SLAC-PUB-17215

Storage Ring Light Sources

Kent Wootton

SLAC National Accelerator Laboratory

US Particle Accelerator School Fundamentals of Accelerator Physics 23rd Jan 2018

Old Dominion University

Norfolk, VA

This work was supported by the Department of Energy contract DE-AC02-76SF00515.

Third generation storage ring light sources

- 1. Electron gun
- 2. Linac
- 3. Booster synchrotron
- 4. Storage ring
 - bending magnets
 - insertion devices
- 5. Beamlines
- 6. Endstations

Why use synchrotron radiation?

SLAC

- Wavelength-tunable
 - $10 \text{ eV} \rightarrow 100 \text{ keV}$
- High intensity
- Spatial coherence
- Polarised
- Pulsed

Source: lightsources.org

Who uses synchrotron radiation as a light source?

 Touches every aspect of science

- Benefits mostly outside physics
- Users predominantly working in universities, national laboratories

Who uses SR? Imaging

SLAC

Absorption contrast imaging

Phase contrast imaging

Who uses SR? Imaging

X-ray fluorescence mapping

Who uses SR? Diffraction

Protein crystallography

The arms race – light source brilliance

K. Wille, The Physics of Particle Accelerators: An Introduction, Oxford University Press, Oxford, UK (2000). J. B. Parise and G. E. Brown, Jr., <u>Elements, 2, 37-42 (2006)</u>.

Light sources of the world

Source: Advanced Photon Source Annual Report 2014

Outline – Overview of Light Sources

- Applications of synchrotron radiation
- Storage ring light sources
- First and second generation storage rings
 - FODO lattices
- Third generation storage rings
 - Achromat lattices
- Diffraction-Limited Storage Rings

SL AC

Generations of storage ring light sources

First generation storage ring light sources

- Parasitic use of synchrotrons, storage ring colliders
- Bending magnet radiation (incoherent, broadband)

S. Doniach, et al., J. Synchrotron Radiat., 4, 380-395 (1997).

C. Bernardini, <u>Phys. Perspect., 6, 156-183 (2004)</u>. S. Williams, <u>CERN Courier, 1 Jun, 2003 (2003)</u>.

Particle physics discovery!

- Early 1960's Anello di Accumulazione (AdA) collider
 - *E* = 1.5 GeV
 - Significant for accelerator physics, but no particle discovery
- Early 1970's SPEAR-I
 - *E* = 4.5 GeV (maximum)
- 1974 J/ψ ($c\bar{c}$) discovery kept machines at E = 1.55 GeV

Source: Brookhaven National Laboratory

Parasitic users of bending magnet radiation

- Critical photon energy $\epsilon_c \propto \frac{E^3}{\rho}$
- Colliders typically want maximum ρ (minimise SR power)
- Bending magnet light sources want minimum ρ (maximise SR)

Second generation storage ring light sources

- Dedicated electron storage ring light sources
- Bending magnet radiation
- Predominantly separatedfunction FODO lattices
- Typically VUV, soft X-ray photon energies
- Some hard X-ray rings

E. Rowe and F. Mills, Part. Accel., 4, 211-227 (1973).

Second generation light source – beginning and end

National Synchrotron Light Source – I (Brookhaven)

Wigglers

- Electron storage ring
- $B\rho = 3.3356E$
- For a given circumference of bending magnets, bending radius fixed (need to bend beam by 2π)
- For a given beam energy, no flexibility in magnetic field of bending magnets

OUADRUPOLE MAGNE S-LONG SECTION S-SHORT SECTION RF

E. Rowe and F. Mills, Part. Accel., 4, 211-227 (1973).

SL AC

Third generation storage ring light sources

 Dedicated storage rings designed specifically for wiggler and undulator light sources (insertion devices)

Lattices for light sources

-SLAC

Optimisation? Brilliance/brightness

$$\mathcal{B} = \frac{F}{4\pi^2 \varepsilon_x \varepsilon_y}$$

- Vertical emittance ideally zero
 - Practically, $\varepsilon_y \approx 0.01 \varepsilon_x$
 - Arising from uncorrected betatron coupling with horizontal plane
- Minimising equilibrium emittance ε_{χ} is key

Equilibrium emittance scaling law

$$\varepsilon_{\chi} = C_q \frac{\gamma^2 \oint \mathcal{H} / \rho^3 \mathrm{d}s}{\mathcal{J}_{\chi} \oint 1 / \rho^2 \mathrm{d}s} \approx \mathcal{F} \frac{C_q \gamma^2}{\mathcal{J}_{\chi}} \theta^3$$

$$C_q = \frac{55}{32\sqrt{3}} \frac{\hbar c}{mc^2} = 3.84 \times 10^{-13} \text{ m}$$

• Scale factor \mathcal{F} (not flux F)

M. Sommer, Optimization of the Emittance of Electrons (Positrons) Storage Rings, Laboratoire de l'Accélérateur Linéaire, LAL/RT/83-15 (1983).

Lattice scale factor \mathcal{F}

$\varepsilon_x \approx \mathcal{F} \frac{C_q \gamma^2}{\mathcal{J}_x} \theta^3$			
Name	Unit Cell	${\cal F}$	Ref.
FODO		1.2 (minimum)	<u>Wiedemann (1980)</u> <u>Wolski (2014)</u>
TME		$\frac{1}{12\sqrt{15}} \approx 0.0215$	<u>Wolski (2014)</u>
TAL		$\frac{1}{\sqrt{15}} \approx 0.2582$	<u>Ropert (1993)</u>
DBA		$\frac{1}{4\sqrt{15}}\approx 0.0646$	<u>Sommer (1981)</u>
TBA		$\frac{7}{36\sqrt{15}} \approx 0.0502$	<u>Ropert (1993)</u>
MBA		$\frac{1}{12\sqrt{15}} \left(\frac{M+1}{M-1} \right)$	<u>Wolski (2014)</u>

$$\mathcal{H} = \gamma_x D_x^2 + 2\alpha_x D_x D_x' + \beta_x D_x'^2$$

 Minimising horizontal dispersion function and its derivative in the bending magnets SPEAR-2 (FODO)
SPEAR-3 (DBA)

Example: SPEAR-2 to SPEAR-3

$$\varepsilon_x \approx \mathcal{F} \frac{C_q \gamma^2}{\mathcal{J}_x} \theta^3$$

- Let's assume both rings
 - $\mathcal{J}_x = 1$
 - $E = 3.0 \text{ GeV} (\gamma = 5871)$
- SPEAR-2, FODO lattice
 - FODO, $\mathcal{F} \approx 1.2$
 - 32 bending magnets $(\theta = 11.25^\circ \equiv 0.196 \text{ rad})$
 - $\varepsilon_x \approx 120 \text{ nm rad}$
- SPEAR-3, DBA lattice
 - DBA, *F* ≈ 0.0646
 - 36 bending magnets $(\theta = 10^\circ \equiv 0.175 \text{ rad})$
 - $\varepsilon_x \approx 4.5 \text{ nm rad}$

Real machines?

SLAC

SPEAR-2 $\varepsilon_x = 160 \text{ nm rad}$

SPEAR-3 $\varepsilon_x = 6 \text{ nm rad}$

Real machines don't run at the theoretical limit!

R. Hettel, et al., Design of the SPEAR-3 Light Source, SLAC-PUB-9721 (2003) 24

Diffraction-Limited Storage Rings

- How much can the average brightness be usefully increased?
 - 'Continuous' sources (e.g. storage rings)
- Use insertion devices (undulators, wigglers) as light sources (not bending magnets)
- Diffraction limited source emittance

$$\varepsilon_{\chi} < \frac{\lambda}{4\pi}$$

- Soft X-rays, $\lambda \approx 1 \text{ nm} \rightarrow \varepsilon_x < 80 \text{ pm rad}$
- Strategy is to maximise number of bending magnets (separated by quadrupoles)

MAX-IV – a diffraction-limited storage ring

P. Tavares, et al., J. Synchrotron Radiat., 21, 862-877 (2014).

Electron rings – present and proposed

MAX-IV as an example

SLAC

- Assume $\mathcal{J}_x = 1$
- Per cell, 5 × 3° bends, 2 × 1.5° bends
 - Assume 6-BA: *F* = 0.0286
- 120 bending magnets, $\theta = 0.0524$ rad
- $E = 3.0 \text{ GeV} (\gamma = 5871)$
- $\varepsilon_x \approx 57 \text{ pm rad}$
- Real ring: 340 pm rad

Emittance is just one lattice optimisation

Theoretical emittance limit and real machines

- Operating a lattice close to the theoretical limit requires strong quadrupole fields
 - Leads to large negative natural chromaticity
- Lattice has very small dispersion (deliberately)
 - Chromaticity compensation requires strong sextupole fields
 - Leads to strong third order resonances in tune space
 - Non-linear dynamics become the problem
- Dynamic aperture becomes very small
- Difficult to inject off-axis and store electron beams

Source: Wolski, CERN-2010-004.1 (2011).

3rd generation storage ring magnets, MAX-IV magnets

-SLAC

MAX-IV – a diffraction-limited storage ring

- Desirable properties of synchrotron radiation as a light source
- Historically, synchrotron radiation users parasitic
- Technologies such as insertion devices developed as a result
- Present day, dedicated synchrotron radiation laboratories
- Light source technology developing in two main directions
 - Average brightness (Diffraction-Limited Storage Rings)
 - Peak brightness (Free-Electron Lasers)

This work was supported in part by the Department of Energy contract DE-AC02-76SF00515.

Key references

- D. A. Edwards and M. J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley, Weinheim, Germany (1993).
 - DOI: <u>10.1002/9783527617272</u>
- H. Wiedemann, Particle Accelerator Physics, 4th ed., Springer, Heidelberg, Germany (2015).
 - DOI: <u>10.1007/978-3-319-18317-6</u>
- E. J. N. Wilson, An Introduction to Particle Accelerators, Oxford University Press, Oxford, UK (2001).
 - DOI: <u>10.1093/acprof:oso/9780198508298.001.0001</u>
- A. Wolski, Beam Dynamics in High Energy Particle Accelerators, Imperial College Press, London, UK (2014).
 - DOI: <u>10.1142/p899</u>

SLAC

SPEAR3 storage ring

https://my.matterport.com/show/?m=P7yQkUGnNA2