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Abstract Light-front holography, together with superconformal algebra, the
Pauli spinor representation of the conformal group, have provided new insights
into the physics of color confinement and the spectroscopy and dynamics of
hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in
the equations of motion without affecting the conformal invariance of the ac-
tion if one adds a term to the Hamiltonian proportional to the dilatation oper-
ator or the special conformal operator. If one applies the procedure of de Alfaro
et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a
confining qq̄ potential κ4ζ2, where ζ2 is the light-front radial variable related
in momentum space to the qq̄ invariant mass. The same result, including spin
terms, is obtained using light-front holography – the duality between the front
form and AdS5, the space of isometries of the conformal group – if one modi-
fies the action of AdS5 by the dilaton eκ

2z2 in the fifth dimension z. When one
generalizes this procedure using superconformal algebra, the resulting light-
front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon,
and tetraquarks, including supersymmetric relations between their masses and
their wavefunctions. One also predicts hadronic light-front wavefunctions and
observables such as structure functions, transverse momentum distributions,
and the distribution amplitudes. The mass scale κ underlying confinement and
hadron masses can be connected to the parameter ΛMS in the QCD running
coupling by matching the nonperturbative dynamics to the perturbative QCD
regime. The result is an effective coupling αs(Q

2) defined at all momenta. The
matching of the high and low momentum transfer regimes determines a scale
Q0 which sets the interface between perturbative and nonperturbative hadron
dynamics. I also discuss a number of applications of light-front phenomenol-
ogy.
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1 Introduction

A central problem in hadron physics is to obtain a color-confining, first ap-
proximation to QCD which can predict both the hadron spectrum and the
frame-independent light-front wavefunctions underlying hadron phenomenol-
ogy. The QCD Lagrangian with zero quark mass has no explicit mass scale; the
classical theory is conformally invariant. A profound question is then to un-
derstand how the proton mass and other hadronic mass scales – the mass gap
– can arise even when mq = 0. In fact, chiral QCD has no knowledge of units
such as MeV . Since the mass scale is not set by QCD, only ratios of masses
are determined, and the theory has dilation invariance. In a sense, chiral QCD
has an “extended conformal invariance.” However, a remarkable principle, first
demonstrated by de Alfaro, Fubini and Furlan (dAFF) [1] in 1 + 1 quantum
mechanics, is that a mass scale can appear in a Hamiltonian without affect-
ing the conformal invariance of the action. The essential step is to add to the
conformal Hamiltonian H0 terms proportional to the dilation operator D and
the special conformal operator K. Confinement appears for all choices if the
coefficient of the resulting harmonic oscillator potential is positive. The coef-
ficients introduce the mass scale κ, and the result is H = H0 + V , where V
a harmonic oscillator potential V (x) = κ2x2. The action remains conformal
when one changes to a new time variable. The new time variable has finite
support, conforming to the fact that the time interval between interactions
with confined constituents is finite.

De Téramond, Dosch, and I [2] have shown that a mass gap and a fun-
damental color confinement scale also appear when one extends the dAFF
procedure to light-front (LF) Hamiltonian theory in physical 3+1 spacetime.
In the case of mesons, one can convert the full LF Hamiltonian to an effective
qq̄ valence state Hamiltonian by systematically eliminating the higher Fock
states. Remarkably, the resulting light-front potential has a unique form of
a harmonic oscillator κ4ζ2 in the LF equation of motion. The light-front in-
variant variable is ζ where ζ2 = b2⊥x(1 − x) is conjugate to the invariiant

mass squared
k2⊥

x(1−x) for massless quarks. The result is a single-variable frame-

independent relativistic equation of motion for qq̄ bound states, a “Light-Front
Schrödinger Equation” [3], analogous to the nonrelativistic radial Schrödinger
equation in quantum mechanics. The same result, including spin terms, is ob-
tained using light-front holography – the duality between the front form and
AdS5, the space of isometries of the conformal group – if one modifies the
action of AdS5 by the dilaton eκ

2z2 in the fifth dimension z. An essential point
is that the mass scale κ is not determined absolutely by QCD – only ratios of
masses are predicted.

The central reason why the mathematical Anti-deSitter space in five dimen-
sions is relevant to hadron physics is that AdS5 space provides a geometrical
representation of the conformal group. Furthermore, AdS5 is holographically
dual to 3 + 1 spacetime at fixed light-front time τ = t+ z/c. The holographic
dictionary is summarized in Fig. 1 Color-confining light-front equations for
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Fig. 1 The holographic dictionary which maps the fifth dimension variable z of the five-
dimensional AdS5 space to the LF radial variable ζ where ζ2 = b2⊥(1 − x). The same
physics transformation maps the AdS5 and (3 + 1) LF expressions for electromagnetic and
gravitational form factors to each other. From Ref. [4]

mesons of arbitrary spin J can be derived [4] from the holographic mapping
of the “soft-wall model” modification of AdS5 space for the specific dilaton
profile e+κ

2z2 , where one identifies the fifth dimension coordinate z with the
light-front coordinate ζ where ζ2 = b2⊥x(1−x). The orbital angular momentum
quantum number L in the LF theory can be matched to the AdS5 variable
µR by matching the respective equations of motion and the twist dimension
of the eigensolutions. Note that L = max|Lz| and there are 2L+ 1 degenerate
states. This point is discussed for arbitrary spin for mesons and baryons in
Ref. [4]. As discussed in section XXX, it also predicts the analytic form of
the QCD running coupling in the nonperturbative domain. Further references
and reviews of Light-Front Holography may be found in refs. [5–9]

The combination of light-front dynamics, its holographic mapping to AdS5

space, and the dAFF procedure provides new insight into the physics underly-
ing color confinement, the nonperturbative QCD coupling, and the QCD mass
scale. A comprehensive review is given in Ref. [8]. The qq̄ mesons and their
valence LF wavefunctions are the eigensolutions of the frame-independent rel-
ativistic bound state LF Schrödinger equation. The mesonic qq̄ bound-state
eigenvalues for massless quarks are M2(n,L, S) = 4κ2(n+L+S/2). The equa-
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Fig. 2 Comparison of the AdS/QCD prediction M2(n,L, S) = 4κ2(n + L + S/2) for the
orbital L and radial n excitations of the meson spectrum with experiment. The pion is
predicted to be massless for zero quark mass. The u, d, s quark masses can be taken into
account by perturbing in < m2

q/x >. The fitted value of κ = 0.59 GeV for pseudoscalar
mesons, and κ = 0.54 GeV for vector mesons.

tion predicts that the pion eigenstate n = L = S = 0 is massless at zero quark
mass. The Regge spectra of the pseudoscalar S = 0 and vector S = 1 mesons
are predicted correctly, with equal slope in the principal quantum number n
and the internal orbital angular momentum L. A comparison with experiment
is shown in Fig. 2.

It is interesting to note that the contribution of the ‘H’ diagram to QQ̄
scattering is IR divergent as the transverse separation between the Q and the
Q̄ increases [10]. This is a signal that pQCD is inconsistent without color con-
finement. The sum of such diagrams could sum to the confinement potential
κ4ζ2 dictated by the dAFF principle that the action remains conformally in-
variant despite the appearance of the mass scale κ in the Hamiltonian. The
κ4ζ2 confinement interaction between a q and q̄ will induce a κ4/s2 correc-
tion to Re+e− , replacing the 1/s2 signal usually attributed to a vacuum gluon
condensate.

The predicted hadronic LFWFs are functions of the LF kinetic energy
k2
⊥/x(1 − x) – the conjugate of the LF radial variable ζ2 = b2⊥x(1 − x) –

times a function of x(1 − x); they do not factorize as a function of k2
⊥ times
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Prediction from AdS/QCD: Meson LFWF
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Fig. 3 Prediction from AdS/QCD and Light-Front Holography for meson LFWFs
ψM (x,k⊥) and the pion distribution amplitude.

a function of x. The resulting nonperturbative pion distribution amplitude
φπ(x) =

∫
d2k⊥ψπ(x,k⊥) = (4/

√
3π)fπ

√
x(1− x), see Fig. 3, which controls

hard exclusive process, is consistent with the Belle data for the photon-to-
pion transition form factor [11]. The AdS/QCD light-front holographic eigen-
function for the ρ meson LFWF ψρ(x,k⊥) gives excellent predictions for the
observed features of diffractive ρ electroproduction γ∗p → ρp′, as shown by
Forshaw and Sandapen [12]

LF holography gives a remarkable first approximation to hadron spec-
troscopy and the hadronic LFWFs. A new method for solving nonperturbative
QCD “Basis Light-Front Quantization” (BLFQ) [13], uses the eigensolutions
of a color-confining approximation to QCD (such as LF holography) as the
basis functions, rather than the plane-wave basis used in DLCQ, thus incor-
porating the full dynamics of QCD. LFWFs can also be determined from the
covariant Bethe-Salpeter wavefunction by integrating over k− [14].

2 Superconformal Algebra

The Light-Front Schrödinger Equation derived from LF holography incorpo-
rates color confinement and other essential spectroscopic and dynamical fea-
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Fig. 4 The convergence of theoretical methods for generating a model of hadron spec-
troscopy and dynamics with color confinement and meson-baryon supersymmetric relations.
.

tures of hadron physics, including a massless pion for zero quark mass and
linear Regge trajectories with the same slope in the radial quantum number
n and internal orbital angular momentum L. When one generalizes this pro-
cedure using superconformal algebra, the resulting light-front eigensolutions
predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, in-
cluding remarkable supersymmetric relations between the masses of mesons
and baryons of the same parity.

The synthesis of AdS/QCD with superconformal algebra and the dAFF
ansatz is illustrated in Fig. 4

The QCD Lagrangian is not supersymmetrical; however its hadronic eigen-
solutions conform to a fundamental 4-plet supersymmetric representation of
superconformal algebra, reflecting the underlying conformal symmetry of semi-
classical QCD for massless quarks. The conformal group has an elegant 2× 2
Pauli matrix representation called superconformal algebra, originally discov-
ered by Haag, Lopuszanski, and Sohnius [15](1974) The conformal Hamilto-
nian operator and the special conformal operators can be represented as anti-
commutators of Pauli matrices H = 1/2[Q,Q†] and K = 1/2[S, S†]. As shown
by Fubini and Rabinovici, [16], a nonconformal Hamiltonian with a mass scale
and universal confinement can then be obtained by shifting Q→ Q+ωK, the
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analog of the dAFF procedure. In effect one has obtained generalized super-
charges of the superconformal algebra [16].

This approach predicts novel supersymmetric relations between mesons,
baryons, and tetraquarks of the same parity as members of the same 4-plet
representation of superconformal algebra. The 4-plet representation illustrated
in Fig. 2 not only implies identical masses for the bosonic and fermionic hadron
eigenvalues, but also supersymmetric relations between their eigenfunctions–
their light-front wavefunctions. The baryonic eigensolutions correspond to
bound states of 3C quarks to a 3̄C spin-0 or spin-1 diquark cluster; the tetraquarks
in the 4-plet are bound states of diquarks and anti-diquarks.

The 4-plet contains two entries Ψ± for each baryons corresponding to inter-
nal orbital angular momentum Land L+1. This is the analog of the eigensolu-
tion of the Dirac-Coulomb equation which lower components Ψ− = σ·p

m+E−V Ψ
+

In the case of a nucleon, the overlap of the L = 0 and L = 1 LF wavefunc-
tions in the Drell-Yan-West formula is required to have a non-zero Pauli form
factor F2(Q2) and anomalous magnetic moment [17]. The existence of both
components is also necessary to generate the pseudo-T-odd Sivers single-spin
asymmetry in deep inelastic lepton-nucleon scattering [87].

Superconformal algebra also predicts universal Regge-slopes in n and L
for mesons: M2(n,L) = 4κ2(n + L) for mesons and M2(n,L) = 4κ2(n +
L+ 1) for baryons, consistent with observed hadronic spectroscopy. The pion
eigenstate with (n = L = S = 0) thus has zero mass in the chiral mq → 0
limit. The predicted meson, baryon and tetraquark masses are identical if
one identifies a meson with internal orbital angular momentum LM with its
superpartner baryon or tetraquark with LB = LM − 1. An example of the
mass degeneracy of ρ/ω meson Regge trajectory with the J = 3/2 ∆-baryon
trajectory is shown in Fig. ??. The combination of light-front holography with
superconformal algebra thus leads to the novel prediction that hadron physics
has supersymmetric properties in both spectroscopy and dynamics.

The LF Schrödinger Equations for baryons and mesons derived from su-
perconformal algebra are shown in Fig. 6. In effect the baryons on the proton
(Delta) trajectory are bound states of a quark with color 3C and scalar (vec-
tor) diquark with color 3̄C The proton eigenstate labeled ψ+ (parallel quark
and baryon spins) and ψ− (anti parallel quark and baryon spins) have equal
Fock state probability – a feature of “quark chirality invariance”. Predictions
for the static properties of the nucleons are discussed in Ref. [22]

The supersymmetry of the 4-plet representation is also exhibited dynami-
cally in terms of common features of the light-front wavefunctions of mesons,
baryons, and tetraquarks. One can test the similarities of their wavefunctions
and form factors in exclusive reactions such as e+e− → πT where T is a
tetraquark [23].

Empirically viable predictions for spacelike and timelike hadronic form fac-
tors, structure functions, distribution amplitudes, and transverse momentum
distributions have been obtained [24]. One can also observe features of super-
conformal symmetry in the spectroscopy of heavy-light mesons and baryons.



8 Stanley J. Brodsky

Superconformal Algebra
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Figure 1: The supersymmetric quadruplet {�M ,  B+,  B�, �T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2 ⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2�

�m2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C

Fig. 5 The 4-plet representation of mass-degenerate hadronic states predicted by supercon-
formal algebra [2]. Mesons are qq̄ bound states, baryons are quark plus anti-diquark bound
states and tetraquarks are diquark plus antidiquark bound states. The supersymmetric lad-

der operator R†
λ

connects quarks and anti-diquark clusters of the same color. The baryons
have two Fock states with orbital angular momentum LB and LB + 1 with equal weight.
The predicted meson, baryon and tetraquark masses are identical if one identifies a meson
with internal orbital angular momentum LM with its superpartner baryon or tetraquark
with LB = LM − 1.

Superconformal QM and its holographic embedding itself does not incor-
porate longitudinal x− dynamics. However. The inclusion of the quark masses
through the invariant mass is an extension of the model. The solutions In mo-

mentum space are then Gaussian in M2 = k⊥
2+m2

x(1−x) . This is proportional to

the p2

2mr
kinetic energy in the nonrelativistic limit where mr is the reduced

mass. The resulting LF potential thus confines in all three spatial directions.

3 Light-Front QCD

When one makes a measurement such as Compton scattering on the proton
γp→ γ′p′ or lepton-proton scattering `p→ `′X the hadron is observed along
the light-front (LF) (transverse to the light cone ) at a fixed time τ = x+ =
x3/c+ x0 – not at a fixed “instant” time t. This is the underlying principle of
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Fig. 6 (A). The LF Schrödinger equations for baryons and mesons for zero quark mass
derived from the Pauli 2× 2 matrix representation of superconformal algebra. The ψ± are
the baryon quark-diquark LFWFs where the quark spin Szq = ±1/2 is parallel or antiparallel
to the baryon spin Jz = ±1/2. The meson and baryon equations are identical if one identifies
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LB = LM − 1. See Refs. [19–21]. (B). Comparison of the ρ/ω meson Regge trajectory
with the J = 3/2 ∆ baryon trajectory. Superconformal algebra predicts the degeneracy of
the meson and baryon trajectories if one identifies a meson with internal orbital angular
momentum LM with its superpartner baryon with LM = LB + 1. See Refs. [19,20].
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the “front form” discussed by Dirac [25]. The LF time τ reduces to ordinary
time at c→∞.

The LF-time evolution operator is P− = P 0 − P 3 = i d
dx+ . Since P+ =

P 0 + P 3 and P⊥ are kinematical, one can define the LF Hamiltonian HLF =
P+P− − P 2

⊥. In the case of QCD, the eigenvalues of the LF invariant Hamil-

tonian HQCD
LF are the squares of the hadron masses M2

H : HQCD
LF |ΨH >=

M2
H |ΨH > [26], and the eigensolutions ofHQCD

LF provide the n-particle hadronic
LF Fock state wavefunctions (LFWFs) ψHn (xi,k⊥i, λi) =< n|ΨH >, the pro-
jection on the free Fock basis. The constituents’ physical momenta are p+i =
xiP

+, and p⊥i = xiP⊥ + k⊥i where
∑n
i=1 xi = 1 and

∑n
i=1 k⊥i = 0. The

λi label the spin projections S3
i . The total angular momentum is conserved:

J3 =
∑n
i=1 S

3
i +

∑n−1
i=1 L

3
i for every Fock state. One can derive HLF directly

from the QCD Lagrangian and avoid ghosts and longitudinal gluonic degrees
of freedom by choosing to work in the light-front gauge A+ = 0. Physical
results however, are independent of the gauge choice, as well as conventions
such as the choice of renormalization scheme or the choice of the initial renor-
malization scale.

The LFWFs are Poincare’ invariant; i.e., they are boost invariant, indepen-
dent of the hadron’s P+ and P⊥ and they are thus independent of the motion
of the hadron or observer. This is analogous to the fact that the image made by
a flash photograph is independent of the velocity of camera. Since the LFWFs
are independent of the hadron’s momentum, there is no length contraction.
The physical properties of a hadron are independent of the observer’s Lorentz
frame. The absence of length contraction in the front form was first noted by
Terrell [27] and Penrose [28]. One thus measures the same structure function
in an electron-ion collider as in an electron-scattering experiment where the
target hadron is at rest.

In the case of QCD, the eigenvalues of the LF invariant Hamiltonian
HLF = P+P− − P2

⊥, where P+ = P 0 + P z and P⊥ are kinematical, are the
squares of the hadron masses M2

H : HLF |ΨH >= M2
H |ΨH > [26]. The eigenso-

lutions of HLF provide the n-particle hadronic LF Fock state wavefunctions
(LFWFs) ψHn (xi,k⊥i, λi) =< n|ΨH >, the projection on the free Fock basis.
The LF Hamiltonian, can be derived directly from the QCD Lagrangian. The
constituents’ physical momenta are p+i = xiP

+, and p⊥i = xiP⊥ + k⊥i, and
the λi label the spin projections Szi .

The LF Hamiltonian HQCD
LF , can be derived directly from the QCD La-

grangian. One can avoid ghosts and longitudinal gluonic degrees of freedom
by choosing the light-front gauge A+ = 0. Physical results however, are inde-
pendent of the gauge choice, as well as conventions such as the choice of renor-
malization scheme or the choice of the initial renormalization scale. One then
can write HQCD

LF = HQCD
LFKE +HQCD

LFPE where the LF kinetic energy HQCD
LFKE =

∑
i
k2
⊥i+m2

i

xi
is equal to the invariant mass squared M2

n =
∑n
i p

µ
i

∑n
i pµi of

the free constituents of the n-particle Fock state. The quark masses appear

in the LF kinetic energy as
∑n
i

m2
qi

xi
. This contribution can be derived from

the Higgs theory quantized using LF dynamics. The confined quark field ψq
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couples to the background Higgs field gΨq
< H > Ψq via its Yukawa scalar

matrix element coupling gq < H > ū(p)1u(p) = mq × mq

x = m2

x .

4 The QCD Coupling at all Scales

The QCD running coupling αs(Q
2) sets the strength of the interactions of

quarks and gluons as a function of the momentum transfer Q. The depen-
dence of the coupling Q2 is needed to describe hadronic interactions at both
long and short distances. The QCD running coupling can be defined [29] at all
momentum scales from a perturbatively calculable observable, such as the cou-
pling αsg1(Q2), which is defined from measurements of the Bjorken sum rule. At
high momentum transfer, such “effective charges” satisfy asymptotic freedom,
obey the usual pQCD renormalization group equations, and can be related to
each other without scale ambiguity by commensurate scale relations [30].

The dilaton e+κ
2z2 soft-wall modification of the AdS5 metric, together

with LF holography, predicts the functional behavior of the running coupling
in the small Q2 domain [31]: αsg1(Q2) = πe−Q

2/4κ2

. Measurements of αsg1(Q2)
are remarkably consistent [32] with this predicted Gaussian form; the best fit
gives κ = 0.513 ± 0.007 GeV . See Fig. 7 Deur, de Teramond, and I [31,33,
34] have also shown how the parameter κ, which determines the mass scale
of hadrons and Regge slopes in the zero quark mass limit, can be connected
to the mass scale Λs controlling the evolution of the perturbative QCD cou-
pling. The high momentum transfer dependence of the coupling αg1(Q2) is
predicted by pQCD. The matching of the high and low momentum transfer
regimes of αg1(Q2) – both its value and its slope – then determines a scale
Q0 = 0.87± 0.08 GeV which sets the interface between perturbative and non-
perturbative hadron dynamics. This connection can be done for any choice of
renormalization scheme, such as the MS scheme, as seen in Fig. 7. The result
of this perturbative/nonperturbative matching is an effective QCD coupling
defined at all momenta. A remarkably similar result, a “process-independent
running coupling” has been derived using alternative methods has recently
been derived in Ref. [35].

The predicted value of ΛMS = 0.339±0.019 GeV from this analysis agrees
well the measured value [36] ΛMS = 0.332±0.019GeV. These results, combined
with the AdS/QCD superconformal predictions for hadron spectroscopy, allow
us to compute hadron masses in terms of ΛMS : mp =

√
2κ = 3.21 ΛMS , mρ =

κ = 2.2 ΛMS , and mp =
√

2mρ, meeting a challenge proposed by Zee [37]. The
value of Q0 can be used to set the factorization scale for DGLAP evolution of
hadronic structure functions and the ERBL evolution of distribution ampli-
tudes. Deur, de Téramond, and I have also computed the dependence of Q0

on the choice of the effective charge used to define the running coupling and
the renormalization scheme used to compute its behavior in the perturbative
regime. The use of the scale Q0 to resolve the factorization scale uncertainty
in structure functions and fragmentation functions, in combination with the
scheme-indepedent principle of maximum sensitivity (PMC) [38] for setting
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renormalization scales, can greatly improve the precision of pQCD predictions
for collider phenomenology.

5 Applications

The combination of light-front holography and superconformal algebra provide
new insights into the structure of hadrons in terms of their frame-independent
light-front wavefunctions. For example, hadron structure functions such as
F2(x,Q2) measured in deep inelastic lepton-scattering and the transverse mo-
mentum distributions measured in deeply virtual Compton scattering can be
computed from the squares of the LFWFs. See e.g., ref. [39]. The AdS/QCD
solutions provide the nonperturbative input for Q2 < Q2

0. At higher Q2 > Q2
0,

structure functions evolve according to DGLAP evolution. The renormaliza-
tion scale entering the running couping in DGLAP evolution can be set unam-
biguously and without scheme dependence using the Principle of Maximum
Conformality [38].

Exclusive hadron amplitudes, such as the spacelike elastic and transition
form factors are also given in terms of convolutions of light-front wavefunc-
tions [17]. Hadronic scattering amplitudes involving quark interchange such
K+p → K+p scattering can be written in terms of the product of four
LFWFs [40]. In each case, the dimensional counting rules are obeyed. At high
momentum transfer, exclusive amplitudes factorize as the product of hard
quark and gluon subprocess amplitudes convoluted with the hadronic distribu-
tion amplitudes ψH(xi, Q) which are obtained by integrating the LFWFs over
transverse momentum k2⊥i < Q2. The AdS/QCD solutions provide the nonper-
turbative input for Q2 < Q2

0. At higher Q2 > Q2
0, the distribution amplitudes

evolve according to ERBL evolution. For example, the nonperturbative pion
distribution amplitude is φπ(x) =

∫
d2k⊥ψπ(x,k⊥) = (4/

√
3π)fπ

√
x(1− x),

which controls hard exclusive process, is consistent with the Belle data for the
photon-to-pion transition form factor [11]. See Fig. 3. The meson distribtion
amplitude evolves to x(1− x) at Q2 →∞. In the case of the deuteron, ERBL
evolution leads to “hidden color” Fock state contributions [41]. The AdS/QCD
light-front holographic eigenfunction for the ρ meson LFWF ψρ(x,k⊥) gives
excellent predictions for the observed features of diffractive ρ electroproduction
γ∗p→ ρp′, as shown by Forshaw and Sandapen [12]

It should be noted that The hadronic LFWFs from AdS/QCD are functions
of the LF kinetic energy k2

⊥/x(1−x) – the conjugate of the LF radial variable
ζ2 = b2⊥x(1 − x) – times a function of x(1 − x); they do not factorize as a
function of k2

⊥ times a function of x.

5.1 Other applications

1. Hadronization at the Amplitude Level The new insights into color confine-
ment given by AdS/QCD and superconformal algebra suggest that one
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Fig. 8 Doubly Virtual Compton scattering on a proton (or nucleus) can be measured for
two spacelike photons q21 , q

2
2 < 0 with minimal, tunable, skewness ξ using positronium-proton

scattering [e+e−]p→ e+e−p′.

could compute hadronization at amplitude level [42] using the confine-
ment interaction and the LFWFs predicted by AdS/QCD and Light-Front
Holography. The invariant mass of a color-singlet cluster M is the key
variable which separates perturbative and nonperturbative dynamics. For
example, consider e+e− annihilation using LF τ - ordered perturbation
theory. At an early stage in LF time the annihilation will produce jets
of quarks and gluons in an intermediate state that are off the P− energy
shell. If a color-singlet cluster of partons in a jet satisfies M2 < κ2, the
cluster constituents will be ruled by the κ4ζ2 color-confinement potential.
At this stage, the LFWF ψH converts the off-shell partons to the on-shell
hadron. Quarks and gluons only appear in intermediate states, but only
hadrons can be produced. Thus the AdS/QCD Light-Front Holographic
model suggests how one can implement the transition between perturba-
tive and nonperturbative QCD. For a QED analog, see Refs. [43,44].

2. Direct Higher Twist Processes Higher-twist subprocesses such as qq → pq̄
and gq → πq where the hadron is produced directly in the hard-scattering
reaction are also predicted by QCD. Such direct processes produce a hadron
without the usual same-side hadronic energy produced from quark or gluon
jet fragmentation This effect is similar to ‘direct photon’ production from a
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gq → γq subprocess. The absence of same side hadrons has been observed
at RHIC [45]. If a hadron is produced directly in the hard subprocess, it
is color transparent and suffers minimal absorption in a nuclear reaction.
This can account for the “baryon anomaly” – the high baryon-to-meson
ratio observed in central nucleus-nucleus collisions at high pT [46]. The rate
for direct hadron processes is amplified by the fact that the initial partons
are produced with minimum x1 and x2 where the structure functions are
maximized. The hard subprocess energy ŝ = x1x2s is converted to the
production of high pT hadron with maximum efficiency. The fast power-
law fall-off observed at fixed xT at the ISR and the Cronin et al. Chicago-
Princeton experiments at Fermilab [47] have a natural explanation in terms
such processes. For a review, see [48].

3. Ridge formation from flux-tube collisions In the case of ep→ e′X, one can
consider the collisions of the confining QCD flux tube appearing between
the q and q̄ of the virtual photon with the flux tube between the quark and
diquark of the proton. Since the qq̄ plane is aligned with the scattered elec-
tron’s plane, the resulting “ridge” of hadronic multiplicity produced from
the γ∗p collision will also tend to be aligned with the scattering plane of
the scattered electron. The virtual photon’s flux tube will also depend on
the photon virtuality Q2, as well as the flavor of the produced pair arising
from γ∗ → qq̄. In the case of high energy γ∗γ∗ collisions, one can control
the produced hadron multiplicity and ridge geometry using the scattered
electrons’ planes or the scattered proton planes in ultra-peripheral colli-
sions at the LHC. The resulting dynamics [49] is a natural extension of the
flux-tube collision description of the ridges produced in p−p collisions [50].

4. Relativistic Structure of Atoms The light-front formalism can be applied
directly to relativistic atomic physics. For example one can measure the
boost-invariant LF wavefunctions of atoms such as positronium and ob-
serve the transition from the nonrelativistic Schródinger regime to the
full dynamics of QED at short distances. One can produce a relativis-
tic positronium beam using the collisions of laser photons with high en-
ergy photons or by measuring Bethe-Heitler pair production just below
the e+e− threshold. An analogous process will create the “true muonium”
atom [µ−µ−] [43,44]. One can the study the dissociation in a thin tar-
get of the relativistic positronia atoms to an electron and positron with
light front momentum fractions x and 1 − x and opposite transverse mo-
menta in analogy to the E791 measurements of the diffractive dissociation
of the pion to two jets [51]. The cross section is proportional to the trans-
verse momentum derivative of the LF wavefunction squared. The LFWF
of positronium in the relativistic domain has recently been computed using
the BLFQ method in ref. [52]. The study of higher LF Fock states such as
|e+e−γ > and |e+e−e+e− > is also possible.

5. Doubly-Spacelike Virtual Compton Scattering The amplitude for doubly
virtual Compton scattering on a proton γ∗(q1)p → γ∗(q2)p′ (or nucleus)
can be measured in positronium-proton elastic scattering where the ex-
changed photons are both spacelike q21 < 0, q22 < 0. For example, the in-
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coming electron and positron can each scatter with opposite transverse
momenta leaving the proton intact with minimum momentum transfer.
See Fig.8 The imaginary part of this forward amplitude is proportional by
unitarity to σ(gamma∗p→ X). One can also measure double deep inelas-
tic scattering γ∗γ∗p→ X, as well as elastic positronium-proton scattering
[e+e−]p→ [e+e−]′p′.
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4. G. F. de Téramond, H. G. Dosch and S. J. Brodsky, Phys. Rev. D 87, no. 7, 075005

(2013) doi:10.1103/PhysRevD.87.075005 [arXiv:1301.1651 [hep-ph]].
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42. S. J. Brodsky and G. F. de Téramond, arXiv:0901.0770 [hep-ph].
43. S. J. Brodsky and R. F. Lebed, Phys. Rev. Lett. 102, 213401 (2009)

doi:10.1103/PhysRevLett.102.213401 [arXiv:0904.2225 [hep-ph]].
44. A. Banburski and P. Schuster, Phys. Rev. D 86, 093007 (2012)

doi:10.1103/PhysRevD.86.093007 [arXiv:1206.3961 [hep-ph]].
45. S. J. Brodsky and A. Sickles, Phys. Lett. B 668, 111 (2008)

doi:10.1016/j.physletb.2008.07.108 [arXiv:0804.4608 [hep-ph]].
46. F. Arleo, S. J. Brodsky, D. S. Hwang and A. M. Sickles, Phys. Rev. Lett. 105, 062002

(2010) doi:10.1103/PhysRevLett.105.062002 [arXiv:0911.4604 [hep-ph]].



18 Stanley J. Brodsky

47. J. W. Cronin, H. J. Frisch, M. J. Shochet, J. P. Boymond, R. Mermod, P. A. Piroue
and R. L. Sumner, Phys. Rev. D 11, 3105 (1975). doi:10.1103/PhysRevD.11.3105

48. D. W. Sivers, S. J. Brodsky and R. Blankenbecler, Phys. Rept. 23, 1 (1976).
doi:10.1016/0370-1573(76)90015-6

49. S. J. Brodsky, Nucl. Part. Phys. Proc. 258-259, 23 (2015)
doi:10.1016/j.nuclphysbps.2015.01.007 [arXiv:1410.0404 [hep-ph]].

50. J. D. Bjorken, S. J. Brodsky and A. Scharff Goldhaber, Phys. Lett. B 726, 344 (2013)
doi:10.1016/j.physletb.2013.08.066 [arXiv:1308.1435 [hep-ph]].

51. D. Ashery, Nucl. Phys. Proc. Suppl. 90, 67 (2000) [Nucl. Phys. Proc. Suppl. 108,
321 (2002)] doi:10.1016/S0920-5632(00)00875-6, 10.1016/S0920-5632(02)01354-3 [hep-
ex/0008036].

52. P. Wiecki, Y. Li, X. Zhao, P. Maris and J. P. Vary, Phys. Rev. D 91, no. 10, 105009
(2015) doi:10.1103/PhysRevD.91.105009 [arXiv:1404.6234 [nucl-th]].
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