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Abstract

We develop a method to generate a long pulse train of few-cycle coherent radiation by modulating

an electron beam with a high power laser. The large energy modulation disperses the beam in a

radiating undulator and leads to the production of phase-locked few-cycle coherent radiation pulses.

These pulses are produced at a high harmonic of the modulating laser, and are longitudinally

separated by the modulating laser wavelength. We discuss an analytical model for this scheme and

investigate the temporal and spectral properties of this radiation. This model is compared with

numerical simulation results using the unaveraged code Puffin. We examine various harmful effects

and how they might be avoided, as well as a possible experimental realization of this scheme.
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I. INTRODUCTION

There has been a long history of using lasers to manipulate relativistic electron beams to

produce tailored radiation pulses [1] [2]. These methods may seek to produce high harmonic

upconversion as in the Coherent Harmonic Generation (CHG) [3] or Echo-Enabled Harmonic

Generation [4] schemes, which may be used to seed Free-Electron Lasers (FELs) [5] [6] [7] [8]

[9]. Laser manipulations may also target short pulse length, as can be achieved by so-called

femtoslicing in synchrotron sources [10] [11] or by interaction with a few-cycle laser pulse to

produce an attosecond scale FEL pulse [12]. One can also endeavor to produce pulse trains

of radiation with a fixed phase relationship, either by use of delay stages in an FEL [13], by

modulating the electron beam to produce sidebands around the FEL resonant wavelength

[14], or through seeding via a pulse train from High Harmonic Generation (HHG) techniques

[15].

Some of these methods are well suited to merely producing coherent radiation, while

others must cautiously avoid spoiling the performance of an FEL interaction. Methods of

generating short pulses can also require very precise laser timing control or advanced laser

systems. Here we introduce a simple but potentially robust method to produce a train

of mode-locked, few-cycle, high harmonic coherent radiation pulses using only a powerful

modulation laser, one modulating undulator, and a short radiating undulator. In this paper,

we refer to the radiation produced by individual coherently radiating regions of the electron

beam as ‘pulses’, while the assemblage of all such regions over the entire electron beam

is referred to as a ‘pulse train’. We note that a similar situation utilizing extremely large

energy modulations was considered in [16], although the analytical formalism in this paper

differs considerably from our own and the emphasis is on high harmonic upconversion, rather

than the dispersion-controlled pulse duration.

The fundamental beamline components necessary for the scheme are shown in Fig. 1,

which shows schematically the production of the few-cycle radiation pulse train. First,

a relativistic electron beam copropagates with a high power laser of wavelength λL in a

modulating undulator (U1, tuned to λL). The resonant interaction between the laser and

electron beam imprints a roughly sinusoidal energy modulation on the beam, and in our

case this modulation amplitude can be up to several percent of the total beam energy. The

beam may then optionally be partially ‘pre-bunched’ by a small magnetic chicane (C1), in
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FIG. 1. A schematic illustration of the short pulse train generation scheme. A long-wavelength laser

λL modulates the electron beam in the first undulator (U1). This beam may then be optionally

pre-compressed by a small four-dipole magnetic chicane (C1), before radiating in another undulator

(U2) tuned to a high harmonic of the seed laser. The result is a train of few-cycle radiation pulses

at the upconverted wavelength λr.

order to decrease the need for a long undulator. Next, the modulated electron beam enters

a radiating undulator (U2) tuned to a resonant wavelength λr, which is chosen to be some

harmonic of the modulating laser wavelength: λL = hλr, for integer h. This undulator is

characterized by the longitudinal dispersion transport matrix element R56 = 2Nuλr, where

Nu is the number of periods in the undulator. We can write this transport element as a

function of distance along the undulator z, noting that for an undulator with period λu we

have the relation Nu = z/λu.

We examine the electron beam in the comoving frame described by longitudinal coordi-

nate s = z − β̄ct, where β̄ is the average normalized electron velocity. In this frame as the

electron beam traverses this undulator the initial density modulation will be converted into

a density modulation, and eventually the beam will over-disperse, as shown in Fig. 2. In this

comoving frame, an electron with relative energy deviation δγ/γ will move longitudinally

with respect to the reference electron at a rate,

ds

dz
=
dR56

dz

δγ

γ
= 2

λr
λu

δγ

γ

Meanwhile, the electrons are also radiating at the resonant undulator wavelength λr. If

a localized region of electrons become confined through this compression to a region smaller
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FIG. 2. An illustration of the longitudinal phase space dynamics involved in the generation of

short pulses. The red vertical lines correspond to a width of 0.2 λL, corresponding to a harmonic

upconversion factor h = 5. In panel (a) we see the beam initially modulated by 103 times the

energy spread σE . In panel (b) the beam has dispersed into the coherent radiation regime, and it

leaves this regime at panel (c). After further dispersion, the beam is as in panel (d), and no longer

efficiently radiates coherently.

than λr, the emission of radiation will be coherent, corresponding to panels b) and c) of Fig.

2. The longitudinal distance Lp spent in this region thus defines the duration of coherent

emission, and can be found simply by dividing the distance an the electron travels during

this coherent emission (λr) by its relative velocity (ds/dz),

Lp ≈
λr
ds
dz

=
λu

2δγ/γ

The number of coherent radiation cycles can thus be estimated to be Ncyc ≈ 1
2δγ/γ

, dependent

only on the modulation amplitude. Intuitively, it is easy to understand that the larger

the relative energy deviation is, the quicker the electrons disperse longitudinally inside the

radiating undulator, leading to a shorter coherent pulse. Indeed, for modulation amplitudes

on the order of a few percent, one can achieve few-cycle pulses.

Furthermore, as is clear from Fig. 2, the electron beam will in general be much longer

than the modulating laser wavelength λL, and thus contains many such coherent radiation

segments. These coherent segments are separated longitudinally by the laser wavelength,

and thus there exist hλr radiation wavelengths of space between them. Therefore, if the
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number of radiated cycles per coherent segment Ncyc < h, the output radiation profile will

consist of a long train of coherent, fully separated pulses. This is the essential radiation

profile of the scheme we propose.

We note that such a pulse train may also be obtained by a simple CHG beam traversing

a short undulator. The method of this paper, however, allows pulse length control via the

modulation amplitude with a single undulator, while altering the pulse length in the CHG

method would require a new undulator for each desired pulse length.

Here we briefly illustrate the spectral mechanics of such pulse trains. We consider a pulse

train made up of cosine waves of frequency ω0, each contained within a Gaussian temporal

envelope of width τ and separated temporally by h radiation cycles,

f(t) = τ−1

N∑
j=−N

e−(t−2πjh/ω0)2/2τ2

cos (ω0(t− 2πjh/ω0))

Where h, j ∈ Z, and 2N is the total number of pulses contained within the train. While these

Gaussian modulated pulses are not entirely accurate for the pulse trains we will discover,

this simple form yields the appropriate relationships between the various scales h,N , and

ω0.

We’re interested in the spectral content of such a train, so the Fourier transform f̃(ω) is

found as,

f̃(ω) =

[
1

2

(
e−

τ2

2
(ω−ω0)2

+ e−
τ2

2
(ω+ω0)2

)]
×
[
csc

(
πhω

ω0

)
sin

(
πhω

ω0

(2N + 1)

)]
The first bracketed term comes simply from the truncated sine (the more familiar square

wave window would produce a sinc function instead). The first term gives a Gaussian

envelope with width 1/τ centered on ω0, while the second term involving ω + ω0 can be

neglected for envelopes covering more than one cycle. The second bracketed term is due to

the pulse train character, and features multiple levels of harmonic spikes. This term can

be though of as the result of a finite (only 2N spikes) version of the Dirac comb. There

exist large scale spikes with the normal harmonic spacing at ωn = ω0 + nω0/h, for integer

n, appearing as the zeroes of the cosecant function. The width of these spikes is found by

expanding around them ω = ωn + δω and finding the zero of the sine function. The result
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FIG. 3. Power spectrum of a short pulse train demonstrating the relationship between the different

scales. The parameters here are N = 10, h = 50, and τ = 10π/ω0. Given the artificially small N

to illustrate the subharmonic width, some small sidebands are visible.

is a primary width of 2δω = 2ω0/(2N + 1)h ≈ ω0/Nh, since N is generally large compared

to unity.

Physically speaking, the sideband frequency of the harmonic spikes is determined by the

temporal separation of the pulses, their spectral bandwidths are determined by the total

number of pulses in the train, and all the harmonic spikes reside in an envelope determined

by the temporal duration of each individual pulse. The relationship between these various

frequency scales is shown schematically through the power spectrum |f̃(ω)|2 in Fig. 3.

The situation shown in Fig. 3 is representative of a train of pulses which never overlap

temporally. As the duration of each pulse, here τ , approaches their temporal separation,

2πh/ω0, the subharmonic peaks fall outside the Gaussian 1/τ spectral bandwidth and the

pulse train transitions to being essentially a single Gaussian-sine pulse with temporal dura-

tion τ → Nτ . This limit provides an essentially distinct, and generally unwanted, mode of

operation when compared to the pulse train, and we will revisit it shortly in the context of

our short-pulse generation scheme.
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II. AN ANALYTIC MODEL

Our analytical model begins with the radiation field and motion due to a single electron

in a planar undulator and closely follows the treatment in [17]. The resultant electric field

due to the motion is described by the Liénard-Wiechert field,

~E(~x, t′) =
1

4πε0

q

c

 n̂×
((
n̂− ~β

)
× ~̇β

)
R′
(

1− ~β · n̂
)3


ret

(1)

Where R′ is the (retarded) distance from the source particle to observer, n̂ is the unit

vector in this direction, ~β is the normalized Lorentz velocity, q is the electron charge, and

the subscript ‘ret’ indicates that the expression is to be evaluated at the retarded time t′.

We have already omitted near field terms which scale like R−2, as our analysis is strictly

interested in the radiation in the far field. As a corollary, the motion of the electron in the

magnetic field of the undulator is insignificant compared to the distance to the observer,

and hence the vector n̂ can be considered a constant, here taken to be in the ẑ direction of a

right-handed coordinate system. Correspondingly, the retarded distance R′ is identified with

some fiducial distance R, taken to be the distance between the observer and, for example, the

center of the radiating undulator. The case of off-axis emission is treated in the appendix,

and the results summarized in equations (A4)-(A6).

The motion in the undulator with undulator parameter K, period λu, and angular fre-

quency ωu ≈ kuc = 2πc/λu is described by the simple harmonic equations,

x(t′) =
K

γku
cos(ωut

′) (2)

z(t′) = v̄zt
′ +

K2

8γ2ku
sin(2ωut

′) (3)

With the averaged z velocity v̄z given by

v̄z = c

(
1− 1

2γ2

(
1 +

K2

2

))
(4)

We are now assuming that the electron traversing the undulator is fairly relativistic and keep

terms up to order γ−2. Performing the vector arithmetic with these trajectories in equation

(1) and taking only the leading terms in γ, we get an electric field purely in the x̂ direction

given by,

Ex(t
′) =

4qγ3Kku
πε0R

cos(ωut
′)

[
2−K2 +K2 cos(2ωut

′)

(2 +K2 −K2 cos(2ωut′))
3

]
(5)
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The bracketed term corresponds to the searchlight wiggler effect for high K values and serves

to slightly modify the sinusoidal shape. We are primarily concerned with the frequency shift

of the sine wave, which is not affected by this extra term, hence for simplicity it is averaged

over one period to a value of [· · · ] = 1
16

(1 +K2)
−5/2

(4 + 2K2 +K4). In the ultrarelativistic

approximation on axis we have the retarded time t′ related to the time of observation t as,

t =

(
1 +

K2

2

)
1

2γ2
t′ (6)

Next, we introduce an energy offset from some nominal Lorentz factor γ = γ0 + δγ and

expand, keeping only terms linear in δγ,

Ex(t) =
qγ3

0 (1 + 3δγ/γ0) K̃ku
πε0R

cos(ωrt(1 + 2δγ/γ0)) (7)

With the definition,

K̃ = K

(
1 +

K2

2
+
K4

4

)(
1 +K2

)−5/2
(8)

And the resonant frequency ωr defined as,

ωr =
2γ2

0ωu
1 +K2/2

(9)

This is the electric field from a single electron traversing the undulator. We now generalize

this description to a continuous distribution of electrons which are distributed in longitudinal

position as in a finite length electron beam. The longitudinal position is quantified by an

initial phase offset φ0 relative to the resonant frequency, ωrt→ ωrt− φ0. This phase can be

thought of as a time offset for when the different electrons enter and exit the undulator. In

addition to this phase, the electron distribution may also contain energy deviations δγ from

the nominal value of γ0 which may be correlated with the phase φ0.

With such a distribution in mind, we consider that the effect we are interested in involves

the slippage between the different electrons in the beam. It is clear to see, from the δγ/γ0

term in the cosine of equation (7), that particles with different energy deviations evolve in the

phase of the cosine wave at different rates. We can expect coherent emission from the electron

distribution when all these phases are similar for a short duration of time. Therefore, it is

the energy variation inside the cosine which will produce the coherent radiation effect. By

contrast, the amplitude variation in equation (7) leads to small variations in the amplitude

of radiation for different electrons. However, unlike the phase inside the cosine, there is no

possibility for these variations to combine coherently, and they serve only to alter slightly
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the amplitude of the coherent effect. Therefore, in what follows we ignore (or average over)

this amplitude variation, instead approximating it as a constant.

For a laser modulated electron distribution the quantities δγ and φ0 are not independent,

and we choose to express δγ(φ0). The electric field from an individual electron can then be

written in terms of φ0 as,

Ex(t, φ0) = E0 cos (ωrt (1 + 2δγ(φ0)/γ0)) (10)

The coefficient E0 ≡ qγ3
0K̃ku
πε0R

(1 + 3δγ/γ0) has collected everything besides the φ0 dependent

term for convenience. The total electric field from the entire electron distribution can then

be written as an integral over the distribution in φ0 of the individual electric fields Ex(t, φ0),

ETOT(t) =

∫
Ex(t, φ0)ρ(φ0)dφ0 (11)

Where ρ(φ0) is the normalized density distribution of particles with respect to the phase

φ0. All that is left to specify is δγ(φ0), which describes how the electron distribution is

prepared, and ρ(φ0), which is assumed to be a flat distribution as a function of φ0 since the

electrons are not initially bunched on the radiation wavelength scale.

A. Linear Model

A linearly chirped beam was previously considered in [18]. This study analyzed the

coherent emission of a single, linearly chirped Gaussian current electron beam inside a

radiating undulator. This single-segment situation could conceivably be produced by a

strong RF chirp over the entire electron beam, as the pulse train aspect of the beam was not

considered. A linear model also serves as an approximation to the electron dynamics near

the s ≈ λL/2 portion of the sinusoidal modulation shown in Fig. 2. We consider a linear

variation in of energy with the phase modeled as,

δγ

γ0

= A
φ0

h
(12)

The factor of h has been included as a reference to the quasilinear chirp of a sine wave

of frequency 1/h times the undulator radiation frequency. As previously mentioned, with

such a scenario particles are evenly distributed in phase so that ρ(φ0) = Np/(2h), with Np
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the number of particles, so we have,

Elin
TOT(t) =

E0Np

2h

∫ h

−h
cos

(
ωrt

(
1− 2A

h
φ0

)
− φ0

)
dφ0 (13)

where the limits are chosen in the range (−h, h) such that the energy modulation ranges

from (−A,A) to approximate the linear portion of a sine-wave modulation of amplitude A.

The integrated field from a single chirped electron bunch is then,

Elin
TOT(t) = NpE0 cos(ωrt)sinc(h− 2Atωr) (14)

From the sinc function modulation we deduce the duration of the pulse tp ≈ π/Aω0, or

alternatively, that the number of emitted cycles is,

Ncyc ≈
1

2A

From this we also learn the frequency bandwidth of the power spectrum (P (ω) = |
∫
E(t)eiωtdt|2)

signal to be
∆ω

ωr
≈ 4A

We thus arrive at the same essential scaling that we developed in our introduction: The

number of coherent radiation cycles is inversely proportional to the modulation amplitude.

In fact, to this level of detail the results are identical.

B. Sinusoidal Laser Modulation

The far more relevant physical case is that in which a laser interacts with the electron

beam inside a short undulator to imprint on it a sinusoidal energy modulation. For this

case, in contrast to equation (12), we have the more general expression,

δγ

γ0

= A sin

(
φ0

h

)
(15)

Again, the factor of h here clearly appears as the scale between the undulator radiation

phase and the laser phase, and is identical to the harmonic of the laser being used compared

to the undulator radiation wavelength: λL = hλr. The total field is then given by,

Esin
TOT(t) =

NpE0

2h

∫ h

−h
cos

(
ωrt

(
1 + 2A sin

(
φ0

h

)))
dφ0 (16)
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As with the linear case, the normalized density distribution is independent of the initial

phase, so ρ(φ0) = Np/2h. The nested sine functions can be dealt with by expanding in

terms of Bessel functions Jn, in particular with the relation,

ei2Aωrt sin(φ0/h) =
∞∑

n=−∞

Jn (2Aωrt) e
inφ0/h

The integration over the phase φ0 is here carried out over a single laser wavelength, and

if we assume the harmonic upconversion h to be relatively large, we may use (−∞,∞) as

the limits of integration to simplify the result. In this case, all but one of the Bessel modes

drops out of the calculation and we are left with,

Esin
TOT(t) = NpE0 cos (ωrt) Jh (2Aωrt) (17)

The form of the net electric field is conceptually identical to the linear case in equation

(14), except instead of a sinc function we have Jh providing the modulation envelope. To

connect with both experiment and simulation, however, we note that our result in equation

(17) is valid only for a single laser wavelength of the electron bunch. We then sum up each

contribution with an appropriate shift in the time domain to obtain the total signal,

Ebunch(t) =
∑
j

Esin
TOT(t− 2jπh/ωr)H(t− 2jπh/ωr) (18)

Where H(t) is the Heaviside step function, and the sum over j extends far enough to cover

the entire electron beam. Already from these solutions we can see that there will be a

delay in the emission, since the Bessel function has its maximum when its argument is

approximately equal to its order, one must wait until t ≈ h
2Aωr

, which is the same condition

derived from the linear case. This delay is physically represented by having to wait for

the electron distribution to shear over from panel (a) in Fig. 2 to panel (b). This delay

can be removed, if it is large, by using a pre-bunching chicane as shown in Fig. 1 to enter

the radiating undulator with a distribution close to panel (b) of Fig. 2, thus entering the

coherent radiation regime almost immediately.

The production of a pulse train of few-cycle pulses, as opposed to a long radiation pulse

defined by the electron bunch length, is governed by the relationship between A and h. The

condition can be thought of, roughly, as Ncyc < h for the pulses to be non-overlapping.

Using the schematic dependence in the introduction, this condition can be rewritten as,

1

2
. Ah (19)
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When this condition is satisfied, the radiation pulses from each laser wavelength (each com-

pressed region in Fig. 2) will be separated from one another. This condition can be satisfied

by freely tuning both the modulation amplitude and harmonic upconversion, although in

practice the transport of beams with A & 0.1 may prove challenging.

Although an analytical Fourier transform is not readily available, we can still make several

statements about the form of the power spectrum. The pulse-train inherent in equation (18)

leads to harmonic peaks at regular intervals of ωr/h (the laser frequency harmonics) which

will in general be quite sharp with width inversely proportional to the electron beam length.

These harmonic peaks are feature of the pulse train created by the long electron bunch with

independent radiating sections, and will be superimposed on top of a background spectrum

(for comparison, this background spectrum is the Gaussian envelope in the example of the

introduction pulse train and Fig. 3). In our present case, this background spectrum is

characterized by the Bessel function, which leads to a characteristic two-horned shape as

opposed to a sinc function more common from a finite undulator. We estimate the width of

this Bessel pedestal by approximating the first Bessel function zeroes jh, and the zeroes of

its first derivative j′h [19],

jh ≈ h+ 1.85h1/3

j′h ≈ h+ 0.808h1/3

Thus we approximate the full width of the Bessel function peak during which substantial

coherent radiation takes place, and, assuming a transform limit, obtain a full-width of the

power spectrum,

∆ω

ωr
≈ 2πAh−1/3 (20)

Unlike the estimate from the linear modulation, here we pick up a slight dependence on

the harmonic upconversion factor which tends to narrow the spectrum for high harmonics.

This dependence is due to the nonlinearity of the sheared over sine wave in longitudinal

phase space, which is encoded in the Bessel function. As the harmonic factor increases,

the nonlinearities are increasingly on a scale larger than the coherence length. On the

other hand, for small harmonic factors the nonlinear curvature quickly spreads the electrons

outside the coherence length, leading to a shorter pulse of coherent radiation.

We can calculate the energy density contained in the signal using the electric field (17)
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FIG. 4. Comparison of the electromagnetic field intensity from Puffin (top) and the analytical

formula (18) (bottom) for the squared electric field showing the pulse train structure. The longi-

tudinal extent of this plot covers three laser wavelengths, and the harmonic upconversion factor

is 25. Note that from the definition of s, the radiation slips to the right in this plot, so the most

recent radiation is found at the left-most portion of the pulses.

from,

E =

∫ tfinal

0

1

2Z0

|E(t)|2dt (21)

Where Z0 ≈ 377Ω is the impedance of free space, and the time integral should extend over

the duration of emission. For a typical case, we consider a modulated beam which is allowed

to disperse in the radiating undulator through only the first Bessel peak, giving a final

time tfinal ≈ 1
2Aωr

(2π + h). With the reasonable assumption that the duration of coherent

emission persists for several radiation periods, and integrating over a spherical shell of radius

R through angles θ < γ−1
0 the total pulse train energy is given by ,

E =
N2
p 〈E2

0〉
16
√
πγ2

0Z0Aωr
X (h) (22)

Where X (h) is a universal, slowly varying function of h shown in Fig. 10 and the functional

form given in equation B4 of the appendix. The number of particles Np should be taken

to be the number in one modulation wavelength, and for a long beam should be summed

up with appropriate weights corresponding to the current profile. The inverse dependence
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FIG. 5. Comparison of the computational power spectrum obtained from Puffin and the analytical

estimate based on equation (18). The power spectra are normalized to their maxima. The electron

beam has A = 0.09 and is run through 7 undulator periods.

on the modulation amplitude A is understood as larger values of A lead to shorter pulses,

and assuming approximately equal power, a smaller total energy. We briefly note that

the averaged quantity 〈E2
0〉 ∝ (1 + 9A2/2) contains a weak dependence on the modulation

amplitude A, since A is quite small compared to unity.

III. COMPARISON WITH SIMULATIONS

The electric field, given by equation (18) is compared with a numerical simulation using

the 3D unaveraged FEL code Puffin [20]. Since the effect we are interested in involves

only longitudinal dynamics, for computational efficiency we use only the 1D mode of the

Puffin code, in which the transverse dimensions are neglected. Furthermore, to facilitate

comparison with the analytical model developed, we disable the FEL interaction and operate

the simulation at low peak current to study only the coherent radiation effects. We consider

an electron beam with γ = 401.608 in an undulator with K = 1.26 and period λu = 1.8cm,

essentially the parameters of the VISA undulator resonant at 100 nm [21]. The electron
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FIG. 6. The electron beam longitudinal phase space (top row) and field intensity profile (bottom

row) as the beam traverses the undulator. The beam is first undercompressed and does not radi-

ate significantly (left, 2 undulator periods), before it becomes optimally compressed and radiates

strongly (middle, 12 undulator periods). If allowed to continue, the beam will radiate the lower

intensity, subsequent Bessel peaks (right, 20 undulator periods).

beam has an approximate length cτ = 20µm, possesses negligible current and emittance,

and has a relative energy spread of 10−5. The electron beam is modulated with a 2500 nm

laser, giving a harmonic upconversion factor h = 25, and attains a maximum modulation

A = 0.09. Finally, a magnetic chicane is used to ‘pre-bunch’ the beam to close to the

coherent radiation point to limit simulation time. A comparison of the electric field from

the analytical expression of equation (18) with the radiation intensity is shown in Fig. 4,

while a comparison of the analytical and computational power spectra is shown in Fig. 5.

For the full field comparison, the squared electromagnetic field amplitude is plotted

against the longitudinal coordinate s scaled to the laser wavelength λL. From the ana-

lytical expression, the individual cycles are resolvable, whereas the Puffin simulation yields

a smoothed intensity over individual radiation cycles. We clearly observe the first Bessel

peak in both the analytical and numerical field amplitudes, and the pulse train structure is

clearly visible. Note that the simulation was terminated after 7 undulator periods, corre-

sponding to the approximate width of the first Bessel maximum, although we observe the
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second Bessel peak beginning to develop.

The relationship between the electron beam phase space and the generation of the radi-

ation pulses is shown clearly in Fig. 6. We see that the maximum compression, as shown

schematically in Fig. 2, corresponds to the generation of the main pulse of radiation. If

the undulator is not terminated after this point, as it was in Fig. 4, the electron beam will

continue to radiate at lower intensity on subsequent Bessel peaks, as shown in the right-most

panel of Fig. 6. It is therefore not necessary to terminate the undulator after precisely the

first Bessel peak, as the subsequent radiation preserves the pulse train structure if it is for

a sufficiently short duration.

There is excellent agreement between the computational and analytical power spectra in

Fig. 5, and there are several features of note. First, the various harmonic spikes appear

naturally as the various harmonics of the seed laser as one would expect from an HGHG type

source. However, from equation (18) we see the same harmonics arise as the simple result of

a train of radiation pulses, all at the same frequency ωr and temporally separated by 2πh/ωr,

the fourier transform of which produces submodal spacing at intervals ∆ω = ωr/h. We note

that because of the short length of the electron bunch (roughly a dozen laser wavelengths),

the subharmonic peaks possess significantly larger width (consistent with Fig. 3) than they

otherwise would with a more typical ps long electron beam (compare with Fig. 9).

We also note the expected width of the main spectral envelope, which is here composed

in equal part of the short undulator length as well as the temporal width of the first Bessel

function peak. To verify the relationship between this spectral width and the harmonic

factor, we run a series of simulations with A = 0.09 and various harmonic factors, each

of which passes through a 14 period undulator after having been sufficiently pre-bunched.

The results in figure 7 confirm that equation (20) is quite a good estimate of the full-width

bandwidth of the power spectrum and the h−1/3 dependence is particularly evident.

IV. DELETERIOUS EFFECTS

The analytical model of section II and computations of section III have neglected several

physical effects which potentially conspire to harm the coherent pulse train effect.

First, the modulation of the electron beam by several percent of its total energy presents

its own challenges. Broadly speaking, when interacting a laser with an electron beam in an
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FIG. 7. Comparison between computational power spectrum full width (blue markers) and the

analytical estimate based on equation (20).

FIG. 8. The development of a non-sinusoidal energy modulation inside of the modulating undulator.

The energy modulation normalized to the total beam energy is shown against the longitudinal

coordinate scaled to the laser wavelength. We begin to see the folding over of phase space for

κ & 1.
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undulator, the maximum sine-like modulation amplitude A achievable scales inversely with

the number of periods A ∼ 1/4Nu, i.e. the modulation must be achieved in fewer than 1/4A

undulator periods due to slippage within the modulating undulator. If more periods are

used, the phase space will fold over and become highly non-sinusoidal.

We can quantify this non-sinusoidal scale by introducing the parameter κ ≡ 4ANu, so that

we require κ < 1 for a reasonably sinusoidal modulation. The dependence of the modulation

profile on κ is shown for some simulations in Fig. 8, in which it is clearly seen that for κ > 1,

the phase space becomes quite non-sinusoidal. Note that the produced longitudinal phase

space is not equivalent to a sheared sine-wave, as in Fig. 2. Rather, because the electrons slip

considerably with respect to the laser phase, the beam acquires a somewhat more bulbous

character, which can be seen developing in the final plot of Fig. 8. Of course, if the factor κ

becomes much larger than unity, the electrons will begin to fill out the buckets in laser phase

as is common in inverse FEL accelerators [22] and conventional RF accelerators [23]. Note

that this discussion assumes the laser field amplitude to be uniform over the duration of

modulation. In the case that the laser field diffracts away prematurely, the full modulation

amplitude A is reached before the end of the undulator. In effect, this allows additional

undulator length through which the electrons will disperse, possibly prematurely shearing

over the electron beam as shown in the last panel of Fig. 2. This undesirable effect could

be limited by achieving the required modulation in the shortest undulator possible, or by

focusing a diffracting laser beam towards the exit of the undulator.

A related issue is that depending on the laser wavelength and modulation amplitude, the

required drift from modulator to radiator may provide a tight requirement on the floor space

requirements of this setup. In the ultra-relativistic regime the transport matrix R56 for a

drift of length L is given by R56 = L/γ2
0 . To illustrate the point, using a 100 MeV beam and

an 800nm laser with a modulation amplitude A = 0.05, less than 15cm is allowable between

the modulating and radiating undulators. This requirement arises as the electron beam

must not shear over through the coherent regime before reaching the radiating undulator. Of

course, these requirements are mitigated when using a higher energy electron beam or longer

wavelength laser, but remain an important consideration for constructing an experimental

setup utilizing this effect. Depending on the particular setup, then, it may not even be

necessary to include a ‘pre-bunching’ chicane, as is shown in Fig. 1. Due to this practical

concern, as well as the fact that all effects considered in this paper happen on a relatively
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short timescale, we do not consider any possible collective effects arising due to the use of a

chicane.

The modulation of the electron beam on the order of several percent of its total energy,

and subsequent compression, potentially also leads to very high currents and space charge

instabilities. In the absence of space charge, an electron beam with modulation amplitude

scaled by the slice energy spread, B ≡ ∆E/σE, when fully compressed by a linear dispersion,

produces a peak current enhancement [24],

Ipeak

I0

≈ eB

1 +B1/e
(23)

Where Ipeak is the peak current, and I0 is the nominal uncompressed current. To take a

typical example, an electron beam generated from a photocathode may have, after boosting

to ∼100MeV, a slice energy spread σE/E ∼ 10−5. This beam could be modulated by several

MeV, leading to a value of B ∼ 103. From equation (23), we would expect compression by a

factor of hundreds, which for an initially reasonable beam current can reach the problematic

range of tens of kA.

The effect of transverse space charge can be approximated as an associated transverse

emittance growth in a drift of length z, which can be found as [25],

∆εn(z) =
Ig

4IAβ2γ2
z (24)

where IA ≈ 17kA is the Alfvén current, I is the beam current, β is the normalized electron

velocity, and g is a geometric factor of order unity. The drift length z over which the

emittance increase will occur can be found as the length through which the particles drift

before decompression occurs. The width of the current peak (in the lab frame) obtained by a

beam modulated at laser wavelength λL is approximately ∆z = λL/2B, and the longitudinal

drift rate is given by A(dR56/dz) = A/γ2, yielding a drift length. The result is an emittance

increase,

∆εn =
gλL

8β2AB

I

IA

Note the result is (nearly) independent of beam energy, as we have assumed the beam

to be relativistic. Inserting some typical values, A = 0.05, B = 103, λL = 10.6µm, the

emittance increase is found to be 0.7nm/kA. Given the typical normalized emittance of

linear machines on the order of one micron, we conclude that the transverse space charge

effect is negligible for the cases we are interested in.
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The longitudinal space charge (LSC), however, has the effect of limiting the peak current,

and potentially destroying the longitudinal phase space necessary for coherent emission. We

measure the effect of the LSC by the limit it imposes on the peak current attainable. The

energy change produced by the LSC can be estimated for a parabolic current profile of peak

current Ipeak and length δ as [26],

∆E =
3

4δ

eIpeak

8πε0β2γ2c
z (25)

where we have dropped a term which is logarithmic in the ratio of the beam pipe diameter

to the transverse beam size. We note that there is a 3D correction the simple formula of

equation (25) controlled by the parameter ξ = krb/γ, where k is the wavenumber of interest

and rb the transverse beam size [27]. These corrections are important for the fine-scale

structure of the bunching introduced by the LSC, and become relevant for ξ & 1. We

neglect such corrections here, choosing to ignore the fine-scale structure that may arise in

order to arrive at a simple scaling law regarding the maximum compressibility of the beam.

Proceeding in analogy to the transverse space charge, the drift distance z is taken to be

the beamline distance over which the particles drift through the distance δ/2. This forms

a first approximation for the effect, as in reality as ∆E decreases, the particles will drift

slower and the beam distribution becomes highly non-symmetric. Nevertheless, setting the

energy loss equal to the modulation energy, ∆E = Aγmc2, we arrive at an LSC dominated

peak current,

Ipeak =
16

3
IAβ

2γA2 (26)

This current is not exactly a peak value in reality, but more accurately represents the

value near which LSC oscillations cannot be ignored. Above this value, the LSC dominates

the longitudinal dynamics of the beam, making invalid the coherent analysis of section II. By

virtue of this, this current is the peak (compressed) current which can be used to create the

short pulse coherent emission. A full simulation including the effect of LSC would elucidate

the effect on the coherent emission in the cross-over regime, but the code Puffin does not

currently support LSC modeling. Therefore, we consider our results generally valid only

below this LSC dominated peak current.

Beyond these space charge effects, we also note that the non-linear transport component

present in a real machine has the potential to become important for energy deviations of

several percent. The non-linear effects manifest here as the 2nd order transport element
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T566, defined as 1
2

∂2s
∂(δp/p)2 . A numerical analysis of the compression in a drift including the

T566 transport component was performed to study this possibility. We observed only a few

percent degradation compared to equation (23) and the simulations including only R56,

even with modulation amplitudes up to 10%. The fact that peak current is not significantly

degraded due to the T566 component of transport also suggests a minimal impact on the

coherent emission studied in this paper.

A more serious, although purely practical, effect is due to the finite laser spot size in the

modulating undulator. Since we are dealing with modulations much larger than the intrinsic

slice energy spread of the beam, we must also consider the non-uniformity of the modulation

itself. In effect, the non-uniformity of the laser modulation can be understood as an effective

increase in the beam slice energy spread, and hence a decrease in the parameter B which

determines the peak current by equation (23).

To understand this effect, consider a transversely Gaussian electron beam with standard

deviation σb which is modulated by a Gaussian laser beam with transverse standard deviation

σL. Combining these two distributions, we find the point at which the resultant function

drops to 1/e its peak value to define its standard deviation. The result is an effective

energy spread increase σlaser
E from a laser with modulation amplitude ∆E and wavevector

kL, depending on the ratio between the two length scales f ≡ σL/σb,

σlaser
E (s) ≈ ∆E sin(kLs)

(
1− e1/(1−f2)

)
(27)

The result is an energy spread which is dependent upon the transverse bunch position, which

combines in quadrature with the intrinsic slice energy spread of the electron beam. A full

analysis of the maximal compression of such a bunch is outside the scope of this paper, so

we simply report numerical results.

To get a feel for this effect, consider B = 103, and f = 5, which seems reasonable

for an electron beam of size 200µm modulated by a laser with spot size of 1mm. For

reference, such a situation in which the electron beam has mean energy 100MeV, slice energy

spread 1keV, and is modulated by 1MeV produces a maximal laser induced energy spread

σlaser
E ≈ 40keV, 40 times the initial slice energy spread. Nevertheless, simulations show that

peak compression is reduced from the case of f → ∞, which provides Imax/I0 ≈ 190, to

Imax/I0 ≈ 95 for f = 5, almost a factor of two. Even a relatively ‘safe’ choice of f = 10

produces only 80% the maximal peak current due to this effect, while a tightly focused laser
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with f = 2 produces only 17% the peak current.

Even if the production of the individual radiation pulses is not inhibited, the fixed-phase

relationship between all the pulses in the train may be disrupted by irregularities on the scale

of the electron beam. Electron beam chirp or quadratic curvature in energy do not present

a significant problem, as the imposed energy modulation is generally much larger than the

chirp or curvature produced in normal operation modes via RF structures. Variation in

the laser temporal intensity, however, is a much larger concern, as differing modulation

amplitudes across the beam will cause coherent emission both at differing locations along

the undulator and of differing duration.

We can estimate that this effect will become completely destructive when one portion of

the beam (modulated at amplitude A) has already passed through its coherent radiation

phase while a second part (modulated at A− δA) has not even begun its coherent radiation.

From the simple analytical scaling in the introduction, we deduce the criterion,

δA� 2πA

h

For parameters where A is several percent and h is around a dozen, this implies a control on

δA on the order of one percent. For Gaussian shaped electron beams and laser pulses, this

puts a practical constraint that the RMS length of the laser pulse should be on the order of

tens of times longer than the electron bunch to ensure good phase coherence between the

majority of the radiation pulses.

While some of these effects clearly have more destructive potential than others, all of

them can be eliminated or mitigated in practical setups by appropriate choice of laser and

electron beam parameters.

V. EXPERIMENTAL PROSPECTS

We consider an experimental setup analogous to that studied in section II. This setup

could be realized at Brookhaven National Laboratory’s Advanced Test Facility (ATF) using

a 10.6µm CO2 laser to modulate a 60MeV electron beam in a few period undulator such

as the electromagnetic STELLA prebuncher [28]. With a laser power of a few hundreds

of GW and a spot size of a few mm, modulation amplitudes up to A = 0.1 are possible,

although we consider a more likely working point of A = 0.04. To provide a high harmonic
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FIG. 9. The resultant power spectrum from the proposed experimental setup at the ATF. The

y-axis is the number of photons per nm bandwidth. Spectral brightness is increased by 6 orders

of magnitude for the laser harmonics, while integrated radiation energy is increased by roughly 4

orders of magnitude.

upconversion, a small-period undulator could be used to support radiation wavelengths as

low as ∼ 900nm, near the 11th and 12th harmonics of the seed laser.

A simulation of this setup at the ATF was performed using Puffin with an idealized

electron distribution. A modulation of A = 0.04 is imprinted on the beam by the CO2 laser,

which then radiates in a 12 period helical undulator with K = 0.82 and λu = 1.9cm. The

electron beam has characteristic parameters of the ATF with normalized emittance of 2µm,

charge of 100pC, relative energy spread of 10−4, and rms bunch length of 3ps. The resultant

power spectrum is shown in Fig. 9, with a comparison to the spontaneous signal produced

with no laser interaction.

The harmonics spikes in the ATF setup spectrum are quite sharp compared to the sample

simulation of Fig. 5 due to the realistic bunch length containing roughly a hundred separate

radiation regions. For this case, the individual spikes are about 1 nm wide, which is in good
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agreement with the expected 1/hN estimate from the introduction. For this experiment,

the total pulse train energy from equation (22) is 66 nJ, while the Puffin simulations yield a

total energy of 52 nJ – a reasonable agreement given the approximations in equation (22).

For reference, the spontaneous radiation energy is only 11 pJ.

The resultant spectrum from an ATF-scale experiment is reminiscent of HHG sources,

which are capable of producing a train of attosecond pulse trains with harmonic content

down into the extreme ultraviolet wavelength range [29]. Furthermore, as in the case of the

effect in this paper, the individual radiation pulses are in a phase-matched relationship [30],

strengthening the analogy between the two methods of harmonic radiation production. The

total energy of ≈50 nJ produced in the ATF experiment compares favorably to HHG sources

which, depending on the configuration, may produce anywhere from nJ to µJ of total energy

in the harmonics [31]. However, for the above configuration, conversion from laser energy

into harmonics (the electron beam carries only a small fraction of the laser beam energy in

this setup) is only 10−8, while HHG sources typically produce conversion efficiencies on the

order of 10−5 ∼ 10−6. We note, however, that large gains in efficiency can be obtained by

simply increasing the electron beam charge due to the coherent nature of the emission, as

seen from equation 22.

VI. CONCLUSION

We have described a novel method for the generation of few-cycle pulse trains of coherent

radiation. We developed a simple analytical model which yields generic predictions, found

to be in good agreement with simulations. The method is ultimately based on strongly

modulating an electron beam and allowing it to longitudinally disperse in a radiating un-

dulator. Thus, the method we describe is not applicable for FEL seeding, as the required

energy modulations dominate over the FEL bandwidth.

The method, however, is inherently flexible due to the tunability of the laser modulation

amplitude. Thus, unlike a facility equipped simply with a short undulator, the length of

the pulse train in our scheme can be tailored by adjusting the modulation amplitude. In

principle, the length of the pulses achievable is limited only by the energy acceptance limits

of the accelerator. In practice however, we observe that space constraints and realistic

modulation scenarios may limit achievable modulations to A . 0.1, and thus the cycles to
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Ncyc & 5. Nevertheless, it appears possible to produce these few-cycle radiation pulse trains

with commercially available undulators and lasers at current facilities.

The coherent radiation process could be further strengthened by using a synthesized

waveform in place of a single sine wave. One possibility is to synthesize a triangular or

sawtooth waveform by performing the modulation at various harmonics [32]. The resulting

bunching regions are more sharply defined, and can possess greater harmonic content as

well as a shorter coherent radiation region if issues with the T566 transport element and

non-sinusoidal modulation can be avoided.

The possibility of a proof of principle experiment at the ATF facility has been presented,

in which coherent radiation pulse trains in the 800-1000 nm region could be produced as

harmonics of a 10.6µm modulating laser. The analytical theory developed in this paper make

no reference to a length scale, and so in principle this method should extend down through

the optical, through the UV, and beyond. In principle, however, it may be difficult to

create experimentally realizable short-wavelength setups for several reasons. For one, short

wavelength radiation generally requires higher energy beams, which require significantly

more powerful lasers to achieve modulation amplitudes of a few percent. A good candidate

for this modulation might be a high peak power Ti:Sa 800 nm laser, which in a similar

configuration to the ATF experiment but with a beam energy of 220 MeV, could produce

coherent radiation pulse trains in the 70 nm VUV region. Extension down into the soft

X-ray seems possible, but further study is needed to understand if the deleterious effects

discussed in section IV incur greater penalties at these short length scales.
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Appendix A: Off-Axis Field Derivation

To treat off-axis emission in the undulator, we begin with equation (1) and take n̂ =

(sin θ cosφ, sin θ sinφ, cos θ) where θ is the angle away from the propagation axis and φ is

the azimuthal angle. As the particle is assumed ultra-relativistic, we assume γ � 1 and

θ � 1, keeping terms up to 2nd order in θ and commensurate leading order terms in γ (as

the product θγ may not be small). From the computation of Eq (1) we arrive at,

Ex(t′) =
4eKkuχ

3

πRε0

[
γ3
{
−(θ2 + 1) cos(ωut

′)(K2 cos(2ωut
′)−K2 + 2)

}
+ (A1)

γ4
{

4θKχ sin(2ωut
′) cos(φ)

(
−K2 cos(2ωut

′) +K2 − 4
)}

+

γ5
{

2θ2 cos(ωut
′)
(
−3
(
K2 + 2

)
χ+ 3K2χ

(
48K2χ sin4(ωut

′) cos2(φ) + sin2(ωut
′)
(
−8
(
K2 + 2

)
χ

+ 16K2χ cos2(ωut
′) cos2(φ)− 4

(
2
(
K2 + 2

)
χ− 1

)
cos(2φ) + 7

)
+ cos2(ωut

′)
)
+ cos(2φ)

)}]
Ey(t

′) =
4eKkuχ

3

πRε0

[
γ4
{

2θK sin(φ) sin(2ωut
′)
}

+ (A2)

γ5
{
−2θ2χ sin(2φ) cos(ωut

′)
(
5K2 cos(2ωut

′)− 5K2 + 2
)}]

Ez(t
′) =

4eKkuχ
3

πRε0

[
γ3
{
θ cos(φ) cos(ωut

′)
(
K2 cos(2ωut

′)−K2 + 2
)}

+ (A3)

γ4
{

4θ2Kχ sin(ωut
′) cos(ωut

′)
(1

2
K2
(
−6 sin2(ωut

′) cos(2φ) + cos(2ωut
′)− 3

)
+

K2+6 cos2(φ) + 2
)}]

Where we have defined the variable,

χ−1 ≡ K2 cos(2ωut
′) +K2 − 2

We proceed, as before, by considering only those portions of the field that vary as ωut
′ and

averaging over the rest. The resulting averaged fields are much simplified, and are computed

as,

Ēx(t′) =
4eKku
πRε0

cos(ωut
′)
[
γ3(1 + θ2)

{
4 + 2K2 +K4

16(1 +K2)5/2

}
γ5θ2

64(K2 + 1)7/2
(A4){ (

3K8 + 14K6 + 18K4 + 96K2 − 16
)

cos(2φ)− 3
(
K8 + 4K6 + 6K4 − 16K2 + 16

)}]

Ēy(t
′) =

4eKku
πRε0

cos(ωut
′)

[
γ5θ2

(
K4 + 8K2 − 8

)
sin(φ) cos(φ)

16 (K2 + 1)7/2

]
(A5)

26



Ēz(t
′) =

4eKku
πRε0

cos(ωut
′)

[
−θγ3

(
K4 + 2K2 + 4

)
cos(φ)

16 (K2 + 1)5/2

]
(A6)

We note that in the case that θ = 0 we recover the on-axis field result of equation (5).

We must also take into account the angle in the relationship between the retarded and

observation time, which when averaged over a period, is given by

t =

(
1 +

K2

2
+ γ2θ2

)
t′

2γ2
(A7)

The radiation frequency defined in equation (9) thus becomes a function of angle. As before

we expand this observation time to first order in the energy deviation δγ/γ0, and arrive at,

ωut
′ = ωr(θ)t

(
1 +

2(1 +K2/2)

1 +K2/2 + γ2
0θ

2

δγ

γ0

)
(A8)

ωr(θ) =
2γ2

0

1 +K2/2 + γ2
0θ

2
ωu (A9)

Anticipating once again the coherence effect we are interested in, we choose to ignore the

amplitude variation caused by relative energy deviation and focus only on this frequency

shift. The salient point of difference in comparison to equation (7) is that the factor of 2 in

front of the δγ/γ0 has been replaced by,

2
1 +K2/2

1 +K2/2 + γ2
0θ

2
≡ 2Y (θ) (A10)

Recalling that this factor of 2 also appears in the Bessel function of equation (17), we

make the replacement 2 → 2Y (θ) to arrive at an angular dependent expression for the

resultant x electric field,

Esin
x,TOT(t, θ, φ) = NpE0(θ, φ) cos (ωrt) Jh (2Y (θ)Aωr(θ)t) (A11)

Where the factor E0(θ, φ) now contains the γ3 and γ5 coefficients of equation (A4). The

angular dependence also gives us resultant fields in the y and z direction of analogous form,

merely with coefficients taken from equations (A5) and (A6) respectively.

We observe that the effect of the angle θ is to, as in a normal undulator, change the

resonant wavelength off-axis. However, through the factor Y (θ), we now see that different

angular components proceed through coherence at different rates. Off-axis radiation com-

ponents will thus have a slightly longer coherence time, and produce radiation pulses which
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FIG. 10. The universal function X (h) describing how the individual pulse energy varies with

harmonic number h.

are spectrally sharper and temporally broader than their on-axis counterparts. This effect

can be significant for undulators with relatively small K values at large angles θ ∼ γ−1, as

Y (θ = γ−1
0 )→ 1/2 for K � 1, suggesting a doubling of the resultant pulse length compared

to the on-axis radiation.

Appendix B: The Universal Function X(h)

The universal function X(h) is found by computing the integral from equation (21),

∫ tfinal

0

cos2(ωrt)Jh(2Aωrt)
2dt (B1)

where the final emission time tfinal = 1
2Aωr

(2π + h). The cosine term oscillates quickly

compared to the Bessel function, so we approximate it by its average 〈cos2(ωrt)〉 = 1/2.

The relevant integral then becomes,∫ tfinal

0

Jh(2Aωrt)
2dt (B2)

This integral can be computed exactly, and it is found to be,
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1

4
√
πAωr

(h+ 2π)2h+1Γ

(
h+

1

2

)2

2F̃3

(
h+

1

2
, h+

1

2
;h+ 1, h+

3

2
, 2h+ 1;−(h+ 2π)2

)
(B3)

where Γ is the Gamma function, and F̃ is a regularized generalized hypergeometric func-

tion. The normalization with respect to the standard generalized hypergeometric function

is provided by Gamma functions of the second set of arguments: pF̃q (a1 · · · ap; b1 · · · bq; z) =

pFq (a1 · · · ap; b1 · · · bq; z) / (Γ(b1) · · ·Γ(bq)). The universal function X(h) is then defined as

the portion dependent only on h:

X(h) = (h+ 2π)2h+1Γ

(
h+

1

2

)2

2F̃3

(
h+

1

2
, h+

1

2
;h+ 1, h+

3

2
, 2h+ 1;−(h+ 2π)2

)
(B4)

The function X(h) turns out to vary only slowly with h, and a plot is shown in Fig. 10.

The full result for the individual pulse energy is then given by equation (22).
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