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Abstract

In QCD both the quark and ghost propagators are important for governing the non-perturbative
dynamics of the theory. It turns out that the dynamical properties of the quark and ghost fields
impose non-perturbative constraints on the analytic structure of these propagators. In this
work we explicitly derive these constraints. In doing so we establish that the corresponding
spectral densities include components which are multiples of discrete mass terms, and that the
propagators are permitted to contain singular contributions involving derivatives of δ(p), both
of which are particularly relevant in the context of confinement.
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1 Introduction

The non-perturbative behaviour of propagators involving coloured fields enters into many im-
portant areas of quantum chromodynamics (QCD), including the dynamics of quark-gluon
plasma [1, 2] and the nature of confinement itself [3, 4, 5, 6, 7, 8]. Nevertheless, the overall
structure of these objects remains largely unknown. In order to gain a better understanding of
the general characteristics of these objects, one requires a framework in which one can probe the
non-perturbative regime. In the literature, many of the new insights into the structure of QCD
propagators have come from non-perturbative numerical approaches [5, 9, 10, 11, 12, 13, 14].
Now whilst these approaches provide a powerful way to calculate certain aspects of propagators,
they necessarily contain uncertainties due to the approximations that are required in order to
carry out the calculations1. In Refs. [8] and [15] an alternative approach was developed in order
to establish the most general structural form of the gluon propagator. This approach inovlved
applying a local quantum field theory (LQFT) framework, which is constructed via the assertion
of a series of physically motivated axioms [4, 16, 17, 18, 19]. Since these axioms are assumed to
hold independently of the coupling regime, this enables genuine non-perturbative characteristics
to be derived in a purely analytic manner.

An important feature of gauge theories such as QCD is that the gauge symmetry provides an
obstacle to the locality of the theory2. In order to construct a consistent quantised theory one
is left with two options: either one allows non-local fields, or one preserves locality. A general
feature of local quantisations is that additional degrees of freedom are introduced into the the-
ory, resulting in a space of states with an indefinite inner product. The prototypical example is
the Becchi-Rouet-Stora-Tyutin (BRST) quantisation of QCD, where the space of states VQCD

contains negative-norm ghost states. In this case the physical states Vphys ⊂ VQCD correspond
to those that are annihilated by the BRST charge [4]. Although many of the generic features of
positive-definite inner product QFTs are preserved in BRST quantised QCD, it turns out that
the existence of an indefinite inner product can lead to significant changes in the structure of
the propagators3. In particular, in Ref. [8] it was demonstrated that the BRST quantised gluon
propagator can potentially contain singular terms involving derivatives of δ(p), a feature which
is related to confinement [7, 20, 21].

Since quark and ghost fields are the other degrees of freedom in QCD for which the propagators
play a central role in governing the dynamics of the theory, it is also important to determine
the structural properties of the propagators associated with these fields. With this motivation
in mind, the aim of this paper is to continue the approach developed in Refs. [8] and [15] for
the gluon propagator, and evaluate the constraints imposed on the quark and ghost propagators
in BRST quantised QCD. The rest of the paper is organised as follows: in Sec. 2 a local QFT
approach is used to derive the general structural representation of the Lorentz covariant Dirac
fermion correlator and propagator, and these representations are then used together with the
quark Schwinger-Dyson equation to constrain the quark propagator; in Sec. 3 an analogous
approach is applied in order to determine the overall structural form of an anti-commuting
ghost correlator and propagator, and the subsequent constraints imposed by the Schwinger-
Dyson equation on the QCD ghost propagator; and finally in Sec. 4 the main findings are
summarised.

1In the case of the solutions of the Schwinger-Dyson equations, uncertainties arise for example due to the choice
of truncation scheme employed in order to consistently solve the equations.

2By locality we mean that the fields in the theory are local fields, and therefore commute or anti-commute
(depending on their spin properties) for space-like separations [18].

3LQFTs defined with an indefinite inner product space of states can be described using a modified version of the
standard QFT axioms, which are often referred to as the Pseudo-Wightman axioms. A more in-depth discussion of
this framework can be found in Ref. [19].
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2 Non-perturbative constraints on the quark propagator

In order to derive the structural form of the quark propagator in QCD one must first determine
the general properties of an arbitrary Dirac fermion correlator and propagator. These properties
will be discussed in the proceeding sections.

2.1 The Dirac fermion correlator

A central feature of local formulations of QFT is that correlators 〈0|φ1(x1)φ2(x2)|0〉 and their

Fourier transforms T̂(1,2)(p) are distributions4. Due to the Lorentz transformation properties of

the fields φ1 and φ2 it follows that T̂(1,2)(p) can be decomposed in the following manner:

T̂(1,2)(p) =

N∑
α=1

Qα(p) T̂α(1,2)(p), (2.1)

where T̂α(1,2)(p) are Lorentz invariant distributions, and Qα(p) are polynomial functions of p
carrying the same Lorentz index structure as φ1 and φ2 [19]. The first case of interest in this
paper is where φ1 = ψ and φ2 = ψ are Dirac spinor and conjugate spinor fields respectively.
In this instance there are two possible Lorentz covariant polynomials: Q1(p) = I and Q2(p) =
γµpµ = /p, where the spinor indices have been suppressed. It follows from Eq. (2.1) that the
momentum space fermion correlator can then be written

Ŝ(p) = F
[
〈0|ψ(x)ψ(y)|0〉

]
= I Ŝ1(p) + /p Ŝ2(p). (2.2)

As in the case of the vector correlator [8], the Lorentz invariant distributions Ŝ1(p) and Ŝ2(p) are
restricted to have support in the closed forward light cone V +, and therefore have the following
spectral representation [19]:

Ŝi(p) = Pi(∂
2)δ(p) +

∫ ∞
0

ds θ(p0)δ(p2 − s)ρi(s), (2.3)

where Pi(∂
2) is a polynomial of finite order in the d’Alembert operator ∂2 = gµν

∂
∂pµ

∂
∂pν

, and

ρi(s) are the corresponding spectral densities5. The full fermion correlator therefore takes the
form

Ŝ(p) =

∫ ∞
0

ds θ(p0)δ(p2 − s)
[
ρ1(s) + /pρ2(s)

]
+
[
P1(∂2) + /pP2(∂2)

]
δ(p). (2.4)

Taking the inverse Fourier transform of this expression leads to the general representation of
the position space correlator

〈0|ψ(x)ψ(y)|0〉 =−
∫ ∞
0

ds

2π

[
ρ1(s) + ρ2(s)i/∂

]
iD(−)(x− y; s)

+
1

(2π)4

[
P1

[
−(x− y)2

]
+ i/∂ P2

[
−(x− y)2

] ]
, (2.5)

where D(−)(x − y; s) is the negative frequency Pauli-Jordan function [19]. Since P1 and P2

are complex polynomials of finite order, one can set: P1 =
∑
l=0 al

[
−(x− y)2

]l
, and P2 =∑

m=1 bm
(
−(x− y)2

)m
where al, bm ∈ C. The sum in P2 does not include the m = 0 term

because this will not contribute due to the derivative in Eq. (2.5).

4More specifically, they are assumed to belong to the class of tempered distributions S ′(R1,3) [16].
5It turns out that the spectral densities ρi(s) are tempered distributions in the class S ′(R+).
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2.2 The Dirac fermion propagator

The fermion propagator involves a time-ordered product of fields, and is defined by

〈0|T{ψ(x)ψ(y)}|0〉 := θ(x0 − y0)〈0|ψ(x)ψ(y)|0〉 − θ(y0 − x0)〈0|ψ(y)ψ(x)|0〉. (2.6)

In order to determine the spectral representation of this propagator one must first establish the
spectral representation for the correlator 〈0|ψ(y)ψ(x)|0〉. Since the CPT operator Θ transforms
Dirac spinor fields as: Θψ(x)Θ−1 = iγ5ψ

†(−x), and the vacuum state is invariant under the
action of Θ, one has the following relation

〈0|ψ(y)ψ(x)|0〉 = −γ5〈0|ψ(−x)ψ(−y)|0〉γ5. (2.7)

Using the spectral representation of the fermion correlator in Eq. (2.4), the propagator can then
be written

〈0|T{ψ(x)ψ(y)}|0〉 = θ(x0 − y0)

∫ ∞
0

ds

∫
d4p

(2π)4
e−ip(x−y)θ(p0)δ(p2 − s)

[
ρ1(s) + /pρ2(s)

]
+ θ(x0 − y0)

∫
d4p

(2π)4
e−ip(x−y)

[
P1(∂2) + /pP2(∂2)

]
δ(p)

+ θ(y0 − x0)

∫ ∞
0

ds

∫
d4p

(2π)4
eip(x−y)θ(p0)δ(p2 − s)

[
ρ1(s)− /pρ2(s)

]
+ θ(y0 − x0)

∫
d4p

(2π)4
eip(x−y)

[
P1(∂2)− /pP2(∂2)

]
δ(p). (2.8)

In order to simplify this expression one can use the relation

i/∂
[
θ(x0 − y0)e−ip(x−y) + θ(y0 − x0)eip(x−y)

]
=/p
[
θ(x0 − y0)e−ip(x−y) − θ(y0 − x0)eip(x−y)

]
+ iγ0 δ(x0 − y0)

[
e−ip(x−y) − eip(x−y)

]
,

which upon substitution into Eq. (2.8) implies that the Dirac fermion propagator has the fol-
lowing general structure

〈0|T{ψ(x)ψ(y)}|0〉 = −
∫ ∞
0

ds

2π

[
ρ1(s) + ρ2(s)i/∂

]
i∆F (x− y; s)

+
1

(2π)4
P1

[
−(x− y)2

]
+

i

(2π)4
/∂P2

[
−(x− y)2

]
, (2.9)

where ∆F (x−y; s) is the Green’s function of the Klein-Gordon equation. The momentum space

propagator ŜF (p) therefore has the form

ŜF (p) = i

∫ ∞
0

ds

2π

[
ρ1(s) + /pρ2(s)

]
p2 − s+ iε

+
[
P1(∂2) + /pP2(∂2)

]
δ(p). (2.10)

The representations in Eqs. (2.9) and (2.10) follow only from the assumption that the momentum
space correlators are Lorentz covariant distributions with support in the closed forward light
cone. Since this assumption is a generic feature of any QFT, these representations are therefore
model independent.

2.3 The quark propagator

Since the general spectral properties of a Dirac fermion propagator have been outlined in the
previous section, one can now use the dynamical information in BRST quantised QCD to derive
the model-dependent constraints on the structure of the quark propagator.
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2.3.1 General structure

In BRST quantised QCD the renormalised quark field ψi satisfies the equation of motion

(iγµ∂µ −m)ψi = −gγµAaµ(x)(taψ)i = Ki, (2.11)

where ta is the colour group generator in the fundamental representation, i is the colour index,
and g,m are the renormalised coupling and mass parameters. The quark fields also satisfy the
equal-time anti-commutation relation{

ψi(x), ψj(y)
}
x0=y0

= δijZ−12 γ0δ(x− y), (2.12)

where Z2 is the quark field renormalisation constant. Taking the vacuum expectation value of
Eq. (2.12), and applying Eq. (2.5) together with Eq. (2.7) gives

〈0|{ψi(x), ψj(y)}|0〉x0=y0 = −
[∫ ∞

0

ds

2π

[
ρij1 (s) + ρij2 (s)i/∂

]
iD(−)(x− y; s)

]
x0=y0

+

[∫ ∞
0

ds

2π

[
ρij1 (s) + ρij2 (s)i/∂

]
iD(−)(y − x; s)

]
x0=y0

= −
[∫ ∞

0

ds

2π

[
ρij1 (s) + ρij2 (s)

(
iγ0∂0 + iγj∂j

)]
iD(x− y; s)

]
x0=y0

(2.13)

Using the initial conditions: D(x−y; s)x0=y0 = 0 and Ḋ(x−y; s)x0=y0 = δ(x−y), and comparing

with Eq. (2.12), it follows from Eq. (2.13) that ρij2 (s) satisfies the spectral density constraint∫ ∞
0

ds ρij2 (s) = 2πδijZ−12 . (2.14)

In contrast to the gluon propagator case [8], the equal-time anti-commutation relation imposes
an integral constraint on one of the spectral densities, not both.

BRST quantised QCD has a space of states with an indefinite inner product. Among other things
this implies that not all correlators are guaranteed to define positive-definite distributions [19].
In certain cases, such as correlators constructed from gauge-invariant fields, one can demonstrate
though that correlators do indeed possess this property. However, since the interacting quark
correlator 〈0|ψ(x)iψj(y)|0〉 itself is not composed of gauge-invariant fields, nor is it related to
a gauge-invariant correlator which consists of the quark field or its derivatives (like the photon
correlator in QED [8]), neither the state space structure nor the dynamical equations [Eqs. (2.11)
and (2.12)] are sufficient to rule out the possibility of terms involving derivatives of δ(p). In
particular, this implies that the corresponding (momentum space) polynomial terms P ij1 (∂2) =∑
l a
ij
l (∂2)l and P ij2 (∂2) =

∑
m b

ij
m(∂2)m for the quark correlator may be non-vanishing, and

hence the quark propagator has the general form

ŜijF (p) = i

∫ ∞
0

ds

2π

[
ρij1 (s) + /pρ

ij
2 (s)

]
p2 − s+ iε

+
[
P ij1 (∂2) + /pP

ij
2 (∂2)

]
δ(p). (2.15)

Although the overall analytic structure of the quark propagator has been discussed many times in
the literature [5, 9, 22], the possibility of singular terms in the quark propagator is a feature that
has generally not been emphasised before, and yet could potentially be important in the context
of QCD confinement. In Ref. [7] it was established that the appearance of non-measure-defining
terms in correlators, which includes derivatives of δ(p), can cause the correlation strength be-
tween the states created by the fields in these correlators to increase with the separation of the
states, a violation of the so-called cluster decomposition property [20, 21]. If one could demon-
strate that this occurs for any correlator involving fields which create coloured states, this would
imply that the corresponding states could not be measured independently of one another, which
is a sufficient condition for confinement [4, 23].
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2.3.2 Schwinger-Dyson equation constraints

Now that the general structure of the quark propagator has been outlined, one can evaluate
the further constraints that the equation of motion [Eq. (2.11)] imposes. As demonstrated in
Ref. [15] for the gluon propagator, a direct way to determine these constraints is to derive the
corresponding Schwinger-Dyson equation, and then use this to separately constrain the singular
and non-singular terms in the propagator. Combining Eq. (2.11) and Eq. (2.12), together with
the definition of the Dirac fermion propagator in Eq. (2.6), one obtains the coordinate space
quark Schwinger-Dyson equation

(iγµ∂µ −m)〈0|T{ψi(x)ψj(y)}|0〉 = iδijZ−12 δ(x− y) + 〈0|T{Ki(x)ψj(y)}|0〉, (2.16)

which in momentum space has the form

(/p−m)ŜijF (p) = iδijZ−12 + K̂ij(p), (2.17)

where K̂ij(p) := F
[
〈0|T{Ki(x)ψj(y)}|0〉

]
. Since Ki(x) := −gγµAaµ(x)[taψ(x)]i transforms as a

Dirac spinor, K̂ij(p) has an analogous spectral representation to ŜijF (p)

K̂ij(p) = i

∫ ∞
0

ds

2π

[
ρ̃ij1 (s) + /pρ̃

ij
2 (s)

]
p2 − s+ iε

+
[
P̃ ij1 (∂2) + /pP̃

ij
2 (∂2)

]
δ(p). (2.18)

Inserting Eqs. (2.15) and (2.18) into Eq. (2.17), and separately equating the terms involving
derivatives of δ(p) which have support solely at p = 0, and the terms with support outside of
p = 0, one obtains the equalities(

/p−m
) [
P ij1 (∂2) + /pP

ij
2 (∂2)

]
δ(p) =

[
P̃ ij1 (∂2) + /pP̃

ij
2 (∂2)

]
δ(p), (2.19)

(
/p−m

)i∫ ∞
0

ds

2π

[
ρij1 (s) + /pρ

ij
2 (s)

]
p2 − s+ iε

 = iδijZ−12 +

i ∫ ∞
0

ds

2π

[
ρ̃ij1 (s) + /pρ̃

ij
2 (s)

]
p2 − s+ iε

 . (2.20)

In order to determine the relations imposed by Eq. (2.19), let P̃ ij1 (∂2) =
∑
r ã

ij
r (∂2)r and

P̃ ij2 (∂2) =
∑
s b̃
ij
s (∂2)s be the polynomial terms of the propagator K̂ij(p). By equating the

terms proportional to /p and the Dirac spinor identity, one obtains the following constraints on

the coefficients of P ij1 and P ij2

aijn =
m2n

4n(n+ 1)!n!

aij0 +

n−1∑
k=0

4k(k + 1)!k!
(
mãijk + 4(k + 1)(k + 2)b̃ijk+1

)
m2(k+1)

 , n ≥ 1 (2.21)

bijn =
m2n−1

4n(n+ 1)!n!

aij0 +

n−1∑
k=0

4k(k + 1)!k!
(
mãijk + 4(k + 1)(k + 2)b̃ijk+1

)
m2(k+1)

− 1

m
b̃ijn , n ≥ 1

(2.22)

Eqs. (2.21) and (2.22) demonstrate that aijn and bijn are completely determined by aij0 and the

coefficients of the singular terms in K̂ij(p). In particular, these relations imply that if the quark
propagator contains a δ(p) term (i.e. aij0 6= 0), or singular terms are present in the propaga-

tor K̂ij(p), this is sufficient to ensure that the quark propagator must contain terms involving
derivatives of δ(p). In contrast, the coefficients of terms involving derivatives of δ(p) in the gluon
propagator are not affected by the presence or absense of δ(p) terms [15].
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As with Eq. (2.19) one can perform the same matching procedure for Eq. (2.20), and in doing
so one obtains the following equalities

i

∫ ∞
0

ds

2π
ρij2 (s) + i

∫ ∞
0

ds

2π

[
sρij2 (s)−mρij1 (s)

]
p2 − s+ iε

= iδijZ−12 + i

∫ ∞
0

ds

2π

ρ̃ij1 (s)

p2 − s+ iε
, (2.23)

i

∫ ∞
0

ds

2π

[
ρij1 (s)−mρij2 (s)

]
p2 − s+ iε

= i

∫ ∞
0

ds

2π

ρ̃ij2 (s)

p2 − s+ iε
. (2.24)

Using the fact that ρij2 (s) satisfies the integral condition in Eq. (2.14), Eqs. (2.23) and (2.24)
imply the spectral density constraints

sρij2 (s)−mρij1 (s) = ρ̃ij1 (s), (2.25)

ρij1 (s)−mρij2 (s) = ρ̃ij2 (s), (2.26)

which can be rewritten in the form(
s−m2

)
ρij1 (s) = mρ̃ij1 (s) + sρ̃ij2 (s), (2.27)(

s−m2
)
ρij2 (s) = ρ̃ij1 (s) +mρ̃ij2 (s). (2.28)

As with the spectral densities of the gluon propagator, these distributional equations can be
explicitly solved [19], and have the following general solutions

ρij1 (s) = Aij1 δ(s−m2) + κij1 (s), (2.29)

ρij2 (s) = Aij2 δ(s−m2) + κij2 (s), (2.30)

where the components κij1 (s) and κij2 (s) are particular solutions which satisfy the relations(
s−m2

)
κij1 (s) = mρ̃ij1 (s) + sρ̃ij2 (s) and

(
s−m2

)
κij2 (s) = ρ̃ij1 (s) +mρ̃ij2 (s) respectively. There-

fore, κij1 (s) and κij2 (s) are completely determined by the spectral densities of K̂ij(p).

In order to fix the coefficients Aij1 and Aij2 , one must use the integral constraints on the various

spectral densities. In addition to Eq. (2.14), it turns out that ρ̃ij2 (s) satisfies the sum rule∫ ∞
0

ds ρ̃ij2 (s) = 0. (2.31)

This sum rule is derived from the equal-time restricted anti-commutator correlator relation

〈0|
{
Ki(x), ψj(y)

}
|0〉x0=y0 = 0, (2.32)

which itself follows from Eq. (2.12) and the fact that the gluon field Aaµ has a vanishing vacuum
expectation value. Combining Eqs. (2.14) and (2.31) together with Eq. (2.26), finally gives

ρij1 (s) =

[
2πmδijZ−12 −

∫
ds̃ κij1 (s̃)

]
δ(s−m2) + κij1 (s), (2.33)

ρij2 (s) =

[
2πδijZ−12 −

∫
ds̃ κij2 (s̃)

]
δ(s−m2) + κij2 (s). (2.34)

These equalities explicitly demonstrate that the quark spectral densities both contain a discrete
mass component. However, in contrast to the case of the gluon propagator [15], the coefficients in
front of these components are not completely constrained, and depend explicitly on the integrals
of κij1 (s) and κij2 (s). It is therefore not as clear-cut as to whether these mass components are
actually present or absent in specific gauges.
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3 Non-perturbative constraints on the ghost propagator

As in the case of the quark propagator in Sec. 2, before deriving the general structural form
of the ghost propagator in QCD, one must first determine the properties of an arbitrary ghost
correlator and propagator.

3.1 The ghost correlator and propagator

Ghost Ca and anti-ghost Ca fields are anti-commuting scalar fields. From the general analysis
in Sec. 2.1 it follows that the momentum space ghost correlator can be written

Ĝab(p) = F
[
〈0|Ca(x)Cb(y)|0〉

]
= P abC (∂2)δ(p) +

∫ ∞
0

ds θ(p0)δ(p2 − s)ρabC (s), (3.1)

where P abC =
∑
n g

ab
n

[
−(x− y)2

]n
is a polynomial of finite order. Taking the inverse Fourier

transform of this expression then leads to the following general representation of the position
space correlator:

〈0|Ca(x)Cb(y)|0〉 = −
∫ ∞
0

ds

2π
ρabC (s)iD(−)(x− y; s) +

1

(2π)4
P abC

[
−(x− y)2

]
. (3.2)

The corresponding propagator for a general ghost field is defined by

〈0|T{Ca(x)Cb(y)}|0〉 := θ(x0 − y0)〈0|Ca(x)Cb(y)|0〉 − θ(y0 − x0)〈0|Cb(y)Ca(x)|0〉, (3.3)

where the minus sign arises because the fields are anti-commuting. Unlike the fermion propaga-
tor, CPT symmetry cannot be used to directly relate the ghost 〈0|Ca(x)Cb(y)|0〉 and anti-ghost
〈0|Cb(y)Ca(x)|0〉 correlators with one another. The reason for this stems from the fact that
ghost and anti-ghost fields transform as Lorentz scalars but are defined to be anti-commuting,
which causes a violation of the CPT theorem [19]. The CPT operator Θ therefore does not
transform the ghost and anti-ghost fields into one another, and thus the corresponding cor-
relators must be treated independently. Nevertheless, since the anti-ghost correlator has the
same distributional properties as the ghost correlator, the spectral representation has the same
general structure

F
[
〈0|Ca(y)Cb(x)|0〉

]
= P ab

C
(∂2)δ(p) +

∫ ∞
0

ds θ(p0)δ(p2 − s)ρab
C

(s), (3.4)

where P ab
C

is some finite order polynomial, and ρab
C

(s) is the anti-ghost spectral density. More-

over, since one defines the ghost and anti-ghost fields to be hermitian: Ca(x)† = Ca(x),
Ca(x)† = Ca(x) [4], applying the hermitian operator to Eq. (3.4) and comparing this with
Eq. (3.2) implies the relations

ρabC (s) =
[
ρba
C

(s)
]†
, P abC =

[
P ba
C

]†
. (3.5)

Although the violation of CPT symmetry prevents the ghost and anti-ghost correlators being
linearly related, the hermitian property of the fields implies that the ghost and anti-ghost spec-
tral densities are hermitian conjugates of one another.

Combining Eqs. (3.2) and (3.4) together with the definition of the propagator in Eq. (3.3), the
ghost propagator takes the following form

〈0|T{Ca(x)Cb(y)}|0〉 =−
∫ ∞
0

ds

2π
ρabC (s) i∆F (x− y; s) +

∫
d4p

(2π)4
e−ip(x−y)P abC (∂2)δ(p)

− θ(y0 − x0)

∫ ∞
0

ds

2π

[
ρabC (s) + ρba

C
(s)
]
iD(+)(x− y; s)

− θ(y0 − x0)

∫
d4p

(2π)4
e−ip(x−y)

[
P abC (∂2) + P ba

C
(∂2)

]
δ(p). (3.6)
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Since the spectral densities ρabC (s) and ρab
C

(s) are only related via hermitian conjugation, one
cannot simplify this expression further without additional constraints.

3.2 The ghost propagator in QCD

Using the general spectral properties outlined in the previous section, one can now use the
dynamical characteristics of BRST quantised QCD to derive explicit constraints on the structure
of the QCD ghost propagator.

3.2.1 General structure

In BRST quantised QCD the renormalised ghost field Ca satisfies the equation of motion

∂2Ca = −igfabc∂ν(AbνC
c) = La, (3.7)

together with the equal-time anti-commutation relations

{Ca(x), Cb(y)}x0=y0 = 0, (3.8)

{Ċa(x), Cb(y)}x0=y0 = δabZ̃−13 δ(x− y), (3.9)

where Z̃3 is the ghost renormalisation constant. Taking the vacuum expectation values of
Eqs. (3.8) and (3.9), and applying Eq. (3.2), one obtains the conditions

P abC = −P ba
C
, (3.10)∫ ∞

0

ds ρabC (s) = 2πiδabZ̃−13 , (3.11)[∫ ∞
0

ds
[
ρabC (s) + ρba

C
(s)
]
D(+)(x− y; s)

]
x0=y0

= 0, (3.12)[∫ ∞
0

ds
[
ρabC (s) + ρba

C
(s)
]
Ḋ(+)(x− y; s)

]
x0=y0

= 0. (3.13)

Since
∫∞
0
ds
[
ρabC (s) + ρba

C
(s)
]
D(+)(x− y; s) satisfies the Klein-Gordon equation, the solution of

this distribution for unequal times is uniquely determined by the initial conditions in Eqs. (3.12)
and (3.13) [19]. Furthermore, since this solution depends linearly on the initial conditions, both
of which are vanishing, this implies∫ ∞

0

ds
[
ρabC (s) + ρba

C
(s)
]
D(+)(x− y; s) = 0. (3.14)

Combining all of these constraints together with the representation in Eq. (3.6), the non-
perturbative ghost propagator can then be written

〈0|T{Ca(x)Cb(y)}|0〉 =−
∫ ∞
0

ds

2π
ρabC (s) i∆F (x− y; s) +

∫
d4p

(2π)4
e−ip(x−y)P abC (∂2)δ(p), (3.15)

which in momentum space is given by

ĜabF (p) = i

∫ ∞
0

ds

2π

ρabC (s)

p2 − s+ iε
+ P abC (∂2)δ(p). (3.16)

Since the ghost field transforms as a Lorenz scalar it is not surprising that the propagator has the
same overall structure as a scalar propagator. However, unlike with standard commuting scalar
fields, the structure in Eq. (3.16) depends crucially on the equal-time anti-commutation relations
in Eqs. (3.8) and (3.9). Eq. (3.11) is equivalent to the sum rule satisfied by the gluon spectral
density, which is proportional to the inverse of the gluon field renormalisation constant [15].
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Since Z̃−13 similarly vanishes in Landau gauge, the ghost spectral density therefore also obeys the
Oehme-Zimmermann superconvergence relation [24, 25]. As in the case of the interacting quark
propagator, the potential appearance of singular terms in the ghost propagator is relevant for
understanding confinement. In fact, this is particularly true for the ghost propagator, since the
infrared behaviour of this object plays a central role in the Kugo-Ojima confinement criterion [3,
4, 5].

3.2.2 Schwinger-Dyson equation constraints

In an analogous manner to Sec. 2.3.2, one can determine the further conditions that the equation
of motion [Eq. (3.7)] imposes on the structure of the ghost propagator by deriving the form of
the Schwinger-Dyson equation, and then using this to separately constrain the singular and non-
singular terms in the propagator. Combining Eqs. (3.7), (3.8) and (3.9) together with the general
definition of a ghost propagator in Eq. (3.3), one obtains the coordinate space Schwinger-Dyson
equation

∂2〈0|T{Ca(x)Cb(y)}|0〉 = δabZ̃−13 δ(x− y) + 〈0|T{La(x)Cb(y)}|0〉, (3.17)

which in momentum space is given by

−p2GabF (p) = δabZ̃−13 + Lab(p), (3.18)

where Lab(p) = F
[
〈0|T{La(x)Cb(y)}|0〉

]
. Since La has the same Lorentz transformation prop-

erties as Ca, it follows that Lab(p) has an analogous spectral representation to Eq. (3.6). More-
over, because one has the following equal-time restricted anti-commutator correlator relations6

〈0|{La(x), Cb(y)}|0〉x0=y0 = 0, 〈0|{L̇a(x), Cb(y)}|0〉x0=y0 = 0, (3.19)

the spectral representation of Lab(p) can be written in the same manner as for the QCD ghost
propagator

Lab(p) = i

∫ ∞
0

ds

2π

ρ̃abC (s)

p2 − s+ iε
+ P̃ abC (∂2)δ(p), (3.20)

where now the corresponding spectral density ρ̃abC (s) instead satisfies the constraint∫ ∞
0

ds ρ̃abC (s) = 0. (3.21)

Inserting Eqs. (3.16) and (3.20) into Eq. (3.18), and separately equating the terms involving
derivatives of δ(p) and those with support outside of p = 0, one obtains

− p2
[
P abC (∂2)δ(p)

]
= P̃ abC (∂2)δ(p), (3.22)

− p2
[
i

∫ ∞
0

ds

2π

ρabC (s)

p2 − s+ iε

]
= δabZ̃−13 + i

∫ ∞
0

ds

2π

ρ̃abC (s)

p2 − s+ iε
. (3.23)

It follows from Eq. (3.22) that the coefficients gabn and g̃abn of the polynomials P abC and P̃ abC
respectively, satisfy the following constraint

gabn+1 = − g̃abn
4(n+ 1)(n+ 2)

, n ≥ 0. (3.24)

Eq. (3.24) implies that the coefficients of the singular terms in the ghost propagator are com-
pletely fixed by the coefficients of the singular terms in Lab(p). Therefore, if Lab(p) contains

6These relations follow from Eqs. (3.8) and (3.9), together with the fact that QCD fields have vanishing vacuum
expectation values.
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either δ(p) or non-measure defining terms involving derivatives of δ(p), then this is sufficient to
guarantee that the ghost propagator must contain non-measure defining terms.

In order to determine the constraints imposed by Eq. (3.23) one can make use of the fact that
this expression can be written in the form

−i
∫ ∞
0

ds

2π
ρabC (s)− i

∫ ∞
0

ds

2π

sρabC (s)

p2 − s+ iε
= δabZ̃−13 + i

∫ ∞
0

ds

2π

ρ̃abC (s)

p2 − s+ iε
. (3.25)

Since the ghost spectral density satisfies the sum rule in Eq. (3.11), the above equality therefore
implies the following constraint

sρabC (s) = −ρ̃abC (s). (3.26)

Similarly to the quark spectral densities, one can solve this distributional equation in terms of
ρabC (s), and one obtains the solution

ρabC (s) = Aabδ(s) + κabC (s), (3.27)

where the particular solution κabC (s) satisfies the relation sκabC (s) = −ρ̃abC (s). By applying the
sum rule in Eq. (3.11), the ghost spectral density can then finally be written

ρabC (s) =

[
2πiδabZ̃−13 −

∫ ∞
0

ds̃ κabC (s̃)

]
δ(s) + κabC (s). (3.28)

Eq. (3.28) demonstrates that the ghost spectral density contains a discrete massless component.
Similarly to the quark spectral densities, the coefficient in front of this discrete component is not
completely constrained since it depends on the integral of κabC (s̃), which itself is determined by
ρ̃abC (s). This feature is particularly for understanding confinement because it turns out that in
order to violate the cluster decomposition property in QCD, this requires both the appearance
of non-measure-defining terms in the correlators of coloured fields, such as derivatives of δ(p),
and also that the full space of states VQCD has no mass gap [20, 21]. This second requirement
is still consistent with the possibility that the physical subspace Vphys ⊂ VQCD has a mass

gap, as one would expect in QCD [4]. In Landau gauge Z̃−13 vanishes, and therefore the only
thing preventing the absence of a massless ghost pole is the non-vanishing of

∫∞
0
ds̃ κabC (s̃).

This feature is in contrast to the case of the gluon spectral density, where the coefficient of
the massless component is entirely propotional to Z−13 , which vanishes in Landau gauge, and
therefore prevents the appearance of a massless gluon state [15]. Since

∫∞
0
ds̃ κabC (s̃) can in

principle be non-vanishing, this preserves the possibility that VQCD has no mass gap, and that
the cluster decomposition property can be violated for coloured states, which is a sufficient
condition for confinement [23].

4 Conclusions

Although the quark and ghost propagators play an important role in QCD, the general ana-
lytic structure of these objects remains largely unknown. In this work we demonstrate that
the dynamical properties of the quark and ghost fields, and in particular their corresponding
Schwinger-Dyson equations, impose non-perturbative constraints on these propagators. For the
quark propagator it turns out that these constraints imply that both spectral densities neces-
sarily contain massive components proportional to δ(s−m2), and that the presence of singular
terms in the propagator involving derivatives of δ(p) are permitted. In the case of the ghost
propagator the corresponding spectral density is constrained to contain a massless component
proportional to δ(s), and the appearance of singular terms is also similarly permitted. The
potential presence of a non-vanishing massless component in the ghost spectral density, and
singular terms in the quark and ghost propagators, are of particular importance in the context
of confinement. Besides the purely theoretical relevance of these results, these constraints could
also provide important input for improving existing parametrisations of the QCD propagators.
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