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Abstract 

Weak, rotated magnetic and radiofrequency quadrupole fields in electron guns and injectors can 

couple the beam’s horizontal with vertical motion, introduce correlations between otherwise 

orthogonal transverse momenta, and reduce the beam brightness.  This paper discusses two important 

sources of coupled-transverse dynamics common to most electron injectors. The first is quadrupole 

focusing followed by beam rotation in a solenoid, and the second coupling comes from a skewed high-

power RF coupler or cavity port which has a rotated RF quadrupole field.  It is shown that a DC 

quadrupole field can correct for both types of couplings and exactly cancel their emittance growths.  The 

degree of cancellation of the RF skew quadrupole emittance is limited by the electron bunch length.  

Analytic expressions are derived, and compared with emittance simulations and measurements. 

I. INTRODUCTION

Optical aberrations are a major limitation to the beam quality of modern electron injectors and 
accelerators.  This is especially true for the low-voltage guns and injectors required for high-duty factor 

and high-average current operation.  In these systems the beam is made large to mitigate space-charge 

forces.  However, this large beam is more sensitive to aberrations such as the spherical aberration which 

increases the emittance as the 4th power of the transverse beam size, and the chromatic aberration 

which is proportional to the beam size squared.   

Here we examine the coupled-transverse dynamics aberration, which also strongly depends on 

the beam size.  Coupled-transverse dynamics results when the electrons have azimuthal momenta and 

their trajectories are no longer coplanar with the beam axis.  The trajectories are ‘coupled’ because the 

electron’s x-coordinate depends not just on x and x’, but also on y and y’, and similarly for the y-

coordinate.  This paper assumes the mathematical theory is linear and applies 4x4-matrix algebra to 

compute the electron dynamics.  We concentrate on the 4D-transformation of a rotated quadrupole 

which skews the electrons about the beam axis.  Since the 4D-rotation is linear, the 4D emittance 

doesn’t grow.  However, there is emittance growth in both the x-x’ and y-y’ 2D phase spaces due to 

skew trajectories.  Fortunately, theory and simulation show that it can be eliminated with a rotated 

corrector field because the coupling is correlated. 

In his 1970 PhD. thesis, G. Ripken described a theory of the coupled-transverse dynamics in 

electron storage rings for high energy physics experiments [1].  His and studies which followed [2] used 

4D-matrix algebra to show that the beam luminosity could be increased (emittance decreased) by 

correcting for transverse plane coupling with a skew quadrupole.  Recent theoretical work describes the 

coupled dynamics by generalizing the Courant-Snyder theory with a 4D symplectic rotation [3].  A useful 

introduction to the matrix theory for electron beams can be found in Wiedemann’s book [4].   

This paper concentrates on beam quality degradation due to quadrupole fields which are 

themselves rotated, or when the beam has been rotated in a solenoid with respect to normally aligned 

quadrupole fields.  Here we study two beamline components which are common sources of rotated 

quadrupole fields.  The first is a weak quadrupole field followed by a solenoid, and the second is the 
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quadrupole field produced by the coupler which feeds RF power into a cavity through rotated or 

unbalanced ports [5,6]. 

The emittance of quadrupole followed by a solenoid is simply the emittance growth of the 

rotated quadrupole field, with a rotation angle equal to the sum of the quadrupole’s rotation plus the 

beam’s Larmor rotation in the solenoid.  Although we assume the weak quadrupole field is near the 

solenoid, the field can, in fact, be anywhere before the solenoid.  This includes the quadrupole RF fields 

of a RF gun followed by a focusing solenoid. 

The transverse coupling due to RF fields can be eliminated by cancelling the on-axis dipole and 

quadrupole fields with a dual RF feed and a racetrack-like cavity shape [7].  Such designs have been 

implemented into modern RF guns [8] and upgraded RF couplers for room temperature linacs [9]. 

However, many accelerator RF cavities are built without these features because the designs already 

exist, and the re-design, fabrication and testing costs of new RF structures are prohibitively expensive, 

especially for superconducting RF cavities.  Fortunately, as will be shown in this paper, much of this re-

work is unnecessary, since the quadrupole RF field can be exactly cancelled with a low-field DC 

quadrupole. 

This paper is organized as follows. The next section defines the terms rotated, normal, and skew 

quadrupole fields, and derives the emittance growth produced by a rotated quadrupole field.  Section III 

gives a general discussion of the fields of ideal solenoids with only radial fields, and realistic solenoids 

possessing quadrupole fields.  Quadrupole field measurements for a solenoid are presented.  In Section 

IV, expressions for the coupled transverse dynamics emittance of the beam in a solenoid preceded by a 

weak quadrupole field are derived, and the emittance cancellation with a corrector quadrupole is 

demonstrated using analytic and numerical calculations as well as measurements.  Section V discusses 

RF quadrupole field, its induced emittance growth, and emittance cancellation with a DC corrector 

quadrupole. Finally, a summary of the work is presented in Section VI. 

II. EMITTANCE GROWTH DUE TO ROTATED, NORMAL, AND SKEW QUADRUPOLE FIELDS

Figure 1 shows the equipotential surfaces for quadrupole magnetic fields with rotated, normal,

and skew 𝐵𝜃-field patterns.  The normal quadrupole field (center drawing in Fig. 1) is aligned to the 

midplane of symmetry with 𝐵𝑦(𝑥, 𝑦) = −𝐵𝑦(𝑥, −𝑦) and  𝐵𝑥(𝑥, 𝑦 = 0) = 0 along the x-axis.  Rotating 

the field 45 degrees about the +z-axis (out-of-the-page) results in a skew quadrupole field (right drawing 

in Fig. 1).  The term rotated quadrupole is given to a quadrupole field having an arbitrary angle of axial 

rotation with respect to the normal-quadrupole field orientation.   The rotated quadrupole field is equal 

to the vector sum of normal and skew quadrupole fields.  As will be shown, only the skew-component of 

a rotated quadrupole generates emittance, and therefore only a skew quadrupole corrector is necessary 

to cancel the emittance growth.  The normal-component of a rotated quadrupole produces no 

emittance, however, including a normal-quadrupole corrector allows returning the beam to it’s original 

transverse shape. 
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FIG. 1(color):  Magnetic equipotential surfaces for rotated, normal, and skew quadrupole fields.  The 

coordinate system is right-handed with the z-axis pointing out of the page. The normal quadrupole field 

is focusing in the x-plane and defocusing in the y-plane for electrons travelling along the +z-axis.  

 

 The beam transformation matrix for a quadrupole rotated about the +z-axis is found by first 

rotating the beam about the z-axis, then transforming through a normal quadrupole, and lastly rotating 

the beam back to zero rotation.  Using the matrix and angle conventions of the TRANSPORT and MAD 

optics codes [10] the transformation matrix for a rotated quadrupole is given by, 

𝑅𝑟𝑜𝑡𝑞𝑢𝑎𝑑(𝛼, 𝑓) = 𝑅𝑟𝑜𝑡(−𝛼)𝑅𝑞𝑢𝑎𝑑(𝑓)𝑅𝑟𝑜𝑡(𝛼)                                         (1) 

Here 𝑅𝑟𝑜𝑡 and 𝑅𝑞𝑢𝑎𝑑 are the standard 4x4-matrices which rotate and quadrupole-focus the beam, 

respectively.  𝑅𝑟𝑜𝑡 rotates the beam clockwise an angle 𝛼 about the positive z-axis.  Therefore, the 

quadrupole rotation angle, 𝛼, is shown going counterclockwise in Fig. 1.  𝑅𝑞𝑢𝑎𝑑 is for a thin quadrupole 

lens with focal length, 𝑓.  Multiplying the matrices gives the transformation matrix for a thin quadrupole 

lens with focal length f, and rotation angle 𝛼 as 

𝑅𝑟𝑜𝑡𝑞𝑢𝑎𝑑(𝛼, 𝑓) =

(

 
 

1 0       0         0
− cos 2𝛼

𝑓
  1

−sin 2𝛼

𝑓
      0

0 0      1          0

  
− sin 2𝛼

𝑓
 0

cos 2𝛼

𝑓
       1

)

 
 

                                                                 (2) 

The focal strength depends upon the beam energy and the integrated quadrupole field gradient, 
1

𝑓
=

𝑒

𝛽𝛾𝑚𝑐
𝐿𝑒𝑓𝑓

𝜕𝐵𝑦

𝜕𝑥
|
𝑥,𝑦=0

                                                           (3) 

Here the effective length of the quadrupole field is 𝐿𝑒𝑓𝑓, 𝛽𝛾𝑚𝑐 is the beam momentum and 
𝜕𝐵𝑦

𝜕𝑥
|
𝑥,𝑦=0

 is 

the quadrupole gradient evaluated on the z-axis.  Defining Q to be the integrated quadrupole field 

gradient, 

𝑄 ≡ 𝐿𝑞𝑢𝑎𝑑
𝜕𝐵𝑦

𝜕𝑥
|
𝑥,𝑦=0

 

allows us to write the focal strength more concisely as the integrated field divided by the beam’s 

momentum, 
1

𝑓
=

𝑒𝑄

𝛽𝛾𝑚𝑐
                                                                               (4)                                                            
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Let Σ represent a 4x4 beam matrix whose elements describe an ellipse in (x,x’,y,y’)-space.   The 

diagonal elements of the Σ-matrix are the beam size or divergence for each dimension squared.  

Transforming the beam matrix, Σ(0), through the rotated quadrupole gives the final beam matrix Σ(1),  

Σ(1) = 𝑅𝑟𝑜𝑡𝑞𝑢𝑎𝑑  Σ(0)𝑅𝑟𝑜𝑡𝑞𝑢𝑎𝑑
𝑇                                                           (5)                                           

If we assume the initial beam is collimated with perfectly parallel rays then the emittance is zero, and 

Σ(0) is  

Σ(0) ≡ (

Σ𝑥𝑥(0) 0      0   0
0 0        0   0
0 0 Σ𝑦𝑦(0) 0

    0      0          0    0

)                                                    (6) 

The non-zero beam matrix elements of Σ(0) are equal to the horizontal and vertical beam sizes squared, 

Σ𝑥𝑥(0) = 𝜎𝑥
2         and      Σ𝑦𝑦(0) = 𝜎𝑦

2                                        (7) 

  

The volume of the beam ellipsoid in four dimensions gives the normalized 4D-emittance,  

𝜖𝑛,4𝐷 = 𝛽𝛾√det Σ                                                                   (8) 

Clearly, there is no 4D-emittance growth for the rotated quadrupole since the rotation 

transformation is symplectic [3].  However, the emittance does increase for the 2D phase space 

distributions in xx’ and yy’.  The x-plane emittance growth is given by the 2x2 submatrix in the upper 

left-hand-corner of the 4D beam matrix.  Writing out the emittance in terms of this submatrix gives, 

𝜖𝑛,𝑥 = 𝛽𝛾√det |
Σ𝑥𝑥 Σ𝑥𝑥′
Σ𝑥𝑥′ Σ𝑥′𝑥′

|                                                            (9) 

Applying these relations and working through the matrix algebra leads to the normalized 2D emittance 

growth generated by a rotated quadrupole,  

𝜖𝑛,𝑟𝑜𝑡𝑞𝑢𝑎𝑑 = 𝛽𝛾
𝜎𝑥𝜎𝑦

𝑓
|sin2𝛼|                                                         (10) 

The x- and y-plane emittance growths are equal since the rotation affects both planes the same. As 

expected, there is no emittance growth for a normal quadrupole (𝛼 = 0).  Since the skew component of 

the rotated field strength is  
1

𝑓𝑠𝑘𝑒𝑤
=
1

𝑓
sin 2𝛼, Eqn. (10) shows the emittance growth of a rotated 

quadrupole is due solely to its skew-component. 

 In terms of Q, the rotated quadrupole normalized emittance becomes, 

𝜖𝑛,𝑟𝑜𝑡𝑞𝑢𝑎𝑑 = 𝜎𝑥𝜎𝑦
𝑒𝑄

𝑚𝑐
|sin 2𝛼|                                                      (11) 

Thus, the normalized coupled-transverse emittance growth is a simple product of the beam sizes, the 

integrated quadrupole field, and the sine-function of twice the quadrupole rotation angle. 

 

III. FIELDS OF THE SOLENOID 

A. The ideal solenoid 

The fields of the ideal solenoid have axial symmetry about the z-axis in cylindrical coordinates.  

Therefore, the fields are independent of the azimuth angle with 𝐵𝜃 = 0.  Radial integration of ∇⃗⃗ ∙ 𝐵⃗ = 0 

leads to the following well-known relation for fields with axial symmetry [11], 

𝐵𝑟 = −
𝑟

2

𝜕𝐵𝑧

𝜕𝑧
                                                                                      (12) 

Thus, the slope of the 𝐵𝑧-field, 
𝜕𝐵𝑧

𝜕𝑧
, determines the location and extent of the solenoid’s fringe fields.  

These radial fields give the electrons a momentum kick in the 𝜃-direction which begins the beam’s 
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rotation in the solenoid.  An opposite kick at the exit (due to 𝐵𝑧’s opposite slope) cancels the initial 

azimuthal kick, so the beam exits with zero azimuthal momentum. 

Using Eqn. (12) for the radial field, the focal strength of a solenoid is found to depend upon the 

solenoid’s maximum interior field squared, 
1

𝑓𝑠𝑜𝑙
=

𝑒2𝐵0
2𝐿𝑠𝑜𝑙

2(𝛾𝛽𝑚𝑐)2
                                                                                (13) 

Here the maximum interior field is 𝐵0, the effective length of the solenoid is 𝐿𝑠𝑜𝑙, and the beam’s total 

momentum is 𝛾𝛽𝑚𝑐. 

 The ideal solenoid generates little emittance growth for small, low energy spread beams.  

However, the growth can be significant for large beams due to spherical aberrations and for beams with 

energy spread [12].  Computing the spherical emittance requires knowing the fields at large radii either 

by measurement, by analytic extrapolation, or with a magnetic field finite element code.  These radial 

fields can then be either integrated numerically for the field integrals or be used directly in a beam 

simulation code to numerically compute the emittance as a function of initial beam size to obtain the 

spherical emittance growth. 

 

B. Solenoid with quadrupole fields 

 Although the ideal solenoid has only radial and longitudinal fields, its field can excite 

surrounding magnetic material and generate azimuthal fields. In our experience, these extraneous 

materials (such as a vacuum pipe with magnetic welds), which are excited by the solenoid’s field, often 

produce the strongest multipole fields and are therefore the most likely to cause emittance growth. 

Once again ∇⃗⃗ ∙ 𝐵⃗ = 0 but now there is an extra term for the azimuthal field, 
1

𝑟

𝜕

𝜕𝑟
(𝑟 𝐵𝑟) +

1

𝑟

𝜕𝐵𝜃

𝜕𝜃
+
𝜕𝐵𝑧

𝜕𝑧
= 0                                                                  (14) 

Multiplying by 𝑟𝑑𝑟 and integrating gives the more general form of Eqn. (12) which includes the azimuth 

field gradient, 

𝐵𝑟 +
𝜕𝐵𝜃

𝜕𝜃
= −

𝑟

2

𝜕𝐵𝑧

𝜕𝑧
                                                                 (15) 

Thus, the slope of the longitudinal field equals the total strength of the transverse fields.  This is 

like the focusing by a dipole magnet, where tilting the poles increases the vertical focusing but it also 

lowers the horizontal focal strength.  For a dipole field, the sum of the two transverse strengths equals 

the bend angle over the bend radius [13]. 

Measurements are necessary to determine both the strength and multipolarity of the 𝐵𝜃-field 

and if it depends upon the solenoid’s field or not.  If the 𝐵𝜃-field does not scale with the solenoid field, 

then these fields are referred to as stray quadrupole fields.  Stray fields are produced by magnetic 

materials or devices which are located near the beamline but are not magnetically connected with the 

solenoid’s field.  However, if 𝐵𝜃 is proportional to the solenoid field, then this field is referred to as the 

solenoid’s anomalous field.  These fields are called anomalous because they are unexpected 

irregularities or anomalies of the solenoid’s field.  Anomalous quadrupole fields can be caused by 

quadrupole-like features in the solenoid’s coil or yoke design, or by magnetic material placed 

(unintentionally) within the solenoid’s magnetic circuit.  Both anomalous and stray quadrupole fields can 

increase the emittance if they are rotated, as just discussed in Section II, or if they precede a solenoid, as 

discussed later.  The next section describes magnetic field measurements of the Linac Coherent Light 

Source (LCLS) gun solenoid. 
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C. Multipole field measurements of a solenoid 

Figure 2 shows magnetic measurements for the LCLS-I gun solenoid [14].  The upper plot is the 

z-dependence of the longitudinal field, as measured using a 3-axis Hall probe.  The lower plot is the 

integrated quadrupole gradient and rotation angle as a function of z.  The integrated quadrupole field 

gradient as measured by a short rotating coil is  

𝑄𝑚𝑒𝑎𝑠 ≡ 𝐿𝑐𝑜𝑖𝑙
𝐵2(𝑟=𝑟𝑐𝑜𝑖𝑙)

𝑟𝑐𝑜𝑖𝑙
                                                                 (16) 

Here 𝐿𝑐𝑜𝑖𝑙  is the axial length of the rotating coil, 𝑟𝑐𝑜𝑖𝑙 is the radius of the coil, and 𝐵2(𝑟 = 𝑟𝑐𝑜𝑖𝑙) is the 

quadrupole field at the coil’s radius. 

The rotating coil measurements show quadrupole fields peak at the ends of the solenoid as 

expected from the previous discussion in Section III B.  The data also show the quadrupole angle 

changes 90-degrees between the ends, which corresponds to a polarity reversal.  In addition, the 

quadrupole fields scale with the solenoid’s field.  Therefore, they qualify as anomalous quadrupole fields 

of the solenoid.  These properties suggest there is some magnetic material which is unintentionally 

within the solenoid’s magnetic field or quadrupolar coil winding error. 

In our experience, the sources of these low quadrupole fields were difficult to identify and 

control even with state-of-the-art, finite-element-analysis calculations, and following rigorous 

fabrication practices with careful selection of materials.  Therefore, we decided to install weak normal 

and skew quadrupole correctors in the LCLS-I solenoid and optimize their settings with the beam itself.  

Measurements of the beam emittance taken while optimizing the quadrupole correctors are described 

later in Section IV D. 

 
 

FIG. 2(color):  Magnetic measurements of the LCLS gun solenoid for an integrated field of 0.046 T-m.  Top: Hall 

probe measurements of the solenoid axial field. The transverse location of the measurement axis (the z-axis) was 

determined by minimizing the radial field.  Bottom: Rotating coil measurements of the quadrupole field.  The 

rotating coil dimensions were 2.5 cm long with a 2.8 cm radius.  The measured quadrupole field is thus averaged 

over these dimensions.   
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IV. COUPLED-TRANSVERSE DYNAMICS IN QUADRUPOLE + SOLENOID SYSTEMS 

In this section, we develop a simple yet accurate model for understanding the effects of a 

quadrupole and solenoid system with coupled-transverse trajectories.  These theoretical studies and 

numerical simulations confirm the emittance growth is due to well-defined coupled dynamics between 

the transverse planes.  In addition, theory, simulation, and experiments show the emittance growth can 

be cancelled with a correcting quadrupole field.  

In this theory, the full 4D transverse transport matrix conserves the 4D emittance since the 

transformation is linear in 4-dimensions.  However, the both the 2D sub-spaces of xx’ and yy’ can gain 

emittance because of non-zero cross-terms in the beam matrix.  The linear 4D-transformation generates 

cross-terms or correlations between the x- and y-planes via non-zero off-diagonal beam matrix elements 

such as Σ𝑥𝑥′  Σ𝑥𝑦 , Σ𝑥′𝑦 , Σ𝑥′𝑦′ , etc.  Since a rotated quadrupole can also create these cross-terms, it is 

possible to use a corrector quadrupole to control them and the emittance they produce. 

 

A. Emittance due to a quadrupole field near the entrance of a solenoid  

The emittance growth of a normal-quadrupole followed by a solenoid is computed assuming a 

normal quadrupole field followed by a solenoid.  The (x,x’,y,y’) transformation of a beam ray through a 

thin quadrupole lens followed by a solenoid can be written as [15], 

 

𝑅𝑠𝑜𝑙𝑅𝑞𝑢𝑎𝑑 =

(

  
 

cos2𝐾𝐿
sin𝐾𝐿

𝐾
sin𝐾𝐿 cos𝐾𝐿

𝑠𝑖𝑛2𝐾𝐿

𝐾

−𝐾 sin𝐾𝐿 cos𝐾𝐿 cos2𝐾𝐿 −𝐾𝑠𝑖𝑛2𝐾𝐿 sin𝐾𝐿 cos𝐾𝐿

− sin𝐾𝐿 cos𝐾𝐿 −
sin2 𝐾𝐿

𝐾
cos2𝐾𝐿

sin𝐾𝐿 cos𝐾𝐿

𝐾

𝐾 sin2 𝐾𝐿 − sin𝐾𝐿 cos𝐾𝐿 −𝐾 sin𝐾𝐿 cos𝐾𝐿 cos2𝐾𝐿)

  
 
 

(

 
 

1 0 0 0

−
1

𝑓
1 0 0

0 0 1 0

  0  0 +
1

𝑓
1
)

 
 

       (17) 

 

Here L is the effective length of the solenoid, 𝐾 ≡
𝑒𝐵0

2𝛽𝛾𝑚𝑐
, 𝐵0 is the maximum interior magnetic field of 

the solenoid, and f is the focal length of the quadrupole field before the solenoid.  The beam is rotated 

through the angle KL by the solenoid.  

As shown earlier, an initial 44 beam matrix, Σ(0), can be transported through the quadrupole 

and solenoid producing the exit beam matrix, Σ(1), 

Σ(1) = 𝑅𝑠𝑜𝑙𝑅𝑞𝑢𝑎𝑑  Σ(0) (𝑅𝑠𝑜𝑙𝑅𝑞𝑢𝑎𝑑)
𝑇

                                                  (18) 

Using the same Σ(0) for a perfectly parallel beam as before, and working through tedious matrix algebra 

gives the expected result for the transverse-plane emittance growth of a normal-quadrupole followed 

by a solenoid as 

𝜖𝑛,𝑞𝑢𝑎𝑑+𝑠𝑜𝑙 = 𝛽𝛾
𝜎𝑥,𝑠𝑜𝑙𝜎𝑦,𝑠𝑜𝑙

𝑓
|sin 2𝐾𝐿|                                           (19) 

In other words, the emittance growth of a normal-quadrupole followed by a solenoid is that of the 

quadrupole rotated the Larmor angle of the solenoid.  The emittance growth is the same for both the x- 

and y-planes.   

Substituting the integrated quadrupole field for 1/f, one finds the coupled-transverse dynamics 

normalized emittance growth depending only upon the beam size, the integrated quadrupole field, and 

the rotation angle of the beam in the solenoid, 
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𝜖𝑛,𝑞𝑢𝑎𝑑+𝑠𝑜𝑙 = 𝜎𝑥,𝑠𝑜𝑙𝜎𝑦,𝑠𝑜𝑙  
𝑒𝑄

𝑚𝑐
|sin 2𝐾𝐿|                                          (20) 

Figure 3 compares this simple formula with a particle tracking simulation for a solenoid 

preceded by a normal-quadrupole field.  The initial beam had zero emittance, zero energy spread and 

was circular and uniform.  No space charge forces are included in the simulation.  The figure shows the 

normalized emittances given by Eqn. (19) and the simulation, plotted as a function of the rms beam size 

at the solenoid entrance.  The normal-quadrupole focal length is 50 meters for a 6 MeV beam energy.  

This corresponds to an integrated quadrupole field gradient of 4.3 gauss which is similar to the 

measured field of the LCLS solenoid (see Fig. 2).  The analytic theory and the simulation assume a short 

quadrupole field with this integrated quadrupole field located at the solenoid’s entrance.  The 

simulation emittance is slightly larger, since it includes both the coupled-transverse dynamics emittance 

being discussed here, and the geometric aberration.  The good agreement verifies the model’s 

assumptions and illustrates that even a weak, normal-quadrupole field can produce significant 

emittance growth when combined with the rotation in a solenoid field. 

 

 

FIG. 3(b&w).  Normalized emittance due to the quadrupole-solenoid coupling given by Eqn. (19) (solid-line) and by 

a particle tracking simulation (dashed-line) for the case of the LCLS solenoid.  For a beam energy of 6 MeV the 

quadrupole focal length was 50 meters.  This corresponds to an integrated quadrupole field of 4.3 gauss.  The 

solenoid had an integrated field of 0.046 T-m, giving a focal length of ~12 cm.  The simulation is done with the GPT 

code [16].   

If the quadrupole field is rotated an angle 𝛼, as shown in Fig. 1, then by induction, one adds the 

quadrupole’s rotation angle with the solenoid rotation angle obtain the emittance, 

𝜖𝑛,𝑞𝑢𝑎𝑑+𝑠𝑜𝑙(𝛼) = 𝜎𝑥,𝑠𝑜𝑙𝜎𝑦,𝑠𝑜𝑙  
𝑒𝑄

𝑚𝑐
|sin 2(𝐾𝐿 + 𝛼)|                                    (21) 

In Fig. 4 the emittance growth given by Eqn. (21) and simulations is plotted as a function of the 

quadrupole angle of rotation.  The integrated quadrupole field is Q = 4.3 gauss, followed by a strong 

solenoid (focal length of 12 cm, integrated field of 0.046T-m).  The beam energy used in the simulation 

was 6 MeV.  At this beam energy, a 4.3 gauss quadrupole field focuses the beam with a 50-meter focal 

length.  In both the analytic theory and the simulation, the emittance growth becomes zero whenever 

𝐾𝐿 + 𝛼 = 
𝜋

2
                                                                 (22) 
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Or every 90 degrees.  The slight offset in emittance and angle between the theory and simulation could 

result from the 3rd-order emittance of the solenoid’s non-linear radial fringe fields which are included in 

the simulation but not in the model. 

 

 
FIG. 4(color).  The emittance growth for a quadrupole-solenoid system (shown on the left) as a function of the 

quadrupole rotation angle.  The theory (solid-line) is computed using Eqn. (21) and the simulation (dash-line) is 

done with the GPT code.  The initial beam size at the solenoid is 1 mm-rms for both the x- and y-planes.  The 

quadrupole and solenoid fields are the same as Fig. 3. 

 

B. Cancellation of the emittance due to transverse coupling in a solenoid  

In this sub-section, the solenoid and quadrupole fields are modeled for a 

quadrupole+solenoid+quadrupole (qsq) configuration.  Figure 5 shows the model layout, and the 

quadrupole and solenoid parameters used to compare the analytic theory with numerical simulations.  

The quadrupole corrector, or quad-corrector, used to cancel the transverse-coupled emittance is 

located after the solenoid. 

If the solenoid is a thick lens, then the beam size will be smaller at the exit than the entrance.  

However, the previous discussion showed the coupled dynamics emittance depends upon the square of 

the beam size.  Therefore, it is important to use different beam sizes for the solenoid and quadrupole, 

and the quad-corrector.  For the case considered here, simulations give the beam size at the corrector as 

0.55 mm-rms when the beam is 1 mm-rms at the solenoid entrance. 

This effect is easily added to the theoretical model by defining the x- and y-rms beam sizes at 

the quadrupole as 𝜎𝑥,𝑞𝑢𝑎𝑑 and 𝜎𝑦,𝑞𝑢𝑎𝑑, respectively, and revising the expression for the coupled-

transverse emittance gives, 

 

𝜖𝑛,𝑞𝑠𝑞 =  𝛽𝛾 |
𝜎𝑥,𝑠𝑜𝑙𝜎𝑦,𝑠𝑜𝑙

𝑓1
sin2(𝐾𝐿 + 𝛼1) +

𝜎𝑥,𝑐𝑜𝑟𝜎𝑦,𝑐𝑜𝑟

𝑓𝑐𝑜𝑟
sin 2𝛼𝑐𝑜𝑟|                         (23) 

The focal length for the rotated-quadrupole field preceding the solenoid is f1 and its rotation angle is 𝛼1.  

The quadrupole after the solenoid is a quad-corrector with focal length fcor and rotation angle 𝛼𝑐𝑜𝑟. 

The layout and parameters for this q1solqcor-system given in Fig. 5 are used to compare Eqn. (23) 

with numerical simulations.  As shown in the figure, the beam size at the quad-corrector is 

approximately half its size at Quad1, as determined from simulation. 
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FIG. 5(color).  Quadrupole-solenoid-quadrupole configuration and parameters used to compare 

emittance growth computed with the analytic model and numerical simulations shown in Fig. 6.  The 

beam energy is 6 MeV. 

 

Figure 6 shows normalized emittance growths of analytic theory and numerical simulation for 

the q1solqcor-configuration with the parameters given in Fig. 5.  The plots show the normalized x-plane 

emittance for a 6 MeV beam as a function of quad-corrector rotation for theory (left) and simulation 

(right).  In all cases, the Quad1 is a normal quadrupole with a 50-meter focal length.  The emittance is 

plotted for quad-corrector focal lengths of 15, 20, 40 and infinite meters.  The 50-meter focal length 

corresponds to an integrated quadrupole gradient of 4.3 gauss; and the 15-, 20-, and 40-meter focal 

lengths correspond to Q-values of 21.5, 14.3, and 5.4 gauss, respectively. 

 
FIG. 6(color).  Comparison of the transverse-coupled emittance for a q1solqcor-configuration as a function 

of the quad-corrector rotation angle as computed by Eqn. (23) (left), and a numerical simulation (right).  

The configuration and parameters are given in Fig. 5.  The emittance growth is for Quad1 with a fixed 

focal length of 50-meters and quad-corrector focal lengths of 15, 20, 40 and infinite meters.  The beam 

energy is 6 MeV.  The 15-, 20-, and 40-meter focal lengths correspond to 21.5, 14.3, and 5.4 gauss, 

respectively, integrated fields.   

 

It is important to point out that the quad-corrector can be located almost anywhere, even 

before the solenoid.  This is because the quadrupole fields have very long focal lengths and, within the 

thin lens-approximation, the spacing between and location of the elements becomes irrelevant.  

Therefore, the focal strengths simply add.  However, since the quad-corrector focal strength scales with 
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the inverse beam size squared, it should be located where the beam is large.  This will minimize the 

qaud-corrector strength needed to cancel the anomalous quadrupole fields.   

C. Simulation and measurements of an injector with a quadrupole field in a solenoid  

       The effectiveness of the quadrupole correction has been validated with the simulations of the LCLS 

injector. The LCLS injector includes 5.5-MeV RF gun, a main solenoid for emittance compensation, and 

two linac sections to boost energy to 135 MeV [17]. The ASTRA code [18] including 3D space-charge 

forces is used to simulation the LCLS injector.  Figure 7 shows the emittance vs. z for no quadrupole 

fields with only the solenoid field (blue), the emittance due to a weak normal quadrupole (focal length 

11.5 m) at the entrance of the solenoid (green), and the weak quadrupole emittance corrected by a 

quadrupole with focal length of 28.6 meters and rotation angle of 11.5 degrees after the solenoid (red).  

These results show the emittance grows about 20% if there is a weak quadrupole field situated at the 

entrance of the solenoid.  The red curve shows this emittance growth can be completely corrected by a 

weak, rotated quadrupole in the region downstream of the solenoid.  Therefore, the simulations verify 

the analyses of the previous sections.  

 
FIG. 7(color). Simulations of emittance cancellation with a quadrupole corrector:  The emittance without 

a quadrupole field at solenoid entrance (blue), the emittance with a normal quadrupole at the entrance 

of the solenoid (green), and emittance correction with a quadrupole corrector downstream of the 

solenoid (red).    

 

Two long quadrupole correctors, one normal and one skew, are installed inside of the solenoid 

for the LCLS-I injector [14].  Figure 8 shows one example of the experimental data of the injector 

emittance measured at 135 MeV vs. the skew quadrupole corrector field strength. Shown are typical 

measurements made during LCLS-I operations to optimize the beam emittance. 

The data in Fig. 8 have been fit with the quadratic sum of the quadrupole-solenoid-quadrupole 

emittance with the other unknown but constant emittances, 𝜖𝑜𝑡ℎ𝑒𝑟, using the following expression, 

𝜖𝑒𝑥𝑝𝑡 = √𝜖𝑜𝑡ℎ𝑒𝑟
2 + (𝜖𝑐𝑜𝑢𝑝𝑙𝑒𝑑 +

𝑒

𝑚𝑐
𝜎𝑥,𝑐𝑜𝑟𝜎𝑦,𝑐𝑜𝑟𝑄𝑐𝑜𝑟)

2
                                          (24) 
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Here 𝜖𝑐𝑜𝑢𝑝𝑙𝑒𝑑 is the emittance growth due to the uncorrected coupled-transverse dynamics of the 

injector, and 𝑄𝑐𝑜𝑟 is the integrated quadrupole field gradient of the quadrupole corrector.  The x-rms 

and y-rms beam sizes at the quad-corrector are 𝜎𝑥,𝑐𝑜𝑟 and 𝜎𝑦,𝑐𝑜𝑟, respectively.  The fit to the data 

assumes these are the same and equal to 0.6 mm-rms.  Since the data was taken using the skew 

quadrupole corrector, the sin 2𝛼 factor in Eqn. (23) is equal to one.  A single curve has been fit to both 

the x- and y-plane emittances.  However, the offset in emittance between the x- and y-planes suggest 

the other-effects emittance for the y-plane is approximately 25 nm larger than the x-plane’s other-

emittance.  The data is shown with 5% error bars.   

 

 
FIG. 8(b&w). LCLS injector emittance at 100 pC for the x- and y-planes vs. the skew quadrupole corrector 

integrated field strength, 𝑄𝑐𝑜𝑟.  The emittance (points w/error bars) was measured at a beam energy of 

135 MeV.  The dashed curve shows the fit to the data with Eqn. (24).  The other-effects emittance, 

𝜖𝑜𝑡ℎ𝑒𝑟, is shown by the solid line at 0.46 microns.  The fit indicates the coupled-transverse dynamics 

emittance growth, 𝜖𝑐𝑜𝑢𝑝𝑙𝑒𝑑, is 0.15 microns. 

 

The fit (dash-line) shows the emittance is minimized when the integrated field of the skew quad-

corrector is 7-gauss, corresponding to a 31-meter focal length for a 6 MeV beam.  The emittance due to 

other effects is 𝜖𝑜𝑡ℎ𝑒𝑟 =0.46 microns (solid-line).  The fit is the quadrature sum of this emittance and the 

total coupled-transverse dynamics emittance growth given inside the second set of brackets of Eqn. 

(24).  The total coupled-transverse dynamics emittance growth is the sum of the unwanted coupled-

emittance, 𝜖𝑐𝑜𝑢𝑝𝑙𝑒𝑑, and the quad-corrector’s emittance.  Since the quad-corrector field can be positive 

or negative, it can have the opposite sign of the unwanted coupled-emittance, and cancel it.  The fit 

gives 𝜖𝑐𝑜𝑢𝑝𝑙𝑒𝑑 =0.15 microns for the coupled-transverse dynamics emittance growth.  Since the RF 

cavities of this injector were designed to have compensated RF quadrupole fields [14], therefore this 

emittance is most likely due to the anomalous quadrupole fields of the solenoid.  These results are 

consistent with the measured fields shown in Fig. 2. 
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V. COUPLED-TRANSVERSE DYNAMICS DUE TO THE ROTATED FIELDS OF RF COUPLERS 

This section discusses the quadrupole fields of an RF coupler.  These fields are linear in x and y 

near the beam axis but rotated about the beam axis due to the mechanical constraints of the coupler 

design.  It is shown by calculation and simulation that the emittance generated by these coupler fields 

can be cancelled with a DC corrector quadrupole field. 

 

A. Analysis of the RF coupler field 

Maxwell’s equations show that the transverse electric fields over a small region near the beam 

axis can be specified as a linear expansion obeying the following relations between the field gradients 

[19], 

𝐸𝑥 = 𝐸𝑥,0 +
𝜕𝐸𝑥

𝜕𝑥
𝑥 +

𝜕𝐸𝑥

𝜕𝑦
𝑦                                                               (25) 

𝐸𝑦 = 𝐸𝑦,0 +
𝜕𝐸𝑥

𝜕𝑦
𝑥 −

𝜕𝐸𝑥

𝜕𝑥
𝑦                                                               (26) 

A coupler gives the beam an instantaneous kick in voltage along the x, y and z-directions.  Each 

component of the kick gives the beam an instantaneous jump in voltage when the beam transits the 

coupler.  Following the literature [20], the complex voltage kick factor is defined as  

𝑣 (𝑥, 𝑦) ≡
𝑉⃗⃗ (𝑥,𝑦)

𝑉𝑧(0,0)
 ≅ (

𝑣𝑥0 + 𝑣𝑥𝑥𝑥 + 𝑣𝑥𝑦𝑦

𝑣𝑦0 + 𝑣𝑦𝑥𝑥 + 𝑣𝑦𝑦𝑦

1 +⋯

)                                              (27) 

Where the complex voltage kick, 𝑉⃗ (𝑥, 𝑦), is given by integrals of the coupler fields along lines parallel to 

the z-axis (beam’s optical axis), 

𝑉⃗ (𝑥, 𝑦) = ∫[𝐸⃗ (𝑟 ) + 𝑖𝑐𝛽 × 𝐵⃗ (𝑟 )]𝑒𝑖𝜔𝑧/𝑐𝑑𝑧                                                       (28) 

The 𝐵⃗ -term is imaginary to account for its 𝜋/2 RF phase shift in time with respect to the electric field.  

The complex voltage kick factor gives the electrons a momentum impulse of [20] 

𝑝 = 𝑅𝑒{𝑣 (𝑥, 𝑦)𝑒𝑖𝜙𝑠}
𝑒𝑉𝑎𝑐𝑐

𝑐
                                                                 (29) 

Here 𝜔 is the RF frequency and c is the speed of light.  Equation (29) is the transverse momentum of an 

electron at distance s behind the head electron and having phase 𝜙𝑠 =
𝜔𝑠

𝑐
+ 𝜙ℎ𝑒𝑎𝑑 with respect to the 

coupler’s RF waveform. This phase relation assumes the beam is relativistic.  Writing out the 

components of the coupler’s x-y plane momentum kick shows the spatial and phase dependences can 

be separated into a complex voltage amplitude and phase, whose real part gives the transverse 

momentum kick of the coupler, 

(
𝑝𝑥
𝑝𝑦
)
𝑐𝑜𝑢𝑝𝑙𝑒𝑟

=
𝑒𝑉𝑎𝑐𝑐

𝑐
𝑅𝑒 {(

𝑣0𝑥 + 𝑣𝑥𝑥𝑥 + 𝑣𝑥𝑦𝑦
𝑣0𝑦 + 𝑣𝑦𝑥𝑥 + 𝑣𝑦𝑦𝑦

) 𝑒𝑖𝜙𝑠}                                         (30) 

Dividing by the total momentum converts this to the coupler’s angle kick vector, 

(
𝑥′
𝑦′
)
𝑐𝑜𝑢𝑝𝑙𝑒𝑟

=
𝑒𝑉𝑎𝑐𝑐

𝛽𝛾𝑚𝑐2
𝑅𝑒 {(

𝑣0𝑥 + 𝑣𝑥𝑥𝑥 + 𝑣𝑥𝑦𝑦

𝑣0𝑦 + 𝑣𝑦𝑥𝑥 + 𝑣𝑦𝑦𝑦
) 𝑒𝑖𝜙𝑠}                                        (31) 

Applying the relation between the field gradients shown in Eqns. (25) and (26) reduces the number of 

independent elements of the kick matrix from four to two, 
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(
𝑥′
𝑦′
)
𝑐𝑜𝑢𝑝𝑙𝑒𝑟

=
𝑒𝑉𝑎𝑐𝑐

𝛽𝛾𝑚𝑐2
𝑅𝑒 {(

𝑣0𝑥 + 𝑣𝑥𝑥𝑥 + 𝑣𝑥𝑦𝑦

𝑣0𝑦 + 𝑣𝑥𝑦𝑥 − 𝑣𝑥𝑥𝑦
)𝑒𝑖𝜙𝑠}                                    (32) 

Absorbing the various factors and phase (time) dependence into a re-normalized voltage kick matrix 

given by 𝑣̃, allows one to write 

(
𝑥′
𝑦′
)
𝑐𝑜𝑢𝑝𝑙𝑒𝑟

= (
𝑣̃0𝑥 + 𝑣̃𝑥𝑥𝑥 + 𝑣̃𝑥𝑦𝑦

𝑣̃0𝑦 + 𝑣̃𝑥𝑦𝑥 − 𝑣̃𝑥𝑥𝑦
)                                                 (33) 

The 𝑣̃0𝑥,0𝑦 terms are the coupler’s dipole kicks which can be cancelled with nearby steering 

dipoles.  Simulations show dipole steering is very effective at mitigating the dipole-kick emittance 

produced when the beam goes through the coupler at the wrong angle and/or transverse position.   

The  𝑣̃𝑥𝑥 terms indicate uncoupled x-plane focusing because the final angle kick is proportional 

to x, and similarly for the y-plane.  Thus   𝑣̃𝑥𝑥 is the focal strength of the normal-quadrupole component 

of the RF field.  This focusing does not produce any emittance growth, except that due to the time-

dependence of the RF fields.  The cross-term, 𝑣̃𝑥𝑦, is related to the skew-component of the RF’s 

quadrupole field, and does generate emittance growth.  As will be shown later, this is similar to the 

growth generated by the beam’s rotation in a solenoid and can be cancelled using a rotated quadrupole.   

 

B. The emittance due to rotated RF-coupler quadrupole fields 

 For simplicity, let us assume the electron bunch distribution in the xy-plane is uniform inside a 

square area having dimensions, −𝑅 < 𝑥 < 𝑅 by −𝑅 < 𝑦 < 𝑅.  This trivial distribution simplifies the 

calculation of the variances and averages needed for deriving the coupler-induced emittance while 

retaining the essential physics.  The variance and standard deviation for this 2R x 2R square uniform 

distribution is, 

⟨𝑥2⟩ = ⟨𝑦2⟩ =
𝑅2

3
     and   𝜎𝑥 =

𝑅

√3
                                                        (34) 

The normalized emittance for the x-plane is defined as 

𝜖𝑛 = 𝛽𝛾√⟨𝑥
2⟩⟨𝑥′2⟩ − ⟨𝑥𝑥′⟩2                                                           (35) 

Here it is important to include the correlation 〈𝑥𝑥′〉 term in the emittance definition.  After some tedious 

algebra, the coupler-induced emittance is found to be solely due to the cross-term, 𝑣𝑥𝑦, of the complex 

voltage kick, 

𝜖𝑛,𝑐𝑜𝑢𝑝𝑙𝑒𝑟(𝑠) =
𝑒𝑉𝑎𝑐𝑐

𝑚𝑐2
𝜎𝑥
2 |𝑣𝑥𝑦

𝑟 cos (
𝜔𝑠

𝑐
+ 𝜙ℎ𝑒𝑎𝑑) + 𝑣𝑥𝑦

𝑖 sin (
𝜔𝑠

𝑐
+𝜙ℎ𝑒𝑎𝑑)|                          (36) 

Here 𝑣𝑥𝑦
𝑟  and 𝑣𝑥𝑦

𝑖  are the real and imaginary parts of 𝑣𝑥𝑦.   

Equation (36) gives the transverse emittance of a thin slice of the bunch a distance s behind the 

bunch head.  The RF phase of the bunch head is 𝜙ℎ𝑒𝑎𝑑 and the tail is a bunch length, 𝑙𝑏𝑢𝑛𝑐ℎ, behind it at 

RF phase of 
𝜔𝑙𝑏𝑢𝑛𝑐ℎ

𝑐
+ 𝜙ℎ𝑒𝑎𝑑.  Figure 9 shows as an example the head and tail emittances vs. the RF 

phase for a head-tail phase difference of 10 degRF. (Here the unit degRF is defined as one degree of 

phase at the RF frequency of interest which, in this case, is 1.3 GHz.)    The head minus the tail emittance 

is also plotted, and shows the difference is 20 nm or less which is small compared to the uncorrected 

emittance of more than 100 nm; confirming the effect is mostly due to the skewed quadrupole field 

rather than the phase-dependent kick. 
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Figure 9(color): The head (s=0, solid-line) and tail (

𝜔𝑠𝑡𝑎𝑖𝑙

𝑐
 =10degRF, dash-line) emittances vs. phase for x 

=1 mm.  The emittance difference in the head and tail (red-line) is a maximum when the beam is on the 

crest of the RF waveform.  The coupler voltage and kick are Vacc=20 MV and  𝑣𝑥𝑦 = (3.4 + 0.2𝑖 ) ×

10−6/𝑚𝑚 which are typical parameters for SRF cavities [20].  Here the unit ‘degRF’ is a degree of phase 

at the RF frequency of 1.3 GHz. 

 

 The emittance over the length of the bunch can be computed by averaging the slice emittance in 

Eqn. (36) over the longitudinal distribution of electrons.  Assuming the longitudinal distribution is 

uniform with full width, 𝑙𝑏𝑢𝑛𝑐ℎ, then the bunch average emittance an be found from 

〈𝜖𝑛,𝑐𝑜𝑢𝑝𝑙𝑒𝑟〉  =
∫ 𝜖𝑛,𝑐𝑜𝑢𝑝𝑙𝑒𝑟(𝑠)𝑑𝑠
𝑙𝑏𝑢𝑛𝑐ℎ
0

∫ 𝑑𝑠
𝑙𝑏𝑢𝑛𝑐ℎ
0

                                                       (37) 

Inserting the coupler slice emittance gives 

〈𝜖𝑛,𝑐𝑜𝑢𝑝𝑙𝑒𝑟〉 =
𝑒𝑉𝑎𝑐𝑐

𝑚𝑐2
𝜎𝑥
2 |𝑣𝑥𝑦

𝑟 〈cos (
𝜔𝑠

𝑐
+𝜙ℎ𝑒𝑎𝑑)〉 + 𝑣𝑥𝑦

𝑖 〈sin (
𝜔𝑠

𝑐
+ 𝜙ℎ𝑒𝑎𝑑)〉|                      (38) 

Taking the averages and expanding in terms of the bunch length gives the projected emittance of the 

bunch, 

〈𝜖𝑛,𝑐𝑜𝑢𝑝𝑙𝑒𝑟〉 =
𝑒𝑉𝑎𝑐𝑐
𝑚𝑐2

𝜎𝑥
2|(𝑣𝑥𝑦

𝑟 cos𝜙ℎ𝑒𝑎𝑑 + 𝑣𝑥𝑦
𝑖 sin𝜙ℎ𝑒𝑎𝑑) 

 −(𝑣𝑥𝑦
𝑟 sin𝜙ℎ𝑒𝑎𝑑 + 𝑣𝑥𝑦

𝑖 cos𝜙ℎ𝑒𝑎𝑑)
Δ𝜙𝑏𝑢𝑛𝑐ℎ

2
|                  (39) 

The first term inside the absolute value function gives the emittance growth due to the rotated 

transverse quadrupole field and generates emittance even for infinitesimal bunch length.  The second 

term depends linearly upon the bunch length as well as the coupler’s skew field.  For the short bunches 

considered here Δ𝜙𝑏𝑢𝑛𝑐ℎ ≪ 1, and the second term can be ignored, and the rf-coupler emittance 

growth becomes 

〈𝜖𝑛,𝑐𝑜𝑢𝑝𝑙𝑒𝑟〉 =
𝑒𝑉𝑎𝑐𝑐

𝑚𝑐2
𝜎𝑥
2|𝑣𝑥𝑦

𝑟 cos𝜙ℎ𝑒𝑎𝑑 + 𝑣𝑥𝑦
𝑖 sin𝜙ℎ𝑒𝑎𝑑|                                  (40) 

 However, it is important to note that even if 𝑣𝑥𝑦 = 0, there remains emittance growth from the 

normal-quadrupole term, 𝑣𝑥𝑥, due the bunch’s phase-length.  This phase-emittance occurs because the 

RF field is time-dependent.  This changing field then gives different quadrupole kicks along the bunch 

length and generates projected emittance growth.  The first term in Eqn. (39) is absent for a normal-

quadrupole rf field, since a normal-quadrupole has no emittance growth.  However, the second bunch 

length dependent term remains with 𝑣𝑥𝑦 replaced by 𝑣𝑥𝑥.  This emittance growth due to bunch length 
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can be mitigated by shaping the RF cavity [21] or introducing additional penetrations into the cavity 

walls [22] to cancel both normal and skew components of the quadrupole RF field on the beam axis. 

 

C. Cancellation of coupler kicks with a rotated quadrupole field 

As shown in Section II, the kick angle vector in the xy-plane for a quadrupole with focal length 𝑓 

and rotation angle 𝛼 can be written as 

(
𝑥′
𝑦′
)
𝑟𝑜𝑡𝑞𝑢𝑎𝑑

= (
−
cos2𝛼

𝑓
𝑥 −

sin2𝛼

𝑓
𝑦

−
sin2𝛼

𝑓
𝑥 +

cos2𝛼

𝑓
𝑦
)                                            (41) 

Comparing Eqns. (33) and (41) one can define the normal and skew components of the coupler’s 

quadrupole field, 

𝑣̃𝑥𝑥,𝑐𝑜𝑢𝑝𝑙𝑒𝑟 = −
cos2𝛼𝑐𝑜𝑢𝑝𝑙𝑒𝑟

𝑓𝑐𝑜𝑢𝑝𝑙𝑒𝑟
          and         𝑣̃𝑥𝑦,𝑐𝑜𝑢𝑝𝑙𝑒𝑟 =

sin2𝛼𝑐𝑜𝑢𝑝𝑙𝑒𝑟

𝑓𝑐𝑜𝑢𝑝𝑙𝑒𝑟
                             (42) 

Here the subscript ‘coupler’ has been added to denote these are kicks due to the rotated quadrupole 

field of a RF-coupler.  These relations allow us to model the coupler fields equivalently as a quadrupole 

with focal length 𝑓𝑐𝑜𝑢𝑝𝑙𝑒𝑟  and rotated 𝛼𝑐𝑜𝑢𝑝𝑙𝑒𝑟 about the z-axis.  The rotation angle of the coupler’s 

quadrupole field in terms of the normalized voltage kicks is  

𝛼𝑐𝑜𝑢𝑝𝑙𝑒𝑟 = −
1

2
 tan−1

𝑣̃𝑥𝑦

𝑣̃𝑥𝑥
                                                                          (43) 

Since the quadrupole fields are weak, we can again apply the thin lens approximation, and add 

Eqns. (33) and (41) to give the total kick angle of the coupler and a quad-corrector located near the 

coupler,  

(
𝑥′
𝑦′
)
𝑡𝑜𝑡𝑎𝑙

= (
𝑥′
𝑦′
)
𝑐𝑜𝑢𝑝𝑙𝑒𝑟

+ (
𝑥′
𝑦′
)
𝑞𝑢𝑎𝑑

= (
{𝑣̃𝑥𝑥 −

cos2𝛼𝑐𝑜𝑟

𝑓𝑐𝑜𝑟
} 𝑥 + {𝑣̃𝑥𝑦 −

sin2𝛼𝑐𝑜𝑟

𝑓𝑐𝑜𝑟
} 𝑦

{𝑣̃𝑥𝑦 −
sin2𝛼𝑐𝑜𝑟

𝑓𝑐𝑜𝑟
} 𝑥 − {𝑣̃𝑥𝑥 −

cos2𝛼𝑐𝑜𝑟

𝑓𝑐𝑜𝑟
} 𝑦
)                     (44) 

The symmetry of Maxwell’s equations, mentioned earlier in this section, can now be 

appreciated.  Equation (44) proves the emittance and the focusing effects of the coupler can be exactly 

cancelled with a rotated DC quadrupole corrector.  It shows that the following two equations determine 

the quad-corrector focal strength and rotation angle which cancel the coupler quadrupole kick, 

𝑣̃𝑥𝑥 −
cos2𝛼𝑐𝑜𝑟

𝑓𝑐𝑜𝑟
= 0     and   𝑣̃𝑥𝑦 −

sin2𝛼𝑐𝑜𝑟

𝑓𝑐𝑜𝑟
= 0                                       (45) 

Simultaneously solving these two equations gives paired values for the quad-corrector’s rotation 
angle and focal strength which cancel the coupler field’s cross-term (emittance) and the quadrupole-
focus term (astigmatism) for a single slice of the bunch.  Solutions for the quad-corrector rotation angle 
and focal strength are 

𝛼𝑐𝑜𝑟 =
1

2
tan−1

𝑣̃𝑥𝑦

𝑣̃𝑥𝑥
                                                                  (46) 

1

𝑓𝑐𝑜𝑟
=

𝑒𝑉𝑎𝑐𝑐

𝛽𝛾𝑚𝑐2
√𝑣̃𝑥𝑥

2 + 𝑣̃𝑥𝑦
2                                                            (47) 

The normalized voltage kick factor, 𝑣̃, in terms of the complex voltage kick factor, 𝑣, is 

𝑣̃𝑥𝑥(𝜙𝑠) =
𝑒𝑉𝑎𝑐𝑐

𝛽𝛾𝑚𝑐2
(𝑣𝑥𝑥
𝑟 cos𝜙𝑠 − 𝑣𝑥𝑥

𝑖 sin𝜙𝑠)                                                    (48) 
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and 

𝑣̃𝑥𝑦(𝜙𝑠) =
𝑒𝑉𝑎𝑐𝑐

𝛽𝛾𝑚𝑐2
(𝑣𝑥𝑦
𝑟 cos𝜙𝑠 − 𝑣𝑥𝑦

𝑖 sin𝜙𝑠)                                                    (49) 

Inserting these relations into Eqns. (46) and (47) gives the quad-corrector rotation angle, 

𝛼𝑐𝑜𝑟(𝜙𝑠) =
1

2
tan−1

𝑣𝑥𝑦
𝑟 cos𝜙𝑠−𝑣𝑥𝑦

𝑖 sin𝜙𝑠

𝑣𝑥𝑥
𝑟 cos𝜙𝑠−𝑣𝑥𝑥

𝑖 sin𝜙𝑠
                                                           (50) 

and focal strength, 

1

𝑓𝑐𝑜𝑟(𝜙𝑠)
=

𝑒𝑉𝑎𝑐𝑐

𝛽𝛾𝑚𝑐2
√(𝑣𝑥𝑥

𝑟 cos𝜙𝑠 − 𝑣𝑥𝑥
𝑖 sin𝜙𝑠)

2
+ (𝑣𝑥𝑦

𝑟 cos𝜙𝑠 − 𝑣𝑥𝑦
𝑖 sin𝜙𝑠)

2
                             (51) 

These solutions are for a thin slice of the bunch transiting the coupler at a bunch-RF phase of 𝜙𝑠. 

 As a numerical example, we use the SRF coupler parameters given in Dohlus’ paper [20] to 

compute the corrector quadrupole requirements.  His Table 1 gives the normalized complex voltage kick 

factors as 

𝑣𝑥𝑥 = (1 − 0.7𝑖) × 10
−6 /𝑚𝑚                                                          (52) 

𝑣𝑥𝑦 = (3.4 − 0.2𝑖) × 10
−6 /𝑚𝑚                                                       (53) 

These coupler kicks correspond to a normalizing voltage of 20 MV and assume a beam kinetic energy of 

800 KeV such that 𝛽𝛾 = 2.5.  Figure 10 shows the focal length and rotation angle required to correct for 

these complex voltage kicks as functions of the beam-to-RF phase.  The correction quadrupole rotation 

angle and focal length are given as functions of the bunch’s head phase with respect to the coupler RF 

waveform.  A phase of 90 degRF corresponds to the bunch head synchronized on the RF waveform crest. 

 

           
Figure 10: The correction quadrupole rotation angle (dash-line) and focal length (solid-line) vs. the beam 

to coupler RF phase for a high-power coupler of a SRF linac. The corrector rotation angle is 

discontinuous near the coupler phase of ~125 degRF where the denominator of Eqn. (50) is zero and the 
1

2
𝑡𝑎𝑛−1 function jumps to stay within the its principal value range of -45 and 45 degrees. 

 

 

D. Implementing quadrupole correctors into the LCLS-II injector 

The LCLS-II injector consists of a CW RF gun, two solenoids for beam focusing, an RF buncher for 

bunch compression, and one standard 8-cavity cryomodule (CM) [23]. The standard 8-cavity CM is used 

to boost the beam energy to ~100 MeV from <1 MeV.  The strong rotated quadrupole RF field located at 
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the power coupler of the CM can increase the emittance, especially for a beam at low energy with a 

large beam size.  Figure 11 shows the emittance simulations for a 300-pC bunch without coupler fields 

(blue), with 3D coupler fields (green), and with 3D coupler fields corrected by a quad-corrector (red).  

The coupler fields are computed from the 3D CAD-model of the coupler’s walls, ports, etc.  The 

emittance is plotted vs z along the length of the injector to where the emittance reaches it asymptotic 

value at 100 MeV.  The emittance grows about 20% when the 3D RF coupler fields are included 

compared to the no coupler case. The simulation shows a quad-corrector located near the CM with 0.9 

Gauss integrated quadrupole gradient, and -17.2 degrees rotation angle can eliminate the RF-coupler’s 

emittance growth (red vs. green curves).   

Because of these studies, we are planning to use a quad-corrector in the second solenoid for 

both the anomalous quadrupole field and RF-coupler field correction in the LCLS-II injector [24].  We 

may consider installing another quad-corrector near the entrance of the CM for the coupler correction if 

the shared quad-corrector is not strong enough.    

 

 

FIG. 11(color): LCLS-II injector emittance evolution with perfect RF field (blue), with 3D RF coupler fields 

(green), and emittance cancellation using a weak (0.9 G) rotated (-17.2 degrees) correction quadrupole 

(red) for 300 pC. 

VI. SUMMARY AND CONCLUSIONS 

This paper discussed two types of emittance growth due to coupled transverse dynamics.  These 

emittances are caused by rotated quadrupole fields in combination with a solenoid field, and the 

rotated RF quadrupole fields of high power couplers for accelerator linacs.  Both effects are commonly 

encountered in high brightness guns and injectors. 

The emittance growth caused by a weak quadruple field in combination with a solenoidal field is 

analyzed for electron injectors.  And its correction with a rotated quadrupole field is verified through 

analytical theory, simulations, and experiments.  It is also shown that RF couplers in RF cavities can 
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significantly degrade the emittance. Further theoretical analysis and simulations show that this RF-

coupler emittance growth can also be completely corrected with a weak rotated quadrupole. These 

quadrupole correction techniques for solenoids and RF couplers have been implemented into the LCLS-I 

and LCLS-II injectors as well as in the SwissFEL injector [25] and the Cornell DC photocathode injector 

[26]. 

 And finally, there is the potential use of rotated quadrupole correctors in highly dispersive 

systems such as chicane bunch compressors to correct for small coupling of the transverse dynamics 

between the energy dispersed plane and the orthogonal, non-dispersed plane dynamics due to slightly 

rotated dipoles.  These and other examples demonstrate the general applicability of rotated corrector 

quadrupoles to uncouple the transverse dynamics of electron beams. 

 

ACKNOWLEDGEMENTS 

The work is supported by DOE under grant No. DE-AC02-76SF00515. The authors would also wish to 

acknowledge the good advice of the journal’s anonymous referees.  Their constructive comments and 

suggestions motivated us to transform and improve the final paper. 

References 

[1] G. Ripken, “Untersuchung der vom Detektorfeld im Storage-Ring verursachten Störungen und ihre 

Korrektur,” DESY RI-70/5, Juni 1970. 

[2] K. Wille, “Skew Quad Compensation for SPEAR Minibeta Optics”, SLAC/AP-27, June 1984. 

[3] H. Qin, R. C. Davidson, M. Chung and J. W. Burby, “Generalized Courant-Snyder Theory for Charged-

Particle Dynamics in General Focusing Lattices”, PRL 111, 104801 (2013).   

[4] H. Wiedemann, Particle Accelerator Physics II, Nonlinear and Higher-Order Beam Dynamics, Springer 

Press, 1995, Section 3.3. 

[5] Z. Li, J. J. Bisognano and B. C. Yunn, Transport Properties of the CEBAF Cavity, in Proceedings of the 

15th Particle Accelerator Conference, PAC-1993, Washington, DC, 1993 (IEEE, New York, 1993) 

http://accelconf.web.cern.ch/accelconf/p93/PDF/PAC1993_0179.PDF. 

[6] Beam Dynamics in the CEBAF Superconducting Cavities by Zenhai Li, PhD. Dissertation, College of 

William and Mary, Virginia USA, March 1995. 

[7] Zenghai Li, Nathan Folwell, Lixin Ge, Adam Guetz, Valentin Ivanov, Marc Kowalski, Lie-Quan Lee, 

ChoKuen Ng, Greg Schussman, Lukas Stingelin, Ravindra Uplenchwar, Michael Wolf, Liling Xiao and Kwok 

Ko, High Performance Computing in Accelerating Structure Design and Analysis, NIM A558 (2006)168-

174. 

[8] L. Xiao, R. F. Boyce, D. H. Dowell, Z. Li, C. Limborg-Deprey, and J. Schmerge, Dual feed RF gun design 

for the LCLS, in Proceedings of the 21st Particle Accelerator Conference, Knoxville, TN, 2005 (IEEE, 

Piscataway, NJ, 2005) http://accelconf.web.cern.ch/AccelConf/p05/PAPERS/TPPE058.PDF. 

[9] Z. Li, J. Chan, L. D. Bentson, D. H. Dowell, C. Limborg-Deprey, J. Schmerge, D. Schultz, and L. Xiao, 

Coupler Design of the LCLS Injector S-Band Structures, in Proceedings of the 21st Particle Accelerator 

Conference, Knoxville, TN, 2005 (IEEE, Piscataway, NJ, 2005) 

http://accelconf.web.cern.ch/AccelConf/p05/PAPERS/TPPT031.PDF 

 [10] D. C. Carey, K. L. Brown, and F. Rothacker, Third-Order TRANSPORT with MAD Input, A Computer 

Program for Designing Charged Particle Beam Transport Systems, SLAC Report, Nos. SLAC-R-530, 

Fermilab-Pub-98-310, and UC-414, pp. 148. 

http://accelconf.web.cern.ch/accelconf/p93/PDF/PAC1993_0179.PDF
http://accelconf.web.cern.ch/AccelConf/p05/PAPERS/TPPE058.PDF
http://accelconf.web.cern.ch/AccelConf/p05/PAPERS/TPPT031.PDF


 

20 
 

[11] Kirk T. McDonald, ‘’Expansion of an Axially Symmetric, Static Magnetic Field in Terms of Its Axial 

Field”, http://physics.princeton.edu/~mcdonald/examples/axial.pdf 

[12] David H. Dowell, “Sources of Emittance in RF Photocathode Injectors: Intrinsic emittance, space 

charge forces due to non-uniformities, RF and solenoid effects, “  http://arxiv.org/abs/1610.01242   

[13] D. C. Carey, K. L. Brown, and F. Rothacker, Third-Order TRANSPORT with MAD Input, A Computer 

Program for Designing Charged Particle Beam Transport Systems, SLAC Report, Nos. SLAC-R-530, 

Fermilab-Pub-98-310, and UC-414, pp. 127. 

[14] D. H. Dowell, E. Jongewaard, J. Lewandowski, C. Limborg-Deprey, Z. Li, J. Schmerge, A. Vlieks, J. 

Wang, and L. Xiao, The Development of the Linac Coherent Light Source RF Gun, SLAC Report No. SLAC-

Pub-13401, arXiv:1503.05877. 

[15] D. C. Carey, K. L. Brown, and F. Rothacker, Third-Order TRANSPORT with MAD Input, A Computer 

Program for Designing Charged Particle Beam Transport Systems, SLAC Report, Nos. SLAC-R-530, 

Fermilab-Pub-98-310, and UC-414, pp. 161. 

[16] GPT: General Particle Tracer, Version 2.82, Pulsar Physics, http://www.pulsar.nl/gpt/ 

[17] R. Akre, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, Ph. Hering, R. Iverson, C. Limborg-Deprey, 

H. Loos, A. Miahnahri, J. Schmerge, J. Turner, J. Welch, W. White, and J. Wu, “Commissioning the Linac 

Coherent Light Source injector”, Phys. Rev. Accelerators and Beams, 11, 030703 (2008). 

[18] K. Floettmann, ASTRA manual, DESY, Germany, March 2017, 

http://www.desy.de/~mpyflo/Astra_manual/Astra-Manual_V3.2.pdf 

[19] D. H. Dowell, Cancellation of RF Coupler-Induced Emittance Due to Astigmatism, SLAC Pubs Report 

No. LCLS-II-TN-15-05, arXiv:1503.09142. 

[20] M. Dohlus, I. Zagorodnov, E. Gjonaj, and T. Weiland, Coupler Kick for Very Short Bunches and Its 

Compensation, in Proceedings of the 11th European Particle Accelerator Conference, Genoa, 2008 (EPS-

AG, Genoa, Italy, 2008), pp.580–582, http://accelconf.web.cern.ch/AccelConf/e08/papers/mopp013.pdf 

[21] Z. Li, F. Zhou, A. Vlieks, and C. Adolphsen, On the Importance of Symmetrizing RF Coupler Fields for 

Low Emittance Beams, in Proceedings of the 24th Particle Accelerator Conference, PAC-2011, New York, 

2011 (IEEE, New York, 2011), pp. 2044–2046, 

http://accelconf.web.cern.ch/AccelConf/PAC2011/papers/thoas1.pdf 

[22] M.S. Chae, J.H. Hong, Y.W. Parc, In Soo Ko, S.J. Park, H.J. Qian, W.H. Huang, and C.X. Tang, 

“Emittance growth due to multipole transverse magnetic modes in an rf gun,” Phys. Rev. Accelerators 

and Beams, 14, 104203 (2011). 

[23] LCLS-II Final Design Report, 2016, p.49. 

https://docs.slac.stanford.edu/sites/pub/Publications/LCLSII%20Final_Design_Report.pdf 

[24] F. Zhou, D. Dowell, R. K. Li, T. O. Raubenheimer, J. Schmerge, C. Mitchell, C. Papadopoulos, F. 

Sannibale, and A. Vivoli, “LCLS-II Injector Beamline Design and RF Coupler Correction,” in Proceedings of 

the 2015 International FEL Conference, Daejeon, Korea.  

http://accelconf.web.cern.ch/AccelConf/FEL2015/papers/mop021.pdf 

[25] T. Schietinger, M. Pedrozzi, M. Aiba, V. Arsov, S. Bettoni, B. Beutner, M. Calvi, P. Craievich, M. 

Dehler, F. Frei, R. Ganter, C. P. Hauri, R. Ischebeck, Y. Ivanisenko, M. Janousch, M. Kaiser, B. Keil, F. Löhl, 

G. L. Orlandi, C. Ozkan Loch, P. Peier, E. Prat, J.-Y. Raguin, S. Reiche, T. Schilcher, P. Wiegand, E. Zimoch, 

D. Anicic, D. Armstrong, M. Baldinger, R. Baldinger, A. Bertrand, K. Bitterli, M. Bopp, H. Brands, H. H. 

Braun, M. Brönnimann, I. Brunnenkant, P. Chevtsov, J. Chrin, A. Citterio, M. Csatari Divall, M. Dach, A. 

Dax, R. Ditter, E. Divall, A. Falone, H. Fitze, C. Geiselhart, M. W. Guetg, F. Hämmerli, A. Hauff, M. 

Heiniger, C. Higgs, W. Hugentobler, S. Hunziker, G. Janser, B. Kalantari, R. Kalt, Y. Kim, W. Koprek, T. 

http://physics.princeton.edu/~mcdonald/examples/axial.pdf
http://arxiv.org/abs/1610.01242
https://arxiv.org/abs/1503.05877
http://www.pulsar.nl/gpt/
http://www.desy.de/~mpyflo/Astra_manual/Astra-Manual_V3.2.pdf
https://arxiv.org/abs/1503.09142
http://accelconf.web.cern.ch/AccelConf/e08/papers/mopp013.pdf
http://accelconf.web.cern.ch/AccelConf/PAC2011/papers/thoas1.pdf
https://docs.slac.stanford.edu/sites/pub/Publications/LCLSII%20Final_Design_Report.pdf
http://accelconf.web.cern.ch/AccelConf/FEL2015/papers/mop021.pdf


 

21 
 

Korhonen, R. Krempaska, M. Laznovsky, S. Lehner, F. Le Pimpec, T. Lippuner, H. Lutz, S. Mair, F. 

Marcellini, G. Marinkovic, R. Menzel, N. Milas, T. Pal, P. Pollet, W. Portmann, A. Rezaeizadeh, S. Ritt, M. 

Rohrer, M. Schär, L. Schebacher, St. Scherrer, V. Schlott, T. Schmidt, L. Schulz, B. Smit, M. Stadler, B. 

Steffen, L. Stingelin, W. Sturzenegger, D. M. Treyer, A. Trisorio, W. Tron, C. Vicario, R. Zennaro, and D. 

Zimoch, “Commissioning experience and beam physics measurements at the SwissFEL Injector Test 

Facility”, Phys. Rev. Accelerators and Beams, 19, 100702 (2016). 

[26] Adam Bartnik, Colwyn Gulliford, Ivan Bazarov, Luca Cultera, and Bruce Dunham, “Operational 

experience with nanocoulomb bunch charges in the Cornell photoinjector”, Phys. Rev. Accelerators and 

Beams, 18, 083401 (2015). 


