SLAC-PUB-17216

X-Ray Free Electron Lasers

Kent Wootton

SLAC National Accelerator Laboratory

US Particle Accelerator School Fundamentals of Accelerator Physics 23rd Jan 2018

Old Dominion University

Norfolk, VA

This work was supported by the Department of Energy contract DE-AC02-76SF00515.

Desirable properties of Free Electron Laser

- Wavelength-tunable
 - 10 eV \rightarrow 20 keV
- Variable polarization
- Spatial and temporal coherence
- Intense ultrafast pulses (fs and shorter)

Source: lightsources.org

X-ray FELs offer a new paradigm in SR Science

- 3rd gen storage ring
- Relies on making a large, ordered crystal
- What if you can't make a large crystal?

sample

Peak brilliance (intensity)

K. Wille, The Physics of Particle Accelerators: An Introduction, Oxford University Press, Oxford, UK (2000). J. B. Parise and G. E. Brown, Jr., <u>Elements, 2, 37-42 (2006)</u>.

Diffraction from single molecules

- Not all proteins crystallise
- Drop molecule in the beam
- Diffract before destruct
- Possibly accompanied by infrared laser pump
- Quickly becomes a 'big data' problem

Molecular movies

- Observing chemistry on its timescale
- Infrared pump, X-ray probe (separated in time)
- Advantage is that in addition to form, also get function of molecule

Outline – X-Ray Free Electron Lasers

- Ultrafast photon science
- Wigglers, undulators and coherent radiation
- Overview of an X-ray free electron laser
- Self-Amplified Spontaneous Emission (SASE)
- Free electron laser seeding schemes

Conventional laser and Free Electron Laser

optical laser

X-ray free electron laser

- Light Amplification through Stimulated Emission of Radiation
- Photon energy ~ 1 eV
- Tabletop size

- Amplification through charge ordering
- Tunable photon energy 200-20000 eV
- Very large facilities (1 km)

Why don't we use mirrors to make an X-ray laser cavity?

Free-electron lasers

- Storage ring light sources are spontaneous sources
- Photon emission is random, uncorrelated in phase
- Photon emission can be stimulated

Source: flash.desy.de

When does the charge radiate coherently?

Coherent synchrotron radiation

- Bunch length shorter than SR wavelength?
 - Coherent, for wavelengths longer than bunch

~1 ps bunch

 Far infrared "THz" source

SLAC

11

Source: http://www.lns.cornell.edu/~ib38/research.html

J. Schwinger, <u>"On Radiation by Electrons in a Betatron", A Quantum Legacy:</u> Seminal Papers of Julian Schwinger, World Scientific, 307-331, (2000) (LBNL-39088).

Free-electron laser (SACLA, Japan)

Wigglers

 Incoherent superposition of many bending magnets

Source: Australian Synchrotron

- Flux scales linearly with number of periods
- Critical photon energy linear with magnetic field
 - Same as bending magnet

Difference between undulators and wigglers

• Fundamentally, there is no difference!

Undulators

Undulator radiation

- Bright odd harmonics, null even harmonics
- Even harmonics don't perfectly cancel
 - Non-zero emittance

• What if you want a different photon energy?

SLAO

Tuning an undulator – deflection parameter

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

- Assume λ_u fixed, vary K =93.4 $\lambda_u B$
- Magnetic field *B* or energy γ
- Use permanent magnets, vary *B* by varying gap

A real undulator

Comparison of radiation sources

After D. Attwood, <u>'Soft X-Rays and Extreme Ultraviolet Radiation', Lecture Notes, UC Berkeley (2009)</u>. Center for X-Ray Optics and Advanced Light Source, <u>'X-Ray Data Booklet', LBNL/PUB-490 Rev. 3 (2009)</u>.

Options for making FEL radiation

 Undulator in a cavity (limited by mirror reflectivity)

- Inject a 'seed' laser beam (where do we get an x-ray seed beam?)
- 3. Self-Amplified Spontaneous Emission (SASE) (inherent noise in the electron distribution grows resonantly)
- 4. Self-seeding

(select a single frequency from broadband SASE spectrum)

5. Harmonic Generation

Free-electron lasers

FEL Physics: Electron motion in the undulator

For coherent radiation we want a short bunch in the 'radiate' region

How do we make the bunch short?

Answer: **Dispersion**

FEL Physics: microbunching

- Electrons slip one radiation wavelength per undulator period
- "Electrons losing energy to the light wave travel on a wavelike trajectory of larger amplitude than electrons gaining energy from the light wave."

Source: <u>DESY Photon Science</u>

Note 'slippage' of one radiation wavelength per undulator period

Looking closer for more detail...

Question: What is an 'inverse FEL'?

FEL gain length

Gain length

$$L_{G0} = \frac{\lambda_u}{4\pi\sqrt{3}\rho}$$

Pierce parameter, ρ

$$\rho = \left(\frac{1}{16} \frac{I_e}{I_A} \frac{K_0^2 [JJ]^2}{\gamma_0^2 \sigma_x^2 k_u^2}\right)^{1/3}$$

$$[JJ] = J_0(\xi) - J_1(\xi)$$
$$\xi = \frac{K_0^2}{4 + 2K_0^2}$$
$$K_0 = 93.4 \ \lambda_u [m]B[T]$$
Alfvén current:
$$I_A = \frac{ec}{r_e} \approx 17 \ kA$$
$$k_u = \frac{2\pi}{r_e}$$

 Λ_u

For a hard X-ray FEL, $\rho \approx 10^{-3}$, $\lambda_u = 10^{-2} \rightarrow L_{G0} \approx 2 - 4$ m

Z. Huang and K.-J. Kim, <u>Phys. Rev. ST – Accel. Beams, 10, 034801 (2007)</u>. R. Bonifacio, et al., <u>Opt. Commun., 50, 373 (1984)</u>.

FEL gain length

High-Gain Harmonic Generation (HGHG)

- Modulator, chicane (Inverse Free-Electron Laser)
- Radiator

E. Hemsing, et al., <u>Rev. Mod. Phys., 86, 897 (2014)</u>.

Echo-Enabled Harmonic Gain (EEHG)

E. Hemsing, et al., Nat. Photon., 10, 512-515 (2016).

Self-seeded operation

Summary

- Light source technology developing in two main directions
 - Average brightness (Diffraction-Limited Storage Rings)
 - Peak brightness (Free-Electron Lasers)
- Complementary and different
- Techniques to increase brightness mostly involve seeding

Key references

- Z. Huang and K.-J. Kim, Phys. Rev. Spec. Top. Accel. Beams, 10, 034801 (2007).
 - DOI: <u>10.1103/PhysRevSTAB.10.034801</u>
- K.-J. Kim, Z. Huang and R. Lindberg, Synchrotron Radiation and Free-Electron Lasers, Cambridge University Press, Cambridge, UK (2017).
 - DOI: <u>10.1017/9781316677377</u>
- P. Schmüser, M. Dohlus, J. Rossbach, C. Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 2nd Ed., Springer, Switzerland (2014).
 - DOI: <u>10.1007/978-3-319-04081-3</u>
- E. Hemsing, et al., Rev. Mod. Phys., 86, 897-941 (2014).
 - DOI: <u>10.1103/RevModPhys.86.897</u>

SLA0

hall

LCLS undulator hall

https://my.matterport.com/show/?m=YudBtDqUACB

Near Experimental Hall

https://my.matterport.com/show/?m=GrfGyzojZZP