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Abstract

Unexpected server failures incur a large cost. Using data
that is continuously collected by monitoring software, we
can more accurately understand the processes that each
server is used for. The deviations in server performance
help diagnose when servers may malfunction. We
demonstrate a machine learning model that can predict
whether a server fails within 60 days with high accuracy.
In specific, our models predict the occurrence of hard drive
failures as they constitute over 80% of all server failures
within the data center.

INTRODUCTION

Server maintenance at SLAC Accelerator Laboratory
has traditionally taken a reactive approach. These
unexpected server failures incur a high cost. When a server
failure or malfunction is detected, resources must be
redirected to address the servers that require maintenance
and away from current projects. We want to minimize the
amount of unplanned downtime as we are often forced to
wait for a replacement part to be shipped.

Recently, the Computing Division implemented the five-
year cycle to move towards a more proactive approach. The
five-year cycle replaces the oldest 20% of servers each year
so that, eventually, no server older than five-years will be
in use. This program was started because it was believed
that older servers tend to fail more often than their newer
counterparts. By establishing a limit on how old a running
server can be, the hope is that the data center will face
fewer cases of fewer unexpected server failures be able to
better serve the researchers that utilize the facility while
minimizing the number of unplanned person-hours.

The five-year cycle is an improvement to the "run to
failure" approach, but some servers tend to fail well before
and well after the five-year mark. Trying to replace servers
that typically fail before the five-year mark means that
these servers will not be replaced proactively through five-
year cycle program, but rather out of necessity. In these
cases, we must absorb the cost associated with a server
failing unexpectedly and the unplanned person hours that
are necessary to repair or replace the server. Replacing
servers that tend to last longer than five years means that
we will replace servers and spend money unnecessarily.
Through this project, we continue the effort to develop a
more risk based approach to replacing servers.
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BACKGROUND

Within the Computing Division, Ramon Lim has already
been done to determine whether age was the only indicator
of whether a server would fail.

Lim's findings determined that, in addition to age, the
server's usage was a strong indicator of whether a server
would fail. Intuitively, this makes sense. Given two
identical machines, in which one machine consistently
performs computationally expensive tasks while the other
machine is often idle, we would expect for the machine that
handles more computationally expensive processes to fail
sooner. Under the five-year cycle, however, both these
servers would be replaced at the same time.

Building off Lim's project, we approach the problem of
predicting server failures by incorporating both the
intrinsic machine properties as well as how the server is
being used over time and to develop a more risk based
approach to replacing servers and to ultimately minimize
the overall cost associated with maintaining and replacing
servers. By prioritizing the usage of the server, we can get
a deeper understanding of the processes that each server is
tasked with. This level of granularity will help predict the
occurrences of server failures will help facilitate in
scheduling necessary maintenance hours while minimizing
the number of unplanned person hours and unnecessary
maintenance hours, and determining which parts to keep in
inventory.

DATA SOURCES
Ganglia

The Unix machines within SLAC's data center are
monitored through Ganglia, a simple daemon that runs on
each of the nodes. This software tracks metrics such as the
number of bytes inputted, number of bytes outputted, and
CPU load. This data gave us a deeper insight as to how the
servers were being used. Presently, Ganglia is configured
to measure the average each metric for every interval of 60,
1440, 10080, 40320, and 345600 seconds. Only the
measurements that are stored in 345600 second, or four-
day, intervals however, is stored historically while the other
data is removed after a period of about four days. To
capture the times when the servers encountered failures, we
were limited to using the 345600 interval metric data. To
pull the data from Ganglia, a few simple terminal
commands can easily fetch the files where the information
is stored. Generally, these commands followed the format:
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/var/lib/ganglia/rrds/<cluster>/<node-name> on gmetad
rrd file
rrdfetch

This set of commands makes it simple to retrieve the data
collected by Ganglia. The data is initially pulled as a rrd,
reduced resolution dataset, file. This file type, however, is
not easily parsed by Python and would later require some
additional work to convert them into a more readable file
format.

Failure Logs

Every morning, a script is run to check the health of the
servers. This script helps identify issues and malfunctions.
Any problems that are identified are recorded manually on
text file. In this text file, there is a brief description of what
the error is, whether the error has been resolved, the server,
and the date the error was detected. This text file has been
maintained for over 10 years. As expected, there are a
considerable number of typos, formatting issues, and
missing fields. This is, however, SLAC's most accurate
logs of the failures that are occurring in the data center and
it gives us a timeline of when each failure occurs.

DATA PREPARATION
Convert rrd files to XML

A simple bash script can be used to convert all the rrd
files pulled from Ganglia into XML files that can be easily
parsed in Python. To convert one file, you can use:

rrdtool dump filename.rrd filename.xml

XML to Dataframe

Initially there were over 19,500 xml files that we
needed to parse through. We later learned that some of
these files were empty and others stored metrics for pieces
of equipment that were not servers. For every metric of a
given machine, there was a separate, distinct file. All files
related to servers had file names in the following format:

file_name = server + 'slac.stanford.edu-' + ganglia_char +
"rrd.xml'

Furthermore, each file followed the same formatting. In
every file, the recordings for each time interval was written
to the same line numbers as the other characteristics for
that particular machine. Understanding the structure of the
file and how the file are named, allow us to write a simple
function to extract the data from all the xml files for a
particular machine and format the data into a pandas
dataframe using the Python's pandas, os, and
BeautifulSoup libraries. This function is shown in the
Appendix.

After we process one feature, we can iterate through the
other features in the feature list and merge each individual

dataframe into a larger, aggregate dataframe that contains
the data for all the features for that machine.

After the data for one machine is nicely formatted, we
can combine the dataframes for each machine into one
dataframe that represents all the servers in the data center.
Instead of concatenating all these dataframes to one
another, we implemented this aggregation using arrays
from the numpy library as it was significantly less
computationally complex. After combining the data for all
the machines, we could convert the numpy array back into
a dataframe.

Initial Feature Screening

Using the describe function we can start to get an idea
of the data that is being recorded. The describe function
shows us the minimum, 25th percentile, median, 75th
percentile, maximum, mean, and standard deviation for
each of the features in the dataframe. This statistical
summary makes it easy to determine which features are
constant. Instead of keeping all the features that are
constant, we dropped all but one, leaving one of the
constant variables to serve as a bias term. This way, our
models will not require as much training time while
preserving the information that is important for predicting
server failures.

Handling Missing Values

We identified which columns were missing values by
using pandas' value counts function and comparing this
with the number of samples in the dataframe. Instead of
removing the sample where there were one or two missing
features, we replaced these missing values with the median
for that feature as the median tends to be more stable than
the mean. Note that we are replacing the values of -1 as
opposed to NaN because we changed the null values to -1
so that we could apply to “to_numeric” function.

dff"feature_name"].replace(df]"feature _name"].median(),
inplace=True)

Timestamps and Time Gaps

When the data was initially pulled from the XML files
and inserted into the dataframe, the dates were represented
as a string in the format "MM/DD/YYYY". These values
were difficult to use directly given the differences in the
number of days in the month. We decided to converted this
strings into numbers. More specifically, chose to represent
each date as its epoch, the number of seconds since January
Ist, 1970. Converting these strings to a numeric value
would make it much more convenient to derive other
features.

After sorting the samples in the dataframe by both
machine and epoch, we noticed that there were intervals
that were larger than the expected 4 days. We learned that
these larger gaps were a result of the machine being moved,
the machine being idle, or a combination of the two.

We set the threshold for distinguishing between the two
scenarios at 60 days. It was important to come up with a
heuristic to differentiate between the two because there are



marked performance differences between machine that
have completely shut down to be relocated and machines
that were still running, but were merely idle. This heuristic,
however, can and should be improved, but ideally, to have
the most accurate status, each time a server is relocated it
should be logged in a database.

Using this heuristic, whenever a machine was moved we
changed its name for every recording after that. For
example, if a machine was named "server-A", its new name
after being moved would be "server-A-1". If it was moved
again, its name would change to "server-A-2". In addition
to changing its name, we defined a feature that tracked
whether a machine had been moved or not.

Failure Logs

A significant amount of manual work was done to
clean the data that was originally in this text file. Once that
text file was reasonably clean, the data was parsed into a
pandas dataframe. In this dataframe, we were primarily
focused on when the failure occurred and what server the
failure affected. In the dataframe that contained the
recordings of the Ganglia metrics, we first sorted the
dataframe by machine and epoch. This way the data was
formatted similarly to a time series. From there, we could
write a function that took a list of the failure times for a
particular machine and returned the times the time that the
previous failure occurred and the time that the next failure
would occur in terms of epoch. Once we derived these
values, these two features were appended to the Ganglia
dataframe.

Deriving Features

In addition to adding indicator features for whether a
server was moved, the times of the previous and next
failures, epoch, we chose to include a couple additional
features.

Since hard drive failures for a given server seemed to
happen in clusters. Therefore, we derived the additional
features, time_since_prev_failure which represented the
time since the previous failure. If there is some pattern for
the hard drive failure clusterings, this feature would
essential. Computing this feature was reasonably
straightforward given that we already derived when the
previous failure occurred.

By taking the difference between the time until the next
failure and the sample’s epoch, we could easily derive the
time until the next failure.

To frame predicting server failures as a supervised
learning problem, we must first define what constitutes a
positive and negative observation. We chose to define a
positive observation as a failure occurring within 60 days.
This number of days, from an operational standpoint, is
long enough such that the staff has sufficient time to order
the necessary parts and to schedule the required person-
hours. This is a parameter that should be explored further.

By approaching the problem this way, we can define a new
variable error_days60. This variable is an indicator feature
that a failure would occur within the next 60 days. A

positive observation would be defined as an observation in
which a failure occurs within 60 days.

Encoding Categorical Variables

Using pandas' built in get dummies function, we one-
hot encoded the categorical features such the server model.

MODEL SELECTION
Defining a good model

Given that the servers function normally for a large
majority of the time, the data is heavily skewed towards
negative cases, the scenario where a server failure does not
occur. Thus, simply using accuracy is not a good measure
of performance. Ideally, we want to minimize the number
of false-negative cases in which the model predicts that an
error does not experience any failures, but the server does
fail. This is especially costly because these inaccurate
predictions require unplanned person hours to fix the
servers. False positives are also costly and should also be
minimized, but are relatively cheaper. In this case,
maintenance is performed unnecessarily. The cost is
comparatively less, however, because hard drives are
generally inexpensive. True positives and true negatives
are accurate predictions and should be maximized. Taking
these four metrics into account we chose to evaluate a
model's performance based on its Fl-score. A
mathematical representation of the F1 score is shown.
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Implementation

We used an 80/20 train-test split. We implemented a
regressor model as opposed to a classifier to represent a
threat level associated with the server failing. We used a
threshold level of 0.4 to map to a positive case. That is, if
the threat level was higher than 0.4, we would expect the
server to fail.
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Figure 1: Simple Data pipeline

Individual Timestamps

The first approach we used was to consider each
individual timestamp as a distinct sample. We could easily
track which machine we were referring to as it was one of
the features. The output variable would be the
error_days60 column.

Sliding Window

The next approach was to implement a sliding window
approach. We aggregated the values for all the features. In
addition to aggregating the values for these features, we
found the variance for these values. We thought that,
perhaps, if the performance fluctuated widely, it would be
indicative of poor server health. We included other
elements of the statistical summary such as the mean as
well. We chose to implement a 16-day sliding window. In
the future, however, the size of the sliding window should
be explored further. Given the large number of added
features, it is understandable that the training time was
significantly higher. Since the performance is markedly
better than the individual timestamp model, it appears that
the variability of the performance of the server is a factor
that should be considered when building the model.

Model Algorithm F1 Score

Timestamps KNN 0.75

Timestamps BST-DT 0.49

Sliding Window | KNN 0.82
Holdout Group

While training the previous models, we had assumed that
no failure would occur for the samples that were collected
the 60 days prior to when the Ganglia data was pulled. This
is not the most accurate representation. Since we did not
have the ground truth observation, we chose to remove this
data from the dataset. When removed these sample from
the dataset, the F1-Score increased significantly.

Model Algorithm F1 Score
Timestamps KNN 0.943

We predict that implementing a sliding window approach
and making use of the holdout group should demonstrate
even stronger performance.

NEXT STEPS

We make the following recommendations to effectively
utilize our model and findings and ultimately more
intelligently budget for servers, allocate people-hours, and
increase confidence.

Infrastructure and Processes

First, we highly recommend the development of
infrastructure and processes to utilize our preliminary
findings. This is necessary to automatically and proactively
understand which machines may encounter errors. Without
the proper processes, a staff member would have to locate
and retrieve the proper data; run the necessary scripts to
process the data and make predictions; present said data in
a format easy for human use. With a proper pipeline, we
can proactively send data about machine performance and
recent failures directly to our scripts, and display the result
in a pleasant way. This may take some time and can be
flexible, so this can be done modularly. A sample
recommended process is shown.

Automate Testing

Presently, the health of servers is checked by a script that
is manually run every morning. This process can be
automated. Instead of checking the health of the serves
every day, if this script can be run automatically run several
times throughout the day, we will also have a more precise
measurement of when issues arise which can help improve
the precision of the model. If this script can be automated,
the findings should also be able to be written to a database.
This would significantly cut down on the number hours and
resources that are necessary to clean the text file that
contains the failure data.

Refactor Cleaning Process

Cleaning and inputting the data should be refactored into a
program that can be simply and easily run. The code from
this project includes code that was used for testing and is
not meant to be run. Blocks of code in the attached Jupyter
Notebooks can be used in this program.
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Figure 2: Detailed schematic of a RNN unit (left) and LSTM
block (right) as used in the hidden layers of a RNN

Dashboard

Given the vast number of resources dedicated towards ETL
and machine learning for Python, it is convenient to
process and train the data in Python. An elegant solution
for creating a dashboard for the failure risks for each server
would be to display this information using the Django
framework. By creating a dashboard, anyone, even those
who are not from a programming background, can use the
dashboard and devise a plan that would best utilize the
budget allocated for server maintenance.

More Data

SMART (Self-Monitoring, Analysis and Reporting
Technology) attributes is a set of features that are
monitored by the hard drive itself and can be easily
collected through other monitoring applications such as
Ganglia. The infrastructure for viewing real-time SMART
metrics has been implemented by hard drive manufacturer
as a means of tracking the health of the hard drive. SMART
attributes were initially to serve as an early detection
system for hard drive failures, but an estimated 36% of
hard drives still fail without any warning. We do still
believe these metrics to be important factors to consider in
the predictive model. A group from Google published a
paper found that a small subset of features are highly
correlated with hard drive failures. After showing the first-
scan error, hard drives were 39 times more likely to fail
within 60 days in comparison to similar hard drives servers
that did not display this error [1]. Incorporating these
metrics would be bolster the current machine learning
algorithm and help provide deeper insights of the
performance of the hard drive.

While tracking and recording SMART attributes would
be useful it is important to note that the specific attributes
that are tracked by each individual hard drive is determined
by the manufacturer. One potentially useful feature would

be the temperature of the hard drive as even a one degree
difference could affect the performance of the hard drive.
Although some hard drives do measure this feature, other
hard drives do not. Investing in sensors may not be cost
efficient, but giving preference to hard drives that do track
this metric could help create a more robust predictive
model.

Deep Learning

Given the amount of data we could reasonably use, we
were limited to using the classical machine learning
algorithms as deep learning models require significantly
more data. If we collect data every minute instead of the
four day averages we would have 5760 times as much data.

Not only would the more data allow us to improve the
classical machine learning models and predict server
failures with greater precision, we could also embark into
develop deep learning models.

One method to implement deep learning is to train a
simple feedforward network, but perhaps a more natural
approach would be to implement a LSTM RNN (Long
Short-Term Memory Recurrent Neural Networks). RNNs
perform exceedingly well for sequenced data such as the
time series as it "remembers" its previous states. LSTMs
are a type of RNN that overcome the issues that RNNs face
when dealing with a large number of time steps. If we are
able to gather the data at the level of granularity of one-
minute intervals, using LSTMs will be especially crucial.

Online Learning

One potential downside of tracking the usage of each
server at one-minute intervals is that all this data should be
stored. Given how much data there could potentially be,
storing this data could become very expensive. If we were
to implement an online learning model, we could
continually train the model and discard the data after it has
been incorporated into the model. This way, we can reap



the benefits of having a lot of data while only storing a
small fraction of it. This, however, can only be used if the
most has already been proven to perform well. There exist
numerous algorithms that can implement this sort of
learning and is often collectively referred to as "mini
batch" learning algorithms.
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APPENDIX
XML to Dataframe

def xml process(server, ganglia_char):

# 1. Read File

path = 'Data/'

file name = server + '.slac.stanford.edu-' + ganglia char + ".rrd.xml'
with open(path + file_name) as data:

xml_data = BeautifulSoup(data, 'xml")

# 2. Get Values
day4 = xml_data.find_all('rra')[4].find_all('row")

day4 time =xml data.find all(string=lambda text: isinstance(text, Comment))

# 3. Process Values
time_sec = map(lambda x: x[1:].split(' )[4], day4 time[-374:])

value = map(lambda x: float(x.contents[0].contents[0]), day4)

# 4. Format DataFrame
return_df = pd.DataFrame([time_sec, value]).transpose()

return_df.columns = ['epoch', ganglia char]

# 5. Clean NaN, Make Columns Numeric
return_df.loc[pd.isnull(return_df[ganglia char]), ganglia char] = -1
return return_df.apply(pd.to_numeric)
# get all the data from all the xml files for one machine, data is packaged
# into a dataframe
def process machine(machine):

total df = None

for ¢ in characteristics:

df = xml process(machine, c)



if total dfis None:
total df=df
else:
total df = df.merge(total df)
if total _df is None:
return False

return total df

Converting String to Epoch
# define function to convert a string to epoch

from datetime import datetime

def convert_time_string(time):
return int((datetime.strptime(time, "%Y/%m/%d") -

datetime(1970, 1, 1)).total_seconds())
Identifying Time Gaps and Renaming Server Names

This process is a quite intricate. For each unique machine name, we grab all the rows in the Ganglia dataframe that
measure that specific machine. Then, we sort by the epoch and make a copy of the epoch column. We stagger the
two columns so that they are one time-step removed from one another. By taking the differences between the two
columns, we can iterate through the column and if the difference is greater than 60 days, it will be set to 1 while the
other values will be set to 0. Then, we'll use the cum_sum function this array. Using this array, we'll derive the new
machine names.

# threshold for determining 'small' or 'large' gap in days
# curr_machine: machine that you want to examine
# should not be directly called, will be used by change names
def identify _gaps(machine, threshold=60):
# find the rows for curr_machine

machine = pd.DataFrame(nan_df[nan_df["machine"].str.contains(machine)])

# sort by epoch

machine = machine.sort values("epoch")

epoch machine = np.array(machine["epoch"]) # stores the epoch times

epoch_shift = epoch_machine.copy() # stores the shifted epoch times



epoch_shift = epoch_shift[1:]
epoch_shift = np.append(epoch_shift, epoch_shift[-1]+345600)

# result represents the intervals between successive logs

result = epoch_shift - epoch_machine

relocated = np.array([])
threshold seconds = threshold*60*60*24
for gap in result:
if gap > threshold seconds:
relocated = np.append(relocated, 1)
else:
relocated = np.append(relocated, 0)
indices = indices = np.cumsum(relocated)
return indices
def change names(machine, threshold):
# create the mapping

new_machines = identify gaps(machine, threshold)

curr_machine = nan_df test[nan_df test["machine"].str.contains(machine)]

# create a new column

curr_machine["new names"] = curr_machine["machine"]
# set new names in "new names" column

for index in range(len(curr_machine["new names"])):

if new_machines[index] != 0:

curr_machine["new names"|[index] = curr_machine["new names"][index] + '-' +

str(int(new_machines[index]))

Finding the Next and Previous Error For a Machine

# this function returns when the previous and next failure occurs, given the time of the current sample

# and a list of failure times for that machine

def prev_next_error(row, fail times):

curr_time = row["epoch"]

prev_time = -1



next_time = -1
for failure time in fail times:
if curr_time >= failure time:
prev_time = failure time
elif curr_time < failure time:
next time = failure_time
break
return prev_time, next time
We apply this function to every row so that we can find the previous and next failure times for each sample.
Finding the Next and Previous Error For a Machine
# combined df will incorporate failure data as well as ganglia data
combined df=None
for key in ready_keys:
df = machine dfs[key].copy(deep=True)

fail times = sorted(list(hd_error df[hd error df["name"]==key]["epoch"]))

df["name"] = key

df]"nextFailure"] = df.apply(lambda x: prev_next error(x, fail times)[1],
axis=1)

df["prevFailure"] = df.apply(lambda x: prev_next error(x, fail times)[0],

axis=1)

df"timeToFailure"] = df.apply(lambda x: x["nextFailure"] - x["epoch"] if
x["nextFailure"] != -1 else -1, axis=1)
df["timeFromFailure"] = df.apply(lambda x: x["epoch"] - x["prevFailure"]
if Xx["prevFailure"] = -1 else -1, axis=1)
if combined df is None:
combined df=df
else:

combined df = pd.concat([combined df, df])



