amplitudes, we have found that the same constraint also holds

deeper into the symbol. That is, the combinations

. . .⊗ a⊗ b⊗ . . . , . . .⊗ b⊗ c⊗ . . . , . . .⊗ c⊗ a⊗ . . . ,

. . .⊗ b⊗ a⊗ . . . , . . .⊗ c⊗ b⊗ . . . , . . .⊗ a⊗ c⊗ . . . (B.4)

never appear [74]. We refer to this condition as the extended Steinmann constraints.

There are also 26 independent constraints on double coproducts from function-level in-

tegrability. Expressed in the alphabet Shex, they are contained in the following,

F [ui,uj ] = −F [yi,yj ] , (B.5)

F [1−ui,1−uj ] = F [yi,yj ] + F [yj ,yk] + F [yk,yi] , (B.6)

F [ui,1−uj ] = −F [yk,yi] , (B.7)

F [ui,yi] = 0 , (B.8)

F [ui,yj ] = F [uj ,yi] , (B.9)

F [1−ui,yi] = F [1−uj ,yj ] − F [uj ,yk] + F [uk,yi] , (B.10)

F [1−ui,yj ] = −F [uk,yj ] , (B.11)

for all i 6= j 6= k ∈ {1, 2, 3}, where F [x,y] ≡ F x,y − F y,x.

When we combine the constraint (B.4) with the integrability constraints, we find 52

independent pairs of double coproducts. However, when we construct the space of (extended)

Steinmann hexagon functions iteratively in the weight, imposing correct branch cuts along

with the additional constraint (B.4), we find only 40 independent pairs [74]. Of these pairs,

24 are parity even and 16 parity odd. Interestingly, these pairs also match those provided by

the “cluster adjacency” principle described in ref. [115], once integrability is imposed.
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In order to show linear combinations of symbol entry pairs more clearly, we denote a

pair of allowed final entries using the following notation (not to be confused with a similar

notation used in superscripts in eqs. (B.5)–(B.11)):

. . .⊗ x⊗ y → [x, y] , (B.12)

so that a sum of [x, y] denotes symbols of the form

e1 ⊗ . . .⊗ ej ⊗ x⊗ y + e1 ⊗ . . .⊗ ej ⊗ z ⊗ w → [x, y] + [z, w] . (B.13)

We also use the multiplicative property of the symbol and make the following abbreviations,

[xy, z] ≡ [x, z] + [y, z], [x/y, z] ≡ [x, z]− [y, z]. (B.14)

To denote cyclic classes, we write ai ∈ {a, b, c}, mi ∈ {mu,mv,mw}, and yi ∈ {yu, yv, yw}.
Again, i 6= j 6= k. In this notation, the 16 odd pairs are

[ai, yi] + [yi, ai],

[ai, yjyk] + [yjyk, ai],

[mj/mk, yi] + [yi,mj/mk],

[mi, yuyvyw] + [yuyvyw,mi],

[aimi, yjyk]− [mj , yj ]− [mk, yk]− [yjyk, aimi] + [yj ,mj ] + [yk,mk],

[mu, yvyw] + [mv, yuyw] + [mw, yuyv]− [yvyw,mu]− [yuyw,mv]− [yuyv,mw], (B.15)

while the 24 even pairs are

[ai, ai],

[mi,mi],

[ai,mj ] + [mj , ai], [aiaj ,mk],

[mj ,mk] + [mk,mj ]− [yi, yi],

[ai,mjmk] + [yi, yuyvyw],

[yu, y
2
uyvyw] + [y2

uyvyw, yu], [yv, yuy
2
vyw] + [yuy

2
vyw, yv],

[a,mv] + [mu,mv]− [mw, b] + [mw,mu]− [mw,mv] + [yv, yw]. (B.16)

C Coproduct Relations in the Ω Space

C.1 Coproduct relations for general Ω functions

The spaces of single and double coproducts are much smaller in the Ω subspace than in the

full space of Steinmann hexagon functions described in appendix B. At the single coproduct

level, parity even functions in the Ω space are observed to have only 8, not 9 final entries:

yu and yv do not appear separately, but only the combination yuyv. That is, Eyu − Eyv = 0
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if E ∈ Ω and E is parity even. Notice from eq. (A.19) that the last,
√

∆-containing term

vanishes for the z derivatives of all even Ω functions.

Parity odd functions are found to be even more restricted; they have only the 4 final

entries {mu/mv, yu, yv, yw}. That is, Oa = Ob = Oc = Omw = Omu +Omv = 0 if O ∈ Ω and

O is parity odd.

Parity-odd functions O in the Ω space have 8 allowed final entry pairs, 2 pairs of letters

that are even under parity and 6 that are odd. They are

[mu/mv,mu/mv] + [yuyv, yuyv],

2[yuyv, yuyv] + [yuyv, yw] + [yw, yuyv], (C.1)

and

[mu/mv, yw] + [yw,mu/mv],

[mu/mv, yuyv] + [yuyv,mu/mv],

2[mumv, yw] + 2[mw, yuyv] + [mumv, yuyv] + [yu/yv,mu/mv],

[a, yv] + [a, yw] + [mu, yw]− [mw, yw]− [yv,mu] + [yv,mv],

[b, yu] + [b, yw] + [mv, yw]− [mw, yw] + [yu,mu]− [yu,mv],

[c, yuyv]− [mumv, yuyv]− [mumv, yw]. (C.2)

Parity-even functions E in the Ω space have 20 allowed final entry pairs, 17 even and 3

odd. They are

[mu,mu], [mv,mv],

[c, c]− [a, a], [c, c]− [b, b],

[mw, a]− [b,mw], [a,mw]− [mw, b],

[c,mv] + [mv, c], [c,mu] + [mu, c],

[a,mv]− [mv, c], [b,mu]− [mu, c],

[mw, a] + [b,mw] + [a,mw] + [mw, b]− 4[c, c],

2[mu, c] + 2[mv, c] + [yuyv, yw]− [yw, yuyv],

2[c, c]− [yuyv, yw]− [yw, yuyv]− 2[yw, yw],

2[mu,mv] + 2[mv,mu] + [yuyv, yw] + [yw, yuyv],

−[a/b,mw] + [mu/mv, c]− [yu/yv, yuyv]− [yu/yv, yw],

−[a/b,mw]− [mu/mv, c]− [mumv,mu/mv] + 2[mw,mu/mv]− [yu/yv, yw],

2[yuyv, yuyv] + [yuyv, yw] + [yw, yuyv], (C.3)

and

[mu/mv, yw] + [yw,mu/mv],

[mu/mv, yuyv] + [yuyv,mu/mv],

[yuyv, c]− [yuyv,mumv]− [yw,mumv]. (C.4)
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C.2 Coproduct relations for the c Discontinuity

We define the space Ωc to be the discontinuity in the c variable of all the functions in the Ω

space. In Ωc, the set of allowed single and double coproducts shrinks even further. Also, one of

the three derivatives simplifies considerably. At the same time, we lose almost no information,

because only the functions κ and κ̃ are set to zero, while the remaining functions are still

linearly independent.

In particular, there are only five letters in the alphabet for Ωc:

{c,mu,mv, yuyv, yw}. (C.5)

Odd functions in Ωc are further restricted to have only three final entries, {mu/mv, yuyv, yw}.
Notice from eq. (A.19) that the z derivative of the c-discontinuity Fc of a function F

simplifies greatly, to

z
∂Fc
∂z

= −Fmuc . (C.6)

In the finite-coupling solution (3.26), the z derivative is also simple, in that it does not touch

the hypergeometric functions.

On the c-discontinuity, the 17 even pairs of final entries for parity-even functions E in

eq. (C.3) reduce to 8 final entry pairs

[mu,mu], [mv,mv],

[c,mv] + [mv, c], [c,mu] + [mu, c],

2[mu, c] + 2[mv, c] + [yuyv, yw]− [yw, yuyv],

2[c, c]− [yuyv, yw]− [yw, yuyv]− 2[yw, yw],

2[mu,mv] + 2[mv,mu] + [yuyv, yw] + [yw, yuyv],

2[yuyv, yuyv] + [yuyv, yw] + [yw, yuyv], (C.7)

while the 3 odd final entry pairs for parity-even functions in eq. (C.4) remain the same.

On the c-discontinuity, the 2 parity-even pairs of final entries for parity-odd functions O,

in eq. (C.1), remain the same, while the 6 parity-odd final entry pairs in eq. (C.2) reduce to

3 final entry pairs,

[mu/mv, yw] + [yw,mu/mv],

[mu/mv, yuyv] + [yuyv,mu/mv],

[c, yuyv]− [mumv, yuyv]− [mumv, yw]. (C.8)

C.3 Coproduct relations for Ω, Ω̃, and O

In this subsection we provide coproduct relations between the integrals Ω(L), Ω̃(L) and O(L).

While it is possible to read off all such relations from results in section 5.5, we can also

derive many of them directly from the differential equations they satisfy. These relations

were useful when constructing Ω(L) at higher loops in an earlier stage of this work, and they
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serve to illustrate the structure of the Ω functions in the coproduct formalism. The relations

are all valid at sufficiently high loop order, using starting at either L = 2 or 3.

In appendix A, the x, y, z derivatives of any functions F are expressed in terms of co-

products for the alphabet S ′hex. Consider, for example, the operator z∂z. Its action can be

written as

z
∂F

∂z
= (1−v)F a−(1−u)F b− 1

2
(Fmu−Fmv)+

u− v
2(1− w)

Fmw +

√
∆

2(1− w)
(F yu−F yv) . (C.9)

When applying a second-order differential operator, such as those appearing in the differential

equations for the weight-2L transcendental function Ω(L), the weight can be reduced either

by one or two. The former case occurs when the second derivative hits the rational factor in

eq. (C.9) instead of the transcendental function. In the case of eq. (3.14), using the analogous

expression for x∂x, we find that these weight-(2L− 1) terms combine to

1− x
x

(
(x∂x)2 − (z∂z)

2
)

Ω(L)
∣∣∣
2L−1

=
1

1− x

(
Ωa + Ωb − Ωc + Ωmw + Ωyw

)
. (C.10)

Since the action of the operator should give Ω(L−1), which has uniform weight 2L−2, the right-

hand side should vanish. This condition, together with the parity conjugate relation (3.15),

implies that

Ωa + Ωb − Ωc + Ωmw = 0, Ωyw = 0. (C.11)

Furthermore, combining eq. (3.35) with eqs. (3.43) and (3.44) gives second-order equations

relating Ω(L) to pure functions of weight 2L− 2, Ω̃
(L−1)
e and Ω̃

(L−1)
o . By canceling the wrong-

weight terms we find two more relations:

Ωmw = 0, Ωyu = Ωyv . (C.12)

Substituting the second of these equations into the derivative (3.35) that defines O, we learn

that O is a pure function and that9

Ωyu = Ωyv =
1

2
O(L−1) . (C.13)

Now we look at derivatives of O. We start with the relation Ω̃o = −z∂zO and set F = O
in eq. (C.9). Because Ω̃o is a pure transcendental function with no rational prefactor, all the

terms containing non-constant rational prefactors must vanish. It is easy to see that no linear

combinations of F a, F b, Fmw and F yu − F yv can produce a constant prefactor. Hence we

obtain,

Oa = Ob = Omw = 0, Oyu = Oyv , Omu −Omv = 2Ω̃o. (C.14)

Next we insert eq. (C.14) into eq. (A.21) for (x∂x + y∂y)O, which appears in eq. (3.39)

for Ω:

Ω =
1 + yw
1− yw

Oc + 2
yw(1− yuyv)

(1− yw)(1− yuyvyw)
(Omu − Ω̃o) +Oyw . (C.15)

9 We have suppressed the (L) superscript for coproducts of L loop functions, but include a reminder in this

equation that the odd ladder integral evaluated at one lower loop order, O(L−1).
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Purity of Ω in eq. (C.15) leads to the additional equations,

Oc = 0, Omu = −Omv = Ω̃o, Oyw = Ω. (C.16)

Substituting eqs. (C.14) and (C.16) into eq. (3.43) for Ω̃e, after evaluating it with the help of

eqs. (A.12) and (A.13), yields

Ω̃e =
xy

x− y

[
(1− x)∂x + (1− y)∂y

]
O = Oyu − Ω, (C.17)

so that

Oyu = Oyv = Ω + Ω̃e. (C.18)

In summary, since we know all three derivatives of the odd ladder O, we can determine

all nine of its first coproducts,

Oa = Ob = Oc = Omw = 0, Omu = −Omv = Ω̃o,

Oyu = Oyv = Ω + Ω̃e, Oyw = Ω. (C.19)

Returning to the derivatives of Ω, we find empirically that z∂zΩ is a pure function. This

fact implies, via eq. (C.9), that

Ωa = Ωb = Ωc = 0. (C.20)

These additional relations imply that

x∂xΩ =
1

2
(Ωmu + Ωmv)− Ωyu , y∂yΩ =

1

2
(Ωmu + Ωmv) + Ωyu , (C.21)

z∂zΩ =
1

2
(−Ωmu + Ωmv) . (C.22)

We have also found some first-order coproduct relations for Ω̃:

0 = Ω̃a = Ω̃b = Ω̃mw = Ω̃mu + Ω̃mv = Ω̃yu − Ω̃yv = −Ω̃mu + Ω̃yu − Ω̃yw . (C.23)

These relations are equivalent to

x∂xΩ̃ = −Ω̃mu − x

1− x
(Ω̃c − Ω̃yw) , (C.24)

y∂yΩ̃ = Ω̃mu − y

1− y
(Ω̃c + Ω̃yw) , (C.25)

z∂zΩ̃ = −Ω̃mu . (C.26)

There are also two relations that are specific to Ω̃e and Ω̃o,

Ω̃yw
e =

1

2
O(L−1) , Ω̃c

o = 0. (C.27)

By taking derivatives of the all-orders representation (3.32) of Ω̃, it is possible to show

that the quantity Ω̃mu appearing in the x and y derivatives of Ω̃ in eqs. (C.24) and (C.24)
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is indeed the same as the one appearing in the z derivative (C.26). One can also show to all

orders that

(x∂x + y∂y)Ω̃ =
y

1− y
(x∂x + z∂z)Ω +

x

1− x
(y∂y − z∂z)Ω . (C.28)

Inserting the coproduct representations of these derivatives, given above, we find relations

between the first coproducts of Ω̃ and Ω:

− Ω̃c + Ω̃yw = Ωmu + Ωyu , Ω̃c + Ω̃yw = −Ωmv + Ωyu . (C.29)

By combining eqs. (C.13) and (C.19), we can write all three integrals, Ω, Ω̃e and Ω̃o, as

double coproducts of the Ω integral at one higher loop order:

Ω(L−1) = 2 Ωyw,yu , Ω̃(L−1)
e = 2 (Ωyu,yu − Ωyw,yu) , Ω̃(L−1)

o = 2 Ωmu,yu . (C.30)

We have found empirically that these integrals can also be written as double coproducts of

Ω̃e and Ω̃o:

Ω(L−1) = −2Ω̃c,c
e , Ω̃(L−1)

e = 2(Ω̃mu,c
e + Ω̃mu,yw

o ) , Ω̃(L−1)
o = 2Ω̃yw,mu

e = 2Ω̃yw,yu
o ,

(C.31)

for L > 2. In both sets of equations, we suppress the (L) superscript on the right-hand side

for clarity.

C.4 Improving the MHV-NMHV operator

Through five loops, the six-point MHV amplitude E and NMHV amplitude E obey a curious

relation that connects these amplitudes at different loop orders [69]. If we perform a cyclic

permutation u→ v → w → u on that relation, in order to give it the same u↔ v symmetry

as the Ω integral, it becomes

Xold[E(u, v, w)] = g2(2E(v, w, u)− E(u, v, w)), (C.32)

where

Xold[F ] ≡ −Fw,w−F 1−w,w− 3F yw,yw +F yu,yu +F yv ,yv + 2(F yu,yw +F yv ,yw)−F yu,yv −F yv ,yu
(C.33)

is written in terms of the old alphabet Shex. (For an earlier version of this relation, see

ref. [73].) In fact, this relation fails for amplitudes at six loops [74]. However, we will see that

a version of it survives to arbitrary loop order in the pentaladder integrals.

In general, E obeys many relations on its double coproducts, which allow the operator X

to be rewritten without changing its action on E . However, its action on the ladder integrals

will generically change. It turns out that a better form for X, written in terms of the new

alphabet S ′hex, is

X[F ] = −3F yw,yw + F yu,yu + F yv ,yv + 2(F yw,yu + F yw,yv)− F yu,yv − F yv ,yu

+ F a,a + F b,b + F c,c + F a,mw + F b,mw − Fmw,a − Fmw,b

− 2(F c,mu + F c,mv − Fmu,c − Fmv ,c) . (C.34)
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This form is better because X now has a very simple action on the ladder integrals. We find

that

X[W(u, v, w)] = X[W(v, w, u)] = X[W(w, u, v)] = 0 , (C.35)

X[Ω(u, v, w)] = X[Ω(v, w, u)] = X[Ω(w, u, v)] = 0 , (C.36)

X[Ω̃(u, v, w)] = −2g2 Ω̃(u, v, w), X[Ω̃(v, w, u)] = X[Ω̃(w, u, v)] = 0 , (C.37)

X[O(u, v, w)] = −2g2O(u, v, w), X[O(v, w, u)] = X[O(w, u, v)] = 0 . (C.38)

There are anomalous terms in the even parts of X[Ω̃(v, w, u)], X[Ω̃(w, u, v)], X[Ω(v, w, u)]

and X[Ω(w, u, v)] at L = 2, and in X[W(u, v, w)], X[W(v, w, u)], and X[W(w, u, v)] at both

L = 2 and L = 3. But above three loops, there are no anomalies in the action on these

integrals to any order. This can be contrasted with the operator’s action on E , which remains

anomalous at six loops.

The operator X also has an interesting action on the full Ω space. In particular,

note that for each ladder integral considered above (and ignoring low-weight anomalies),

X[F (v, w, u)] = X[F (w, u, v)] = 0. While this is not quite true for the full space, we do find

that for a general function F (u, v, w) ∈ Ω,

X[F (v, w, u)] , X[F (w, u, v)] ∈ {κ, κ̃} . (C.39)

That is, the action of the operator X on cyclic rotations of functions in the Ω space can be

expressed entirely in terms of κ and κ̃ functions of the appropriate weight, which vanish on

the c-discontinuity. In effect, the operator X annihilates the c-discontinuity of the cyclic and

anti-cyclic rotations of the Ω functions. This is a surprising property, and one that suggests

further investigation.
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