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Momentum conservation and unitarity in parton showers and NLL resummation

Stefan Höche,1 Daniel Reichelt,2 and Frank Siegert2

1SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
2Institut für Kern- und Teilchenphysik, 01069 Dresden, Germany

We present a systematic study of differences between NLL resummation and parton showers.
We first construct a Markovian Monte-Carlo algorithm for resummation of additive observables in
electron-positron annihilation. Approximations intrinsic to the pure NLL result are then removed,
in order to obtain a traditional, momentum and probability conserving parton shower based on
the coherent branching formalism. The impact of each approximation is studied, and an overall
comparison is made between the parton shower and pure NLL resummation. Differences compared
to modern parton-shower algorithms formulated in terms of color dipoles are analyzed.

I. INTRODUCTION

Searches for new physics and measurements of Standard Model parameters at the Large Hadron Collider and possible
future colliders require ever increasing precision in the analysis of multi-scale events. Large scale hierarchies in such
reactions will generally result in large Bremsstrahlung effects. In order to reliably predict measurable quantities, such
as a fiducial cross section, the radiative corrections determined in QCD perturbation theory must be resummed to all
orders. Resummation was first performed for energy-energy correlations in e+e− collisions [1–3], transverse momentum
dependent cross sections in Drell-Yan events [4–6] and e+e− hadronic event shapes [7]. Several observables in hadron
collisions have also been resummed analytically [8]. Such calculations have been extended to very high precision and
used, for example, to extract the strong coupling from experimental data in e+e− annihilation to hadrons [9, 10].
Effective field theory methods [11, 12] also contribute to rapid progress in this field. General semi-analytic approaches
to the problem have been constructed [13–19] and automated [20] based on direct QCD resummation. They depend
only on universal coefficients and are applicable to different processes and a large class of observables. An alternative
to analytical calculations is the simulation of events in a Markov-Chain Monte-Carlo known as a parton shower[21–24].
While the formal precision of this approach is comparable to analytic resummation only in processes with a trivial
color structure at the leading order, parton-showers typically give a good description of experimental measurements
and are therefore an integral part of the high-energy physics toolkit.

Even in the simplest scenarios the resummation performed by a parton shower is not identical to an analytic
computation. This study will investigate the differences in some detail. We first show how a parton shower can be
constructed that reproduces the pure next-to-leading logarithmic (NLL) resummed result as obtained by the semi-
analytic CAESAR formalism [18]. For simplicity we will focus on additive observables in e+e− annihilation to jets.
Starting from this algorithm, we successively include effects beyond NLL accuracy that arise from momentum and
probability conservation, such that a traditional parton shower in the coherent branching formalism is recovered
eventually. To our knowledge this is the first time that a systematic study of this type has been performed. While we
focus on a very simple setup, for which parton showers have been shown to achieve NLL accuracy [25], we argue that
most differences investigated here will also arise in more complicated scenarios, such as hadron-hadron collisions and
processes with a non-trivial color structure at the Born level. They will impact any prediction made for the Large
Hadron Collider and possible future colliders, and – while formally sub-leading – they may be numerically large and
should be taken into account as a systematic uncertainty.

This paper is organized as follows: Section II recalls those parts of the CAESAR formalism and of the parton shower
formalism needed in this study. Section III presents the technical details of a modified parton shower reproducing
exactly the analytic NLL result. Section IV analyzes the role of NLL approximations in detail by removing them
from the previously constructed shower one-by-one. Section V compares the full parton-shower result against a more
conventional parton-shower implementation, where soft double counting is removed by partial fractioning of the soft
eikonal. Section VI presents our conclusions.

II. NLL RESUMMATION AND THE PARTON SHOWER FORMALISM

We first review the methods used for analytic resummation in CAESAR [18] as well as the parton shower algorithm
[21–24]. They are cast into a common language in order to allow an easy comparison between the two. We focus on
the simplest case of resummation of a 2-jet observable in e+e− → jets, i.e. resummation of soft gluons emitted from
a pair of two hard quark lines.
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A. Prerequisites and notation

Following the CAESAR formalism, we denote the momenta of the hard partons as p1, . . . , pn. Additional soft
emissions are denoted by k, and the observable we wish to compute by v. In general, the observable will be a function
of both the hard and the soft momenta, v = V ({p}, {k}), while in the soft approximation it reduces to a function of
the soft momenta alone, v = V ({k}). In the rest frame of two hard legs, i and j, considered to be the radiating color
dipole, we can parametrize the momentum of a single emission as

k = zi,jpi + zj,ipj + kT,ij , where k2T,ij = 2pipj zi,j zj,i . (1)

We define the rapidity of the emission in this frame as ηij = 1/2 ln(zi,j/zj,i). The observable, computed as a function
of k when radiated collinear to the hard parton, l, can then be written as1.

V (k) =

(
kT,l
Q

)a
e−blηl , (2)

where, in the collinear limit, we have kT,l = kT,lj and ηl = ηlj for any j ∦ l. We restrict our analysis to the case of
additive observables, which can be calculated in the presence of multiple soft gluons as a simple sum, V (k1, . . . , kn) =∑n
i V (ki). Such observables are of great interest phenomenologically and, while relatively easy to compute, already

exhibit most complications associated with the effects of NLL approximations.
The parton shower used in our study will be based on DGLAP evolution [26–29]. At NLL, for recursive infrared and

collinear safe observables, gluon splitting only contributes at the inclusive level and is therefore taken into account
effectively by working in the CMW scheme [25]. In analogy to the NLL CAESAR formalism, our parton shower
will therefore only implement gluon radiation off the hard partons, and soft double counting will be removed by
sectorization of the soft-emission phase space. Technical details are given in Sec. III, and a comparison to more
conventional parton showers, which include gluon splitting, is performed in Sec. V. The basis for DGLAP evolution
are the collinear factorization properties of QCD matrix elements. With |Mn(1, . . . , n)|2 being the squared n-parton
matrix element, the factorization formula in the limit that partons i and j become collinear reads

dΦn+1 |Mn+1(1, .., i, .., j, .., n)|2 ≈ dΦn |Mn(1, .., ij, .., n)|2 dt

t
dz

dφ

2π

αs
2π
Pij i(z) . (3)

In this context, dΦn is the n-particle phase space element, and Pij i(z) is the Altarelli-Parisi splitting kernel associated
with the branching of an intermediate parton ij into partons i and j. Except for the analysis in Sec. V, the only
relevant splitting kernel in our study is the quark-to-quark transition

Pqq (z) = CF

[
2

1− z − (1 + z)

]
. (4)

The treatment of gluon radiators is discussed in App. A. We denote the unregularized splitting probability between
two scales, t and t′, as

R(t′, t) =

∫ t

t′

dt̄

t̄
R′(t̄) where R′(t) =

∫ zmax(t)

zmin(t)

dz
αs
2π
Pqq(z) . (5)

Following standard practice to improve the logarithmic accuracy of the resummation, the strong coupling is evaluated
at the transverse momentum of the gluon [30], and the soft enhanced term of the splitting functions is rescaled by
1 + αs/(2π)K, where K = (67/18− π2/6)CA − 10/9TR nf [25]. The latter method is known as the CMW scheme.

The integration boundaries for z depend on the evolution variable and are given by the constraint that the momen-
tum in the anti-collinear direction must be preserved. For the case of evolution in collinear transverse momentum,
k2T = 2pipj z(1 − z), we obtain zmin/max = (1 ∓

√
1− 4k2T /Q

2)/2 (cf. Sec. IV). The probability for no splitting be-
tween two scales can be inferred from a unitarity constraint, i.e. the condition that the parton shower be probability
conserving. For final-state evolution the no-branching probability is given by

Π(t′, t) = e−R(t,t′) . (6)

1 Note that because of the simplified setup that we use for this comparison, the dependence on dlgl(φ
(l)) has been dropped, and that we

will use b = bl in the following.
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Note that this particular form of the no-branching probability is equivalent to the Sudakov form factor only at leading
order, cf. App. A. Since we neglect gluon splitting, the functional form of R is unchanged until the shower terminates,
which greatly simplifies the calculation2. The parton shower algorithm solves for the scale t′, based on a starting scale
t and the total branching probability (differential in ln t),

P(t′, t) =
dΠ(t′, t)

d ln t′
. (7)

It terminates when a cutoff scale tc is reached. Typically, tc is defined such as to mark the transition to the non-
perturbative regime, i.e. the region where αs/(2π) ≈ 1.

B. Casting analytic resummation into the parton shower language

To enable a comparison with the semi-analytic resummation framework of CAESAR, we consider the cumulative
cross section in an arbitrary observable, v, defined as

Σ (v) :=
1

σ

∫ v

dv̄
dσ

dv̄
. (8)

The calculation is simplified by choosing a parton shower evolution variable, ξ, that (up to a power) corresponds to
V (k)

ξ = k2T (1− z)− 2b
a+b . (9)

This implies that splittings giving the largest contribution to the observable are produced first. Note that here and
in the following we use kT = kT,l and η = ηl.

If the effects of multiple emissions could be ignored, the cumulative cross section in Eq. (8) would be given by the
square of the survival probability, Eq. (6), corresponding to the fact that radiation of a single gluon can originate
from either of the two hard legs in the two-quark leading-order final state. It would then be sufficient to compute the
probability R(v) = R(v, 1) for emissions resulting in observable values larger than v. Already at the level of a single
emission this would lead to double counting [22]. The problem can be circumvented by sectorizing the phase space
using the requirement η > 0. Note that this constraint is not strictly necessary for the collinear part of the splitting
function if the parton shower implementation is capable of handling negative weights. However, this is not the case
for most traditional shower algorithms, which prompts us to apply the condition to the entire splitting function. The
combined probability for a single emission from any of the two hard legs at ξ > Q2v2/(a+b) can then be written as

RPS(v) = 2

∫ Q2

Q2v
2

a+b

dξ

ξ

∫ zmax

zmin

dz
αs
(
ξ(1− z) 2b

a+b
)

2π
CF

[
2

1− z − (1 + z)

]
Θ

(
ln

(1− z) 2a
a+b

ξ/Q2

)
. (10)

This should be compared to Eq. (2.17) of Ref. [18], which can be rewritten in our parametrization as

RNLL(v) = 2

∫ Q2

Q2v
2

a+b

dξ

ξ

[∫ 1

0

dz
αs
(
ξ(1− z) 2b

a+b
)

2π

2CF
1− zΘ

(
ln

(1− z) 2a
a+b

ξ/Q2

)
− αs(ξ)

π
CFBq

]
. (11)

A brief summary of semi-analytic resummation based on [18] and using Eq. (11) can be found in App. B. The no-
emission probability based on RNLL(v) can also be computed in a Markovian Monte-Carlo simulation, by starting
from the parton-shower expression, Eq. (10), and performing the following manipulations:

• The z-integration in the soft term runs from 0 to 1 − (ξ/Q2)(a+b)/2a, where the upper bound stems from the
requirement that η > 0 (the Θ-function in Eq. (10)), eliminating the double counting of soft-gluon radiation.

• The collinear term proportional to (1 + z) is integrated from 0 to 1 in order to produce the collinear anomalous
dimension, Bq. At the same time, αs is evaluated at ξ.

2 In the general case of multiple hard legs the situation is complicated by the need to perform non-abelian exponentiation of next-to-leading
logarithmic corrections originating in soft-gluon interference [31–35]
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Note in particular that the z-integration is extended beyond the values zmin (and zmax in the collinear case) allowed
by local four-momentum conservation. This will be one of the effects investigated in Sec. IV.

The complete parton-shower prediction of the cumulative cross section, Σ(v), including effects from arbitrarily
many emissions, and using the approximation V ({p}, {k}) =

∑
i V (ki) is given by

ΣPS (v) =
∞∑
m=0

(
m∏
i=1

∫ ξi−1

ξc

dξi
ξi

R′PS(ξi) e
−RPS(ξi−1,ξi)

)
e−RPS(ξm,ξc) Θ

(
v −

m∑
j=1

V (tj)

)∣∣∣∣
ξ0=Q2

= e−RPS(Q
2,tc)

∞∑
m=0

1

m!

(
m∏
i=1

∫ Q2

tc

dti
ti
R′PS(ti)

)
Θ

(
v −

m∑
j=1

V (tj)

)
.

(12)

We compare Eq. (12) to the main result of [17], which reads

ΣNLL (v) = e−RNLL(v)F (v) . (13)

The exponential corresponds to the pure survival probability in terms of Eq. (11). The function F (v) accounts for
the effect of multiple emissions. For the simple observables considered here it can be written as [18]3:

F (v) = lim
ε→0
Fε (v) , where Fε (v) = eR

′
NLL(v) ln ε

∞∑
m=0

1

m!

(
m∏
i=1

R′NLL(v)

∫ 1

ε

dζi
ζi

)
Θ

(
1−

m∑
j=1

ζj

)
. (14)

Following the notation of Ref. [18], R′NLL(v) is the derivative of R with respect to L = − ln v, excluding all terms
formally not relevant at NLL accuracy. Note that Eq. (14) is a pure NLL contribution to ΣNLL(v), as R′(v) by
itself is sub-leading. If we intend to generate Eq. (14) using a parton shower, the branching probability, Eq. (10),
must be modified such as to reflect the differentiation w.r.t. the lower integration limit in Eq. (11), which leads to
ξ = Q2v2/(a+b), as well as the condition that higher logarithmic terms are dropped in R′(v). We can satisfy these
constraints using the following modifications of the plain parton shower:

• The z-integration in the soft term runs from 0 to 1− v1/a.

• The strong coupling runs at one loop and is evaluated at v2/(a+b)(1− z)2b/(a+b).

• The collinear term is dropped.

We can now rewrite Eq. (13) in a form that is similar to Eq. (12)

Σ (v) = exp

{
−
∫
v

dξ

ξ
R′>v(ξ)−

∫ v

vmin

dξ

ξ
R′<v(ξ)

}
×
∞∑
m=0

1

m!

(
m∏
i=1

∫
vmin

dξi
ξi
R′<v(ξi)

)
Θ

(
v −

m∑
j=1

V (ξj)

)
. (15)

with R′ given by

R′≶v(ξ) =
α
≶v,soft
s

(
µ2
≶

)
π

∫ zmax
≶v,soft

zmin

dz
CF

1− z −
α
≶v,coll
s

(
µ2
≶v

)
π

∫ zmax
≶v,coll

zmin

dz CF
1 + z

2
. (16)

The choices of αs, z
max and µ2 corresponding to NLL resummation in the CAESAR formalism and in a DGLAP-based

parton shower are given in Tab. I. The physical limits on the z-integral in Eq. (10), which are a consequence of local
four-momentum conservation, are not easily formulated in terms of ξ and will be investigated separately in Sec. IV. It
is interesting to note that F (v) by itself can be extracted from the same formalism by starting the shower evolution

at Q2v
2

a+b . This fact has been used in the past to construct a dipole shower for the resummation of non-global
logarithms [36].

3 The ε→ 0 limit can be taken analytically [17], cf. App. B, Eq. (B5).

This material is based upon work supported by the U.S. Department of Energy, Office of Science, 
under Contract No. DE-AC02-76SF00515 and HEP.



5

Resummation Parton Shower Figure Resummation Parton Shower Figure

zmax
>v,soft 1− (ξ/Q2)

a+b
2a n.a. zmax

>v,coll 1 1− (ξ/Q2)
a+b
2a 2

µ2
>v,soft ξ(1− z)

2b
a+b n.a. µ2

>v,coll ξ ξ(1− z)
2b

a+b 2
α>v,softs 2-loop CMW n.a. α>v,colls 1-loop 2-loop CMW 5

zmax
<v,soft 1− v

1
a 1− (ξ/Q2)

a+b
2a 3 zmax

<v,coll 0 1− (ξ/Q2)
a+b
2a 6

µ2
<v,soft Q2v

2
a+b (1− z)

2b
a+b ξ(1− z)

2b
a+b 3 µ2

<v,coll n.a. ξ(1− z)
2b

a+b 6
α<v,softs 1-loop 2-loop CMW 5 α<v,colls n.a. 2-loop CMW 6

TABLE I. Choices of parameters in Eq. (15) leading to Eq. (13) (NLL resummation) and Eq. (12) (parton shower). The effects
of switching between the two parametrizations are investigated in the figure referred to in the last column. More details can
be found in Sec. IV.

III. MARKOV-CHAIN MONTE CARLO IMPLEMENTATION

As described in Sec. II, the NLL resummation is nearly equivalent to a parton shower at the single-emission level.
The differences lie in the treatment of the collinear term and of the lower integration boundary on z. These differences
also introduce a change in the scale of the running coupling in Eq. (15). The choice of integration boundaries in the
analytic resummation implies that the splitting function turns negative in parts of the phase space. To deal with this
situation in the Monte Carlo simulation, we use the methods discussed in [37, 38]. Splittings are generated according
to an overestimate of the strong coupling and the splitting kernel

αmax
s Pmax (z) = αmax

s CF

[
2

1− zΘ (z′max − z) + γΘ (z − z′max)

]
(17)

with an in principle arbitrary constant γ. For practical calculations we choose γ = 2. Note that the values of zmax
soft

and zmax
coll are overestimated by a common value in Pmax, which we have made explicit by writing z′max. Splittings are

vetoed with a constant probability 1/C and are associated with a weight

ω =
C αres

s Pres (z)

αmax
s Pmax (z)

×


1 if accepted

αmax
s Pmax (z)− αres

s Pres (z)

(C − 1)αres
s Pres (z)

if rejected
(18)

This correction accounts in particular for the negative sign of the integrand, Eq. (19), in the region z > zsoftmax. In
addition, it is possible to veto emissions violating the condition

∑
i V (ki) < v, which would contribute with zero

weight, to improve numerical accuracy [38]. The value of C determines how many emissions are proposed, and thus
potentially vetoed. It can again in principle be an arbitrary constant larger than 1, but is relevant for the speed of
convergence. We choose C = 2 in our implementation.
The kernel eventually used for NLL resummation is given by

αres
s Pres = CF

[
αs(µ

2
soft)

2

1− zΘ (zmax
soft − z)− αs(µ2

coll)(1 + z)Θ (zmax
coll − z)

]
, (19)

with zmax and µ2 chosen according to Table I.

For multiple emissions Pres explicitly depends on v. We therefore first choose a value for v and then run the parton
shower, implementing the z integration bounds and the scale of the strong coupling as defined in Tab. I. This is a highly
inefficient procedure to compute the cumulative cross section. If probability was conserved, the same distribution
could be obtained by running the parton shower, computing v, filling the histogram in each bin with lower edge larger
than v, and filling the histogram in the bin containing v with weight (vmax− v)/∆v, where vmax is the upper bin edge
and ∆v is the bin width. This will be the method used to compute the predictions in Fig. 6 and Sec. V. While at the
level of accuracy we are interested in, it is sufficient to set the cutoff scale of the parton shower to some numerically
small value in ξ, exact agreement with the analytic calculation is expected only if the calculation is performed for a
finite ε, and the parton-shower cutoff is set to ξc = εv. We can verify that in this situation we reproduce the analytic
result for finite ε in Eq. (14) and investigate the convergence towards the analytic result for ε→ 0. Figure 1 presents
the corresponding comparison for different values of ε in the case of the thrust (a) [39], a BKS observable (b) [40, 41]
and a fractional energy correlation (c) [18]. The definitions of the observables and related resummation coefficients
are listed in App. C.
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FIG. 1. Thrust variable 1 − T (a), BKS observable with x = 1/2 (b) and fractional energy correlation with x = 1 (c) for
different values of the cutoff ε in Eq. (14). The respective analytic results for Fε(v) are used as a reference in the ratio plots.

IV. EFFECTS OF APPROXIMATIONS

This section is dedicated to the detailed investigation of the effects of local four-momentum conservation and
approximations made in the NLL calculation compared to the parton shower. In order to cover different choices
of the parameters a and b, we again present results for the thrust, a BKS observable (x = 1/2) and a fractional
energy correlation (x = 1). All distributions are shown for Q = 91.2 GeV, and for a strong coupling defined by
αs(Q

2) = 0.118 and a fixed number of flavors, nf = 5. We have cross-checked all of our predictions using two
independent Monte-Carlo implementations based on [42].

We first investigate constraints arising from momentum conservation in the anti-collinear direction at single emission
level, which reads

Q2 > 2pipj =
k2T

z(1− z) . (20)

This induces both a lower and an upper bound on z given by zmin/max = (1 ∓
√

1− 4k2T /Q
2)/2. Figure 2 shows a

comparison between the pure NLL predictions and those where this constraint has been implemented. The effect on
the cumulative distributions is moderate, about 5% in the medium and low-v region. In addition, we investigate the
effect of choosing the scale in the collinear term to be k2T . This alters the slope of the thrust and BKS1/2 distributions
in the small-v region, due to additional sub-leading logarithmic terms in R(v).

The upper bound zmax is generally weaker than the constraint arising from the condition η > 0, listed in Tab. I.
Figure 2 displays the additional effect on the NLL prediction when this constraint is applied in form of zmax

≶v,coll as used

in typical parton showers (cf. Eq. (10)). The effects are about 10% on all observables, and they lower the prediction
for Σ(v) due to an increased branching probability. Again, we also investigate the effect of choosing the scale in the
collinear term to be k2T , which generates the same slope differences at small v observed before.

Next we investigate the effect of lifting the restriction on the z integration in the calculation of F(v), i.e. removing
the constraint z < 1 − v1/a if ξ < Q2v2/(a+b) and replacing it by the constraint η > 0. In this case R′(v) must
be computed down to very small scales in Eq. (14), (except for FC1) and it becomes mandatory to introduce an
additional cutoff, as one would otherwise need to evaluate αs at values where perturbation theory is no longer valid.
We choose to implement this by adding the requirement kmin

T = 0.5 GeV. The difference to the pure NLL result is
shown in Fig. 3. Independent of the observable, this change is one of the largest differences observed in this study. The
large relative difference between the pure NLL result and the modified prediction at small v shows that sub-leading
logarithmic effects become important.

We also study the effect originating in the evaluation of the running coupling at Q2v2/(a+b)(1 − z)2b/(a+b) if ξ <
Q2v2/(a+b). Again we implement the constraint kmin

T = 0.5 GeV. Figure 3 shows that the predictions for all observables

This material is based upon work supported by the U.S. Department of Energy, Office of Science, 
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FIG. 2. Effects arising from momentum-conservation in the anti-collinear direction and from phase-space sectorization (removal
of soft double counting in typical parton-shower implementations). Both are effects at the single-emission level, impacting terms
in R(v), cf. Tab. I.
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FIG. 3. Effect of replacing the constraint z < 1 − v1/a for ξ < Q2v2/(a+b) by the phase-space sectorization constraint, η > 0
and effects arising from the evaluation of the strong coupling at k2T with kmin

T = 0.5 GeV.

exhibit relatively large changes. They also show convergence issues at small values, which arise from the lower cutoff
in kT , leading to an insufficient sampling of F at higher number of emissions. This effect is most pronounced in FC1,
where it starts to appear around 10−1.5. Note, however, that practical measurements of FC1 would be impacted by
non-perturbative corrections in this regime. The problem is therefore purely academic in nature, hence we do not
attempt to solve it here.

Formally the CMW scheme is the key to achieving NLL accuracy in a parton-shower computation of the observables
considered here [25]. The numerical impact on R(v) is investigated in Fig. 4. Figure 5 displays the effect of replacing
1-loop by 2-loop running couplings and of using the CMW scheme in sub-leading terms of the NLL calculation (cf.
Tab. I). The red line is computed by making the replacements only in the soft-enhanced part of the splitting function
for ξ < Q2v2/(a+b), and the red dotted line corresponds to not using the CMW scheme if ξ < Q2v2/(a+b). It is evident
that the effects are sizable over most of the observable range, and most pronounced at small v. The use of the CMW
scheme has the biggest impact. Note in particular that not using the CMW scheme in the computation of F(v) has
nearly the same impact as not using the CMW scheme in the computation of R(v).

Figure 6 shows the cumulative effect of all changes discussed so far. In addition we present results from a simulation
where the observable is computed using its definition in terms of four-momenta rather than using the soft approxi-
mation in Eq. (2) (see App. C for details). In this context it becomes important to take into account that emissions
away from the strict soft limit inevitably change the momenta of the hard partons. Subsequent emissions are then
computed based on the momenta of the quark lines with recoil effects taken into account. This can have a significant
impact on the result, depending on the precise definition of the transverse momentum and momentum fraction. The
magenta line in Fig. 6 corresponds to the conventions of [43], while the green line corresponds to the conventions
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FIG. 4. Effects of replacing 2-loop CMW running of αs in the leading terms of the NLL result. The red line is computed
without the CMW scheme, while the green line is computed by using the CMW scheme at 1-loop.
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FIG. 5. Effects of replacing 1-loop by 2-loop CMW running of αs in the sub-leading terms of the NLL result. The red line is
computed by making the replacements only in the soft-enhanced term if ξ < Q2v2/(a+b), the red dotted line corresponds to not
using the CMW scheme in this region.

of [44]. In the latter case the transverse momentum coincides with Eq. (2.5) of [18].4 Note that the phase-space
sectorization constraint, η > 0, generates a different restriction on z once recoil is taken into account, and that this
condition depends on the choice of evolution and splitting variable.

V. COMPARISON WITH A DIPOLE-LIKE PARTON SHOWER

This section presents a comparison of our previous results with predictions from a dipole-like parton shower. In
such parton showers the soft enhanced part of the collinear splitting function is typically replaced by a partial fraction
of the soft eikonal matched to the collinear limit [43, 45]. At the same time, the phase-space sectorization is removed,
i.e. the restriction η > 0 is lifted. A complete description of the parton-shower algorithm employed here can be found
in [44].

Figure 7 shows a comparison between results from the dipole-like parton shower in its default configuration (in-
cluding gluon splitting) and from a modified version, tailored to match the settings of the parton shower used in
Sec. IV, Fig. 6. It is interesting to observe that the dipole-shower prediction lies between the parton-shower result
and the analytic result for all observables, and in the case of thrust agrees very well with the analytic prediction. In

4 Note that the constraint z(1−z) > k2T /Q
2 arising from minus momentum conservation applies to this definition in the case of final-state

emitter with final-state spectator, such that the results in Fig. 2 remain valid.
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FIG. 6. Comparison of pure NLL resummation and plain DGLAP parton shower, effects of approximating the observable
compared to exact calculation using four-momenta and evolution in dipole-kT .
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FIG. 7. Comparison between plain DGLAP parton shower ordered in ξ to DGLAP parton shower ordered in dipole-kT and
dipole shower with and without gluon splitting.

the measurable range at LEP energies, the predictions for FC1 also agree fairly well between the dipole-shower and
the analytic result.

Figure 8 displays a cross-check on the logarithmic terms implemented by the dipole shower as compared to the
parton shower and the analytic result. We extract R(kT /Q) for a fixed value of the strong coupling, αs = 0.118, using
the technique described in [38]. The slope of the distribution corresponds to the leading logarithm, while the offset
of the analytic result corresponds to the next-to-leading logarithm. Any parton- or dipole-shower prediction must
approach the analytic result as kT → 0, which is verified by the convergence of the predictions at small kT .

VI. CONCLUSIONS

We have performed a detailed comparison between pure NLL resummation and parton showers for additive observ-
ables in e+e− annihilation to hadrons. We have isolated their differences, which can broadly be classified as related
to probability or momentum conservation. While a different treatment of these effects leads to formally subleading
corrections on the resummed prediction, it can have a numerically sizable impact (20% or more) in the region where
experimental measurements are performed. Similar effects can reasonably be expected to arise in other observables,
as well as in processes with hadronic initial states and with a more complicated color structure at the Born level.
When comparing analytic resummation to parton showers it should be kept in mind that such differences may exist,
in which case they should be taken into account as a systematic uncertainty. We have shown in a simple scenario
that the differences can be assessed quantitatively by casting analytic resummation into a Markovian Monte-Carlo
simulation and introducing momentum and probability conservation. Conversely, parton showers can be modified to
violate momentum and probability conservation to reproduce pure NLL resummation. From the practical point of
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FIG. 8. Comparison of analytic and parton-shower predictions for the emission probabilities in Eqs. (10) and (11). The plot
shows the average number of emissions per bin as a proxy observable [38].

view this approach is disfavored, as it leads to numerically inefficient Monte-Carlo algorithms.
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Appendix A: Gluon Radiators

Although we only deal with radiation off quark lines in this study, we argue that the same conclusions hold for
radiating gluons. The basic reasoning is that the Sudakov form factor, Eq. (6) is an alternative form of the equations
in [46] that holds for leading-order DGLAP splitting functions due to their symmetries. If we use the correct form
of the Sudakov factor, then we can extend the lower integration boundary for z to zero without encountering a
singularity, and we obtain the correct collinear anomalous dimensions. The detailed argument is as follows.

While the DGLAP equations are schematically identical for initial and final state, their implementation in parton-
shower programs usually differs between the two, owing to the fact that Monte-Carlo simulations are inclusive over
final states. The evolution equations for the fragmentation functions Da(x,Q2) for parton of type a to fragment into
a hadron read

dxDa(x, t)

d ln t
=
∑
b=q,g

∫ 1

0

dτ

∫ 1

0

dz
αs
2π

[
zPab(z)

]
+
τDb(τ, t) δ(x− τz) , (A1)

where the Pab are the unregularized DGLAP evolution kernels, and where the plus prescription is defined such as to
enforce the momentum sum rule:[

zPab(z)
]
+

= lim
ε→0

[
zPab(z) Θ(1− z − ε)− δab

∑
c∈{q,g}

Θ(z − 1 + ε)

ε

∫ 1−ε

0

dζ ζ Pac(ζ)

]
. (A2)

For finite ε, the endpoint subtraction in Eq. (A2) can be interpreted as the approximate virtual plus unresolved
real corrections, which are included in the parton shower because the Monte-Carlo algorithm naturally implements a
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unitarity constraint [47]. For 0 < ε� 1, Eq. (A1) changes to

1

Da(x, t)

dDa(x, t)

d ln t
= −

∑
c=q,g

∫ 1−ε

0

dζ ζ
αs
2π
Pac(ζ) +

∑
b=q,g

∫ 1−ε

x

dz

z

αs
2π

Pab(z)
Db(x/z, t)

Da(x, t)
. (A3)

Using the Sudakov form factor

∆a(t0, t) = exp

{
−
∫ t

t0

dt̄

t̄

∑
c=q,g

∫ 1−ε

0

dζ ζ
αs
2π
Pac(ζ)

}
(A4)

the generating function for splittings of parton a is defined as

Da(x, t, µ2) = Da(x, t)∆a(t, µ2) . (A5)

Equation (A3) can now be written in the simple form

d lnDa(x, t, µ2)

d ln t
=
∑
b=q,g

∫ 1−ε

x

dz

z

αs
2π

Pab(z)
Db(x/z, t)

Da(x, t)
. (A6)

The generalization to an n-parton final state, ~a = {a1, . . . , an}, resolved at scale t can be made in terms of fragmenting
jet functions, G [48, 49]. If we define the generating function for this state as F~a(~x, t, µ2), we can formulate its evolution
equation in terms of a sum of the right hand side of Eq. (A6). For unconstrained evolution, we can use Eq. (A3), to
write the differential decay probability as

d

d ln t
ln

( F~a(~x, t, µ2)∏
j∈FS Gaj (xj , t)

)
=
∑
j∈FS

∑
b=q,g

∫ 1−ε

0

dz z
αs
2π

Pajb(z) . (A7)

Thus, as highlighted in [47], it is generally necessary to use the Sudakov factor, Eq. (A4), in final-state parton shower
evolution. At the leading order, the factor ζ in Eq. (A4) simply replaces the commonly used symmetry factor for g → g
splitting and it also accounts for the proper counting of the number of active flavors.5 However, this reasoning applies
only if the boundaries of the ζ-integration are defined by momentum conservation, and are therefore symmetric around
ζ = 1/2. In our analysis we attempt to extend the lower integration limit to zero, which would generate a spurious
singularity arising from the symmetry of the gluon splitting function. Therefore, the commonly used technique of
implementing the symmetrized gluon splitting function without an additional factor ζ cannot be used, and the only
correct way to treat the problem is to work with Eq. (A4).

Appendix B: Analytic results at NLL accuracy

This section summarizes the components of the CAESAR formalism [18] that are needed for our analysis. The

resummed cumulative cross section at NLL is given in this formalism by ΣNLL(v) = e−RNLL(Q
2,v)F(v), cf. Eq. (13).

The unregularized branching probability R(v) follows from Eq. (11). It is typically written in terms of λ = αsβ0L,
where L = − ln v. One obtains

R(v) = 2CF

(
r(L) +BqT

(
L

a+ b

))
, (B1)

where r(L) is separated into a leading and a sub-leading logarithmic piece as r(L) = Lr1(αsL) + r2(αsL).

r1(αsL) =
1

2πβ0λb

(
(a− 2λ) ln

(
1− 2λ

a

)
− (a+ b− 2λ) ln

(
1− 2λ

a+ b

))
,

r2(αsL) =
1

b

(
K

(2πβ0)2

(
(a+ b) ln

(
1− 2λ

a+ b

)
− a ln

(
1− 2λ

a

))
+

β1
2πβ3

0

(
a

2
ln2

(
1− 2λ

a

)
− a+ b

2
ln2

(
1− 2λ

a+ b

)
+ a ln

(
1− 2λ

a

)
− (a+ b) ln

(
1− 2λ

a+ b

)))
.

(B2)

5 In this context it is interesting to note that the factor ζ has a convenient physical interpretation: it represent the “tagging” of the
resolved parton, for which the evolution is performed. This is apparent when extending the evolution to higher orders [46].
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The beta function coefficients and the two-loop cusp anomalous dimension in the MS scheme are given by

β0 =
1

2π

(
11

6
CA −

2

3
TRnf

)
,

β1 =
1

(2π)2

(
17

6
C2
A −

(
5

3
CA + CF

)
TRnf

)
,

K =

(
67

18
− π2

6

)
CA −

10

9
TRnf .

(B3)

The sub-leading logarithmic term T (L) is defined as

T (L) =

∫ Q2

Q2e−2L

dk2T
k2T

αs(k
2
T )

π
= − 1

πβ0
ln(1− 2λ) . (B4)

The F-function, Eq. (14), for additive observables is given by

F(v) =
e−γER

′(v)

Γ(1 +R′(v))
. (B5)

Since both T (L) and r2(L) are sub-leading in L, we have

R′(v) = 2CF r
′(L) , where r′(L) = r′1(L) =

1

b

(
T

(
L

a

)
− T

(
L

a+ b

))
. (B6)

Using Eq. (B6) it can be verified that the combination of zmax
<v,soft and µ2

<v,soft listed in Tab. I generates the correct

value of r′(L), and therefore the correct value of the F-function.

Appendix C: Definition of observables

This appendix summarizes the definitions of observables used in our study and lists their parametrizations in terms
of the coefficients a and b in Eq. (2). Note that ~qi stands for any momentum in the event, no matter if this momentum
is hard or soft.

The thrust observable for arbitrary e+e− events is defined as [39]

τ = 1−max
~n

∑
i |~qi~n|∑
i |~qi|

. (C1)

The maximization procedure defines a unit vector, ~nT , which is referred to as the thrust axis. In the 2-jet limit,
Eq. (C1) can be written as

τ = min
~n

∑
i |~qi|(1− | cos θi|)∑

i |~qi|
, (C2)

where θi are the angles of the momenta with respect to ~nT . The coefficients in Eq. (2) are given by a = b = 1 [18].
The BKS observable is defined as [40, 41]

BKSx =

∑
iEi| sin θi|x(1− | cos θi|)1−x∑

i |~qi|
, (C3)

where θi are again the angles of the momenta with respect to the thrust axis. For this study we set x = 1/2, which
implies a = 1 and b = 1/2 [18].

The fractional energy correlation is defined as [18]

FCx =
∑
i6=j

EiEj | sin θij |x(1− | cos θij |)1−x
(
∑
iEi)

2
Θ
(
(~qi~nT )(~qj~nT )

)
, (C4)

where ~nT is the thrust axis. For this study we set x = 1, which implies a = 1 and b = 0 [18].
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