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A geometric representation of the lowest lying inertial masses of the known particles (N=299)
was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in
terms of a single, hypothetical particle we call the Masson (M). Geometrically, its mass is the radius
of the Riemann Sphere. Dynamically, its derived mass is near the mass of the only stable hadron
regardless of whether it is determined from all N particles or only the hadrons, the mesons or the
baryons separately. Ignoring all other properties of these particles, it is shown that the eigenvalues,
the polar representation θν of the masses on the Sphere, satisfy the symmetry θν + θN+1−ν = π
within less than 1% relative error. These pair correlations form 6 distinct clusters. A function can
be established whose zeros are a good approximation to the full set of masses {θν}.
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Spanning from zero to more than 100GeV, we intro-
duce a geometric representation of the masses of particles
allowing us to posit a generating particle - the Masson
(pronounced as one does the Muon). Associated with it,
there is a generating function whose zeros are the normal-
ized masses of the N known particles[1, 2]. These masses
can then be projected onto a 2D Riemann Sphere[3] of ra-
dius equal to the mass of the Masson that is determined
by imposing the equivalent of a minimum action crite-
rion; throughout this study whenever we refer to mass,
the intention is to the inertial mass. We do not consider
antiparticles because there has never been a fermion dis-
covered that did not lead to the discovery of its corre-
sponding antiparticle as first implied by Dirac.[4]

The only particle we fully understand is the photon
with zero mass that must move at the speed of light be-
cause there is no rest frame to measure the mass explicitly
based on m/

√
1− β2. Thus, while we know how to de-

termine the extreme, in general, we do not know the fun-
damentals underlying the other values beyond the work
of Brodsky and collaborators[5] based on QCD.

It is important to clarify here that we are working only
with direct mechanical observables i.e. the mass. We do
know, according to Sommerfeld[6], that it is not associ-
ated with the charge alone. He pointed out that given
a macroscopic charge of finite radius and mass, the en-
ergy associated with the two is different. His approach

was simple: denoting by E
(rest)
EM the electrostatic energy

of the charged particle when at rest and subtracting this
energy from the electric and magnetic energy when the

particle is in motion E
(motion)
EM , it was shown that the dif-

ference does not equal the kinetic energy of the particle.

Here we introduce a geometric (polar θν) representa-
tion of the N masses on a Riemann Sphere. This allows
us to interpret them in terms of a single particle, the
Masson, that may be in one of the N states and whose
mass M we take as the radius of the Sphere as shown in
Figure 1.

Ignoring the other properties of these particles, it
is shown that these values satisfy the symmetry θν +
θN+1−ν = π within less than 1% relative error. These
eigenvalues form at least 6 clusters suggestive of a “Peri-
odic” Chart of the Fundamental Particles. This mapping
is not unique but was chosen for its simplicity whereas
others might reveal further relationships.
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FIG. 1: The mass of a particle is marked on the axis (red-
dot). Projection of the mass of the particle on the Riemann
Sphere, whose radius represents the mass of the Masson M,
is uniquely determined by the polar angle θν .

Specifically, the masses are organized in ascending or-
der along the horizontal axis “x”. A circle of radius M
has its center at x=0, z=M and the intersection of the
straight-line, connecting the top of the circle with z=0,
x=mν defines a unique angle θν on the sphere given by

θν = 2 arctan

(
2M

mν

)
. (1)

This transformation represents the projection of any one
of the masses on the circle whose radius we attribute to
the mass of the Masson; it preserves the order we or-
ganized the masses. Next we establish M based on the
experimental data and a minimal action criterion. Keep-
ing in mind that the masses were organized organized in
ascending order, and we define the interval-spread of any
two adjacent angles as
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E (M) =
1

π

√√√√ 1

N + 1

N∑
ν=0

(θν+1 − θν)
2
. (2)

M is the value that minimizes this functional; θν=0 = 0
and θν=N+1 = π represent the upper and lower limits of
the masses in this representation. For the trivial case of a
single particle its mass is represented by an angle θ and
there are two intervals: θ − 0 and π − θ so the intervals
spread is proportional to θ2 + (π − θ)2 with a minimum
at θ = π/2 implying that the radius of the sphere is half
the mass of the particle i.e. M= m/2 or, equivalently,
the particle’s mass is twice the mass of the Masson.
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FIG. 2: Spread of intervals for the N=299 particles as a func-
tion of M. The dominant minimum is calculated numerically
and occurs at M[MeV] = 1003 near the lowest lying baryon
mass.

When considering the entire ensemble of particles
(ν=1,2,...N) their spread intervals in Figure 2 clearly
shows resonance-like behavior. The absolute minimum,
occurring at 1003 MeV, we take to be the mass of the
Masson. The 2D Riemann Sphere is illustrated in Fig-
ure 3 for this value. Two facts are evident – first, as an-
ticipated, most of the particles are located in the θ ∼ π/2
region and, second, close to zero and π there are voids
although these are not symmetrically disposed nor cor-
related in any obvious way.

Repeating the same procedure only for hadrons or
baryons or mesons separately, leads only to a relatively
small deviation from the value of the Masson’s mass. To
begin, consider only the hadrons (N = 281). If we were
to establish the Masson based on the hadrons alone, its
mass would be only slightly reduced to M(H)=962.2 MeV.
Moreover, if we attribute a separate Masson to baryons
(N = 121) and to mesons (N = 160) the corresponding
masses would be M(B)= 1094 MeV and M(M)=964 MeV.
All of these and especially M(H) and M(M) are close to
both M as well as to the only stable hadron mass, the nu-
cleon N(940). Also, there are more mesons than baryons

even though their confined quarks(2) are fewer than for
the baryons(3). Their corresponding “intervals spread”,
similar to Figure 2 for all particles, gave a single compa-
rable minimum.

Another perspective on the polar representation of
the masses can be obtained by ordering the {θν} in
ascending order and plotting them as a function of
the normalized index ν (quantum number) as the red
squares in Figure 4. For comparison, the N zeros of
the Legendre polynomial of order N = 299 are orga-
nized in ascending order and given by the black diamonds
[PN (cos ζν) = 0; ν = 1, 2, ....N ]. While the latter is vir-
tually linear, the former has a more complex structure
with distinct “band-gaps” in the range ν < 0.2N and
ν > 0.9N .
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FIG. 3: Projection of the masses of all 299 particles where
the mass of the Masson is determined from the requirement
that the spread of the intervals in Figure 2 is minimal. Light
particles (θ ∼ π) are the gamma, gluon and neutrinos. The
heavy ones (θ ∼ 0) the gauge-particles, Higgs and top quark.

Four observations may be made: (i) Legendre’s func-
tion zeroes are linear on the index (ν/N ). (ii) if the ab-
solute value of the argument of the Legendre polynomial
is larger than unity the behavior is hyperbolic and the
function has no zeros in this range. This is consistent
with the existence of band-gaps. (iii) Having in mind
that the argument of the Legendre polynomial (cos θ)
varies between −1 and 1, we consider another function
which is defined in this range (tanh) and we calculate
the zeros of PN [tanh (3.46 (π/2− θν))] = 0 which are
represented by the green squares in Figure 4. (iv) In
the range 0.2 < ν/N < 0.9 the dependence of θν on the
index is linear with an accuracy of 0.07% being defined

as 100×
〈

[1− θ(Linear)ν /θν ]2
〉
ν
. This resemblance to the

Legendre polynomial zeros hint at the relevance of θν to
the dynamics of the Masson.

Furthermore, these results indicate that the θν might
be regarded as the eigenvalues of a characteristic polyno-
mial of the Legendre type. In this regard our approach
was inspired by the work of Liboff and Wong[7] in con-
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FIG. 4: Red squares represent the masses (θν) in ascend-
ing order and the black diamonds the zeros of the modified
Legendre function of order N = 281 whose argument is the
hyperbolic tangent funtion. The green squares are discussed
in the text below. The index ν is normalized by N .

nection with their study of the prime numbers and the
zeta function.

One of the main results of our approach relies on a
property of the Legendre polynomials that the sum of two
zeros of complementary order (ν + ν′ = N + 1) equals
π, or explicitly ζν + ζN+1−ν = π. We have examined to
what extent this rule applies to the polar representation
of the masses (θν) and found that θν+θN+1−ν = πχ with
χ = 0.958 within 0.13% relative error defined as

Error[%] = 100
1

2N

N∑
ν=1

[
θν + θN+1−ν − πχ
θν + θN+1−ν

]2
. (3)

The factor of 2 in Eq.(3) corrects the fact that each pair
of masses is counted twice.

According to the present spectrum of masses [1], this
relation implies that the mass of the Higgs and that of the
Axion (if observed) would be related θAxion + θHiggs ' π,
that the mass of the electrons neutrino is related to that
of the Z-gauge boson θνe + θZ ' π and that the W±

gauge bosons are related similarly to the other neutri-
nos. However, it should be emphasized that the present
estimate of the error is dominated by the light particles
with θ ∼ π and that it is larger if the deviation is com-
pared to the smallest angle between the two. In fact,
due to uncertainty associated with the measurement of
many of those masses and especially the neutrinos, com-
paring to the calculated deviation of χ from unity, one
can hypothesize that χ ≡ 1 or explicitly

θν + θN+1−ν = π . (4)

For further insight into this result, we plot in Fig-
ure 5 the normalized symmetry-pairs (θν + θN+1−ν)/π
as a function of the normalized masses (θν/π). Several

important aspects are reflected in this plot: (i) the pairs
linked by Eq.(4) form (at least) six clusters. (ii) The
error or deviation from unity is dominated by light par-
ticles (θ ∼ π). When both particles have similar mass,
the deviation is negligible − see the right cluster. (iii)
Further splitting is expected when including additional
quantum numbers that produce a Riemann hypersphere.
(iv) Subject to the condition χ ≡ 1, the error defined
above for hadrons is 0.47%, for baryons 0.07% and for
mesons it is 0.63%.
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FIG. 5: The normalized symmetry-pairs, (θν +θN+1−ν)/π, as
a function of the normalized geometric representation of the
masses (θν/π). These pairs form at least six clusters analo-
gous to a “Periodic Table” for the Fundamental particles.

Before proceeding it is important to assess whether
such small errors are not the result of pure coincidence.
For this let us postulate that the Masson has a fixed
inertial mass of M0=1003 MeV and between the two
extremes the various particles (299) are randomly dis-
tributed. We represent the inertial masses in terms of
a random variable mν [MeV] = 10pν wherein pν is uni-
formly distributed −8 ≤ pν ≤ 5 + log(1.26) = 5.104. As
in the case of the real particles, we employ the trans-
formation in Eq. 1. It is tacitly assumed that the mass
of the Masson is not dependent on the specific distribu-
tion. Once the θν are established, the error is calculated
based on Eq. 3 for χ = 1. Figure 6 illustrates the errors,
7.5 ≤ Error[%] ≤ 10.5, associated with this polar repre-
sentation. For comparison, in the case of using all of the
actual particles, its value is 0.225% indicating that the
roughly two orders of magnitude (8%) difference is not a
result of coincidence.

So far we have focused attention on the kinematics
of the Masson. Based on the observations mentioned
above we make a few assessments regarding the dynam-
ics of the Masson. Our starting point is the first obser-
vation as to the linear dependence of the zeros of Legen-
dre polynomials of order N namely, ξν ∼ πν/N wherein

PN (cos ξν) ≡ 0. The latter, ψ
(Leg)
N (θ) = PN (cos θ), is a



4

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 200 400 600 800 1000

E
rr

or
 [%

]

n

M = 1003[MeV]

FIG. 6: The errors associated with the polar representation
of a random distribution of masses for 1000 different seeds
based on using Eq. [3]. For comparison, in the case of using
all of the actual particles, its value is 0.225%.

solution of the Legendre equation[
1

sin θ

d

dθ

(
sin θ

d

dθ

)
+N(N + 1)

]
ψ
(Leg)
N (θ) = 0. (5)

By analogy, the polar representation of the masses θν is

one of N zeros of ψ
(Masson)
N (θ) = ΠN

ν=1(1− θ/θν) which is
a solution of the ”Legendre-like” differential operator[

1

sin θ

d

dθ

(
sin θ

d

dθ

)
+ VN (θ)

]
ψ
(Masson)
N (θ) = 0 (6)

with VN (θ) representing the normalized potential that
is responsible for the difference between ξν and
θν . Since we know the latter, we may take ad-
vantage of the orthogonality of the Legendre poly-
nomials,

∫ π
0
dθ sin θPn(cos θ)Pn′(cos θ) = δn,n′/(2n +

1), to write ψ
(Masson)
N (θ) =

∑∞
n=0 anPn(cos θ) where

an can be considered to be known i.e. an =
(2n + 1)

∫ π
0
dθ sin θPn(cos θ)ψ

(Masson)
N (θ). Contrary to

ψ
(Masson)
N (θ), the potential is not known. Yet it is still

convenient to represent it in terms of Legendre polyno-
mials VN (θ) =

∑∞
n=0 αnPn(cos θ) so αn is therefore

~α = D−1~b (7)

with bn = ann(n+ 1)/(2n+ 1) and

Dn,m =

∞∑
n′=0

an′

∫ π

0

dθ sin θPn(cos θ)Pn′(cos θ)Pm(cos θ)(8)

In conclusion, a geometric representation of the N =
281 inertial masses of the reasonably established, low-
est lying hadrons was introduced by employing a Rie-
mann Sphere. It allowed us to interpret the N masses
in terms of a single entity, the Masson, that might be in
one of the N eigenstates. Geometrically, the mass of the
Masson was the radius of the Riemann Sphere while its
numerical value was closest to the mass of the nucleon,
the only stable hadron, regardless of whether it was com-
puted from all of the particles (299), the hadrons (281),
or just the mesons (160) or baryons (121) separately.

Ignoring the other properties of these particles, it was
shown that the eigenvalues, the polar representation θν ,
satisfied the symmetry θν + θN+1−ν = π within less than
1% relative error. A function was established whose zeros
were, to good approximation, the polar representation of
the masses θν .

Although we did not include antiparticles in our anal-
ysis based on quantum field theory they are important
for cosmology where the lack of any apparent antimatter
in the universe is an ongoing scientific concern[8]. We
did not consider gravity for lack of information notwith-
standing a new result on the mass of the graviton mg <
7.7×10−17MeV/c2 i.e. essentially zero[9]. Because the
only stable hadron is the relatively heavy nucleon pre-
sumably because it contains no antiquarks one sees the
weakness of using only classical concepts to understand
the microscopic particle world. Finally, we note that dif-
ferent mappings than ours could very well reveal addi-
tional relations comparable to Eq. 4.
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