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Abstract
We analytically examine the bunching factor spectrum of a relativistic electron beam with sinu-

soidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG) trans-

formation to produce high harmonics. The performance is found to be described primarily by a

simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical

parameters is derived analytically, and compared with simulations. Where applicable, EEHG is

also compared with high gain harmonic generation (HGHG) and we find that EEHG is generally

less sensitive to several types of energy structure. In the presence of intermediate frequency mod-

ulations like those produced by the microbunching instability, EEHG is also found to lead to a

cleaner bunching spectrum with substantially narrower intrinsic pedestal.
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I. INTRODUCTION

External seeding schemes like HGHG [1] and EEHG [2, 3] have been developed to im-
prove the spectral brightness and spectral stability of high-gain free electron lasers (FELs).
These techniques use lasers and dispersive electron beam transport elements to generate high
harmonic density modulations that jump-start the FEL amplification process and produce
narrowband, fully coherent radiation down to x-ray wavelengths.

The success of the seeding scheme, gauged in large part by the purity and stability of
the final FEL output spectrum, depends sensitively on the details of the electron beam dis-
tribution. A primary contributor to deviations from ideal transform-limited FEL pulses are
energy structures on the initial electron beam phase space. Uncontrolled energy structures
lead to reductions in the spectral density (photons/eV) for FEL seeding systems because
they are translated to the broader FEL output spectrum. Energy structures can occur as
the result of collective effects during acceleration and compression [4] as in the case of co-
herent synchrotron radiation (CSR) [5–7] and the microbunching instability (MBI) [8–10],
or transport effects such as wakefields. Wakefields typically have scale lengths comparable
to the bunch length (tens of microns), whereas MBI can amplify broadband perturbations
that end up peaked around >∼ 1 µm wavelengths. In either case, such energy structures
can be difficult to remove completely, and they mix extra frequencies into the FEL gain
bandwidth that can spoil the high-contrast, narrowband performance improvements offered
by seeding in general. An illustrative example is the background pedestal observed in the
self-seeding spectrum at LCLS [11–13]. At soft x-rays, the otherwise narrow seeded spike is
surrounded by a background of frequencies that can contain a sizable portion (e.g., ∼ 40%)
of the power. For certain experiments, a final monochromator is needed to further filter the
spectrum, but this comes with a limited efficiency (≤ 10%) that significantly reduces the
overall gains in spectral brightness.

Understanding these effects is important for evaluating HGHG and EEHG as competitive
external seeding schemes, as they differ in their sensitivity to phase space structures. Linear
energy-time chirps, for example, have the general effect of shifting the harmonic frequency
away from the target frequency in HGHG, and EEHG is less sensitive to these effects [14].
Similarly, it has also been shown that the EEHG bunching bandwidth is less sensitive to
quadratic chirps [15], which are analogous to linear laser chirps [16]. EEHG may also be
more robust to energy structures like those that result from MBI [17], though the extent to
which is not completely clear for lack of one-to-one experimental comparisons, but simulation
studies for upcoming FELs are ongoing [18, 19].

On the other hand, energy structures than can be precisely controlled offer additional
tunability on the seeded FEL output. For example, small linear chirps can be used to shift
the FEL frequency in a repeatable way [20]. Or, coherent modulations on the beam at
IR wavelengths can produce discrete sidebands in the seeded FEL spectrum for dedicated
multicolor operations [21].

Here we study EEHG analytically and with numerical simulations in an effort to shed
light on some of these issues and establish the scaling and sensitivity. A general formalism is
presented that introduces an energy modulation on the beam prior to the EEHG transforma-
tion. A simple scaling parameter is identified that governs the characteristics of the bunching
spectrum for both EEHG and HGHG, and the bunching spectrum is then analyzed for two
classes of idealized initial electron beam energy structure; long wavelength modulations that
generate linear and quadratic chirps, and intermediate wavelength modulations shorter than
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the beam, such as those encountered in collective effects. EEHG is compared with simple
HGHG to highlight the general distinctions and to provide a conceptual framework for more
detailed future comparisons, particularly for ultra-high harmonics that require cascading of
multiple seeding stages.

II. EEHG SCALING FACTOR AND OPTIMIZATION

We closely follow the notation of [3] where the bunching factor for EEHG is given as,

b̄n,m(kE) = e−ξ
2
E/2Jn(−ξEA1)Jm(−aEA2B2), (1)

where the normalized laser modulations are A1,2 = ∆E1,2/σE and normalized dispersions

are B1,2 = k1R
(1,2)
56 σE/E > 0. σE is the slice energy spread, and E is the beam energy. We

assume ideal lasers that completely cover the electron beam. The EEHG harmonic frequency
is,

kE = aEk1 = nk1 +mk2, (2)

with aE = n + mK the harmonic number, n and m integers, and K = k2/k1. The optimal
n is small and negative, and m� 1. We define the EEHG scaling factor as the parameter,

ξE = aEB −mKB1 = nB1 + aEB2, (3)

where B = B1 + B2. We will see that ξE governs the performance of the EEHG bunching
process, and it is nearly always advantageous to minimize |ξE|. For |ξE| small, the ratio
of the dispersions is approximately the harmonic number, aE ∼ |nB1/B2| and typically

B1 � B2. The optimal value of ξE is found from the maximum of |e−ξ2E/2Jn(−ξEA1)|, and
is given approximately by [22]:

ξE ' ±
j′n,1
A1

[
1 +

1

A2
1

1

1− (n/j′n,1)
2

]−1
(4)

where j′n,1 ≈ |n|+0.81|n|1/3 is the first root of J ′n. |ξE| decreases like 1/A1 for practical values,
so a larger A1 is generally preferable for the bunching performance, with the constraint that
it (and A2 combined) not be so large as to strongly inhibit FEL amplification. In EEHG
the scaling factor ξE can also be negative. This carries several advantages [17, 23], and it
affects, for example, the tunable region of excited sideband frequencies (Section IV B).
A1 determines the optimal ξE, so for a given A2, the optimal dispersion values are then,

B2 =
j′m,1
aEA2

, B1 = (ξE − aEB2)/n. (5)

Figure 1 shows the dependence of |b̄n,m(kE)| on the dispersions. The bunching factor peaks
at two values of B1, the larger of which is in the preferred ξE < 0 region.

HGHG, in contrast, uses only one modulator and chicane to produce the harmonic fre-
quency kH = aHk1. The bunching factor is given by, b̄aH (kH) = e−ξ

2
H/2JaH (−ξHA1), where

the HGHG scaling factor is,
ξH = aHB1 > 0. (6)
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FIG. 1: |b̄n,m(kE)| % for aE=50th harmonic of 260 nm lasers with n = −1 and A1,2 = 3. The

dashed line is ξE = 0, and the ξE = ±1/2 optima (dots) lie at the centers of the bunching peaks

in their respective regions, with a difference in dispersion ∆B1 = −2ξE/n.

Analogous to ξE, ξH governs key performance aspects of the HGHG process. Equation (4)
also gives the optimum for ξH with the replacement n = aH � 1. The maximal harmonic
bunching with the smallest energy spread yields A1 ≈ aH , for which the optimization is
ξH ≈ 1. Compare this with EEHG where, for example, with A1 = 3 and n = −1, the
optimum gives |ξE| ≈ 1/2. This difference between the scaling parameters ξE and ξH
accounts for several distinctions between the two schemes.

A. Bunching sensitivity

The EEHG bunching factor can be expanded about small deviations from the optimal
tune parameters B1,2 and A1,2 to reveal how the bunching amplitude is affected. The impact
of small changes in the first dispersion ∆B1 can be calculated by expansion about the value
in (5). To second order, the bunching decreases as

∆b̄n,m
b̄n,m

= −(∆B1)
2

2B2
1

(
nB1

ξE

)2 [
ξ2E(A2

1 + ξ2E + 2)− n2
]

' −(∆B1)
2

2B2
1

(
j′m,1

A1

A2

)2 [
1− n2/(j′n,1)

2
]
.

(7)

The second expression is the expansion for small ξE. From this we see that the bunching
change is only weakly sensitive to n, but scales like (∆B1/B1)

2m2, and thus is increasingly
more sensitive to high harmonics m� 1. The effect is shown in Figure 2. Small changes in
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FIG. 2: Variation of bunching with deviations in B1 from the approximate optimum in Eq. (4).

A1 = 5, A2 = 3, aE = 100 is assumed. Solid lines are from Eq (7), dashed lines are from exact

solutions.
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FIG. 3: Variation of bunching with deviations in A1 from that used to calculate Eq. (4). A1 = 5

is assumed. Solid lines are from Eq (9), dashed lines are from exact solutions.

the second dispersion ∆B2 yield a similar form, but with an additional term,

∆b̄n,m
b̄n,m

' −(∆B2)
2

2B2
2

[(
j′m,1

A1

A2

)2 [
1− n2/(j′n,1)

2
]

+
[
(j′m,1)

2 −m2
] ]
.

(8)

For large harmonics, the second term scales like m4/3 and can generally be neglected, so
relative changes ∆B1/B1 and ∆B2/B2 reduce the bunching according to essentially the
same scaling.

Similarly, if the first laser modulation fluctuates about the value A1, the bunching am-
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FIG. 4: Variation of bunching with deviations in A2 from j′m,1/aB2. Solid lines are from Eq (10),

dashed lines are from exact solutions.

plitude varies as:
∆b̄n,m
b̄n,m

= ξ2E
∆A1

A1

− (∆A1)
2

2A2
1

[
ξ2E(1 + A2

1)− n2
]

(9)

This is plotted in Fig. 3. There is a linear dependence on ∆A1/A1 because the optimal
energy modulation for a fixed ξE is A1 ' j′n,1/ξE, which is slightly larger than the nominal
value used to calculate the optimal ξE. Clearly, the bunching in tunes with larger |n| is more
sensitive to ∆A1/A1. This can impact the performance of an EEHG seeding system that,
for example, uses a larger |n| value in exchange for a smaller B1.

Both Eqs (7) and (9) deal with variations in the first modulator and chicane, so they also
then apply directly to HGHG for the corresponding parameters with ξE → ξH , and with
n→ aH .

A similar analysis applies for variation in the second EEHG modulation from the optimum
in Eq. (5),

∆b̄n,m
b̄n,m

= −(∆A2)
2

2A2
2

[
(j′m,1)

2 −m2
]
,

' −0.81
(∆A2)

2

A2
2

m4/3.

(10)

Figure 4 shows the effect that amplitude variations in the second modulator have on the
bunching. Higher harmonics are increasingly more sensitive, and the bunching is strongly
suppressed when ∆A2/A2 ' 1/m2/3. For example, it only takes a 5% increase in A2 to kill
the bunching at m = 100. A comparison with Fig. 3 confirms that the EEHG bunching
is much more sensitive to amplitude variations in the second modulator than in the first
modulator.

III. LONG WAVELENGTH MODULATIONS

Let us consider the effect of initial energy structures on the beam that have long wave-
lengths compared to the bunch length, λ0 = 2π/k0 � 2πσz. We define h1 and h2 as the
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dimensionless linear and quadratic coefficients of the energy variation,

p0 = p+ h1k1z + h2k
2
1z

2, (11)

where p = ∆E/σE is the normalized energy variable, z is the coordinate in the beam, and

h1 =
1

k1

dp0
dz

∣∣∣∣
z=0

, h2 =
1

2k21

d2p0
dz2

∣∣∣∣
z=0

. (12)

Previous analyses have computed the bunching factor spectrum for purely linear chirps [14],
and independently for purely quadratic curvature [16].

The bunching spectrum for frequencies near kE is then (see Appendix),

bn,m(k) = b̄n,m(k)
exp

[
−σ2

z(k−nk1−mk2+ξh1k1)2
2(1+iχ)

]
√

1 + iχ
, (13)

where

ξ =
k

k1
B −mKB1, (14)

is the generalized scaling parameter at the frequency k, (where ξ(kE) = ξE) and

b̄n,m(k) = e−ξ
2/2Jn(−ξA1)Jm(−kA2B2/k1). (15)

This is the bunching spectrum envelope. It is the spectral response function of the EEHG
transformation as dictated by the tune, which is set by the scaled energy modulations and
dispersive strengths.

We have also defined the quadratic chirp parameter

χ(k) = 2ξ(k)h2k
2
1σ

2
z . (16)

The relative energy spread of the beam in Eq. (11) is σ2
p0

= 1 + (h1k1σz)
2 + 3(h2k

2
1σ

2
z)

2, so
χ may be interpreted as the magnitude of the quadratic energy chirp over the whole beam,
scaled by ξ(k).

A. Harmonic Shift

The bunching in (13) has a sharp peak at k = nk1 + mk2 − ξh1k1. With Eq. (14), the
new EEHG harmonic a is located at [14],

a =
n+mK(1 + h1B1)

1 + h1B
. (17)

The linear chirp h1 shifts the harmonic a away from the unchirped harmonic aE in Eq. (2).
The chirp also shifts the scaling parameter to ξ(ak1) = ξE/(1+h1B), which can be used with
Eq. (7) and with ∆ξE = n∆B1 to estimate the impact of h1 on the bunching. In general,
|h1| � 1, so expanding to first order gives a ≈ aE − h1ξE The same analysis can be applied
for HGHG to yield a ≈ aH −h1ξH , and measurement of tunable shifts in output wavelength
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have been reported in [24]. Thus the relative shift of the central frequency in the presence
of a linear chirp between the two schemes is

(∆a)EEHG
(∆a)HGHG

≈ ξE
ξH
. (18)

The relative shift depends only on the scaling factors for each scheme, and EEHG is generally
less sensitive because |ξE| < ξH . Consider the aforementioned example where A1 = 3 and
n = −1, which gives |ξE| ≈ 1/2, compared with ξH ≈ 1 for HGHG. Note however that for
n = −2, then |ξE| ≈ 0.85 and they become comparable. We also see that for a fixed chirp
h1, the direction of the central frequency shift in EEHG depends on the sign of ξE [23].

B. Cascaded HGHG

This model can be used to examine the harmonic shift from a linear chirp in EEHG
compared with two-stage HGHG for high harmonic bunching. The bunching harmonic from

the first stage of a cascaded HGHG setup is a
(1)
H − h

(1)
1 ξ

(1)
H . The first stage harmonic, linear

chirp, and scaling factor are labeled by the superscript. The bunched beam then radiates
coherent light at this shifted harmonic frequency that, after some delay, modulates the beam
again. Because cascaded HGHG utilizes fresh bunch seeding, we allow for the possibility
that the chirp is different between the different parts of the beam and for the moment, that
the scaling factor can also vary. After dispersion this second modulation produces bunching
at a higher harmonic,

a ≈ a
(2)
H

(
a
(1)
H − h

(1)
1 ξ

(1)
H

)
− h(2)1 ξ

(2)
H . (19)

For the sake of comparison with EEHG, the goal is to reach the same final harmonic by

both methods, so aE = a
(2)
H a

(1)
H . An interesting feature of cascaded HGHG is that the shift

in the harmonic away from a
(2)
H a

(1)
H could be zeroed out if the contributions from the chirp

in the second bunch cancel those from the first, namely, when h
(2)
1 ξ

(2)
H = −a(2)H h

(1)
1 ξ

(1)
H .

Assuming that the scaling factors in each HGHG stage are similar (ξ
(1)
H ≈ ξ

(2)
H ), the

harmonic shift of HGHG compared with EEHG on the same linearly chirped beam is:

(∆a)EEHG
(∆a)C−HGHG

≈ ξE

a
(2)
H ξH

. (20)

We see that, as opposed to the single stage HGHG case in Eq. (18), even if the scaling
factors ξE and ξH are similar in magnitude, the harmonic shift of the two-stage HGHG
process is more pronounced due to the amplification of the shift from the first stage by the
harmonic jump in the second stage. From this point of view, the final central wavelength
shift of cascaded HGHG is reduced by performing a larger harmonic jump in the first stage

to reduce a
(2)
H .

C. Harmonic Bandwidth

The bandwidth of the narrow harmonic spike at ak1 is determined by |bn,m(k)|2 in Eq. (13).
Assuming |b̄n,m(k)|2 is essentially constant, the relative rms bandwidth σ = σk/ak1 of the
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bunching spike is approximately

σ = σ0

[
1 +

(
χE

1+h1B

)2]1/2
1 +mKh1B1/aE

(21)

where χE = χ(kE) = 2ξEh2k
2
1σ

2
z , and σ0 = 1/(

√
2σzkE) is the relative rms bandwidth of the

harmonic spike in the absence of any initial energy structure on the beam.
We consider the behavior of the bunching bandwidth due to the linear and quadratic

chirps separately. When the quadratic component vanishes (h2 = 0) and the beam has only
a linear chirp, the calculated relative bandwidth with EEHG is then,

(σ)EEHG =
σ0

1 +mKh1B1/aE
(h2 = 0). (22)

We see that it depends on product of the dispersion in the first chicane B1 and the harmonic
of the second laser m. HGHG only uses one laser and one chicane, so this term vanishes for
HGHG:

(σ)HGHG = σ0, (h2 = 0). (23)

In HGHG, the change in bandwidth due to linear beam compression (or decompression) is
offset by the identical shift in frequency, so the relative bandwidth is unaffected by the linear
chirp. In contrast, the EEHG frequency shift doesn’t correspond to the bunch length change
through the large dispersion. Accordingly, with a positive linear chirp h1 > 0 the bandwidth
is smaller than when the beam has no chirp at all. The trends are shown in Figure 5, which
includes cases of atypically large chirps to highlight the effect (e.g, |h1| = 0.16 corresponds
to an energy chirp of σE per laser wavelength λ1). The denominator of Eq. (22) is essentially
the bunch compression factor in the first EEHG chicane with mKh1B1/aE ' h1B1, so this
effect is negligible when the change in bunch length is small, (|h1B1| � 1).
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When the linear component of the chirp vanishes (h1 = 0) and the beam has only a
quadratic chirp, the scaled bandwidth is described by two regimes. The small curvature
regime |h2k21σ2

z | < 1 is satisfied when the curvature over the beam is on the order of the slice
energy spread or less. The bandwidth then scales like σ/σ0 ≈ 1 + χ2

E/2. The comparative
increase in relative bandwidth ∆σ = σ − σ0 due to h2 in this regime is then,

(∆σ)EEHG
(∆σ)HGHG

=

(
ξE
ξH

)2

, (h1 = 0, |χE| < 1). (24)

Perhaps more practically relevant is the |χE| > 1 regime, which can occur if the
quadratic component of energy variation over the beam is larger than the slice energy spread,
|h2k21σ2

z | > 1. In this case, the relative bandwidth is σ/σ0 ≈ |χE| and,

(σ)EEHG
(σ)HGHG

=

∣∣∣∣ ξEξH
∣∣∣∣ , (h1 = 0, |χE| > 1). (25)

Note from Eq. (13) that |bn,m|2 is reduced in this regime by the factor |χE|.
Figure 6 shows the relative bandwidth growth of HGHG and EEHG due to h2, where again

HGHG is approximately twice as sensitive to the quadratic curvature because ξH ≈ 2ξE. The
relative insensitivity of EEHG to quadratic curvature has also been verified experimentally
[15].

Finally, it is interesting to point out that if ξE is sufficiently small, it is possible to be
in the large curvature regime |h2k21σ2

z | > 1 but for |χE| < 1 so that the bandwidth scales
quadratically with ξE. This is another case where small values of ξE (and ξH) can aid in
mitigating undesirable effects.
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IV. INTERMEDIATE WAVELENGTH MODULATIONS

Intermediate wavelength modulations are short compared to the bunch but long compared
to the laser wavelengths, λ1, λ2 � λ0 � 2πσz. These are of practical concern specifically
for MBI and/or high frequency wakefield effects. In particular, MBI in modern beams can
produce strong initial energy modulations in the beam at micron wavelength scales which
can then produce sidebands in the bunching spectrum. Because the MBI is a broadband
instability, a large range of excited sidebands can be amplified by the FEL if they are within
the FEL gain bandwidth. EEHG and HGHG have different sensitivity to such structures
due to both their respective scaling factors, and their excitation bandwidths.

A. Excitation Bandwidth

The excitation bandwidth (EB) is defined here as the width of the bunching spectrum
envelope b̄n,m(k) in (15). Shown in Fig. 7 for EEHG, it specifies a frequency region around
the target harmonic wherein sidebands can be generated in the bunching spectrum during
the harmonic up conversion process. Inspection of Eq. (15) shows that the EB is determined

by the Gaussian suppression factor e−ξ
2/2. We can therefore approximate the extent of the

EB by considering the values of ξ (and therefore k) that may still lead to bunching. For
EEHG we define a full bandwidth bounded by −2 ≤ ξ ≤ 2, which gives(

δk

kE

)
EEHG

=
4

aEB
≈
∣∣∣∣4nA2

a2E

∣∣∣∣ , (26)

We have assumed B ≈ |aEB2/n| and B2 ≈ 1/A2 in the last step. Initial modulation
frequencies k0 = 2π/λ0 < δk/2 sit within the excitation bandwidth and may be excited as
bunching sidebands at kE ± k0 during the EEHG process. These sidebands are coherently
amplified and grow at the same rate as the harmonic during FEL lasing if they are within
the FEL bandwidth. In contrast, frequencies k0 > δk/2 are outside the cutoff and are
suppressed. We can thus relate the EB directly to the bandwidth of the coherently excited
spectral pedestal in EEHG. From the scaling in (26) it is desirable to operate with the largest
value of B (or smallest A2) to narrow the pedestal, which corresponds to the smallest |n|
tune for a given harmonic.

A potentially powerful feature of the EEHG EB is that it can be made smaller than
the saturated bandwidth ∼ ρ [26] of a high-gain FEL in order to narrow the pedestal of
excited frequencies. Consider a harmonic of aE = 100, with A2 = 3 and n = −1, for which
δk/kE ≈ 0.12%. This is smaller than the full bandwidth of most modern soft x-ray FELs.

We are compelled to define a similar excitation bandwidth for HGHG, but it turns out
that the much weaker dispersion does not offer much damping of the sidebands. Using the
previous logic, the HGHG EB can be defined by the bounds 0 < ξ = k

k1
B1 ≤ 2, which gives

(δk/kH)HGHG ∼ 2/aHB1 = 2/ξH . But because ξH < 2 for sufficient bunching, this describes
a broadband EB of order unity, (

δk

kH

)
HGHG

∼ O(1). (27)

Whether the sidebands are in fact excited depends on their modulation amplitude and
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FIG. 7: Harmonic bunching spectrum envelopes (blue) of EEHG, and bunching harmonic spike

(red), for aE = 100 with A1,2 = 3, n = −1. The excitation bandwidth δk/kE is the width of the

envelope, which shifts position depending on the sign of optimal ξE .

frequency, but in contrast to EEHG, there is no natural pedestal suppression or narrowing
furnished by the HGHG process.

B. Sideband Bunching Amplitudes

With the definition of the bunching envelope and excitation bandwidth (see Fig. 7), we
can now consider how sidebands and spectral pedestals may be excited in EEHG. Consider
a monochromatic energy modulation with amplitude A0 and frequency k0 on the e-beam
prior to the EEHG transformation,

p0 = p+ A0 sin(k0z), (28)

The bunching at the different discrete sideband frequencies kE + qk0, can be calculated from
EEHG theory (see Eq. (41) in the Appendix). We presume the simple case where there is no
spectral overlap between the bunching peaks for the different sidebands and their harmonics
q, so the bunching factor at each frequency is given by the corresponding Bessel function Jq.

The bunching at the target EEHG harmonic kE is then simply given by,

bn,m(kE) = b̄n,m(kE)J0(−ξEA0). (29)

This is just the standard EEHG bunching factor modified by the J0 term of the initial energy
modulation for q = 0. Shown in Fig. 8, the bunching at kE is reduced for A0 > 0, and it is
completely suppressed whenever A0 = j0,l/ξE, where j0,l is the lth root of J0. Equation (29)
also applies for HGHG, and because |ξE| < ξH , the EEHG bunching amplitude is more
robust to small initial energy modulations. The reduction of the harmonic bunching is a
broadband effect because Eq. (29) is independent of k0. Note that the bunching at kE
varies strongly as a function of A0 according to the behavior of J0. As such, for large A0,
it is possible to still produce harmonic bunching in a beam where the laser modulations are
smaller than the initial modulation.
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FIG. 8: Top: Bunching and sideband spectra for different A0 with aE = 100, A1,2 = 3, n = −1,

and k0 = |k1ξE/2B|. Bottom: Bunching amplitudes as a function of A0. Solid lines are predictions

from the analytic model, squares are from numerical simulations.

The bunching at the nearest sideband frequencies k± = kE ± k0 is

bn,m(k±) = b̄n,m(k±)J±1(−ξ(k±)A0), (30)

where ξ(k±) = ξE ± k0B/k1. The EEHG sideband bunching spectrum in (30) is highly
sensitive to k0 and A0, in part because the bunching envelope has strong amplitude variations
within the excitation bandwidth. For example, modulations at frequencies near zeros of the
bunching envelope k0 = −(k1/B)(±jn,l/A1 + ξE) produce weak bunching sidebands, while
those at in-between frequencies where it is peaked can produce strong bunching.

Figure 8 also shows how specific kE ± k0 sideband amplitudes near kE vary with A0. The
dependence is not symmetric about kE; here the high frequency sideband (q = 1) is smaller
than the low frequency sideband (q = −1) for A0 < 3. The opposite would be true for the
ξE > 0 tune.

A tunable A0 may provide a way to simultaneously select or suppress different frequencies.
As seen in the lower plot of Fig. 8 for example, at A0 ≈ 3 the bunching at kE, kE + k0, and
kE − k0 are all comparable, whereas for A0 ≈ 4.5 the bunching at kE + k0 dominates.
This feature may have direct applications in tunable multicolor FELs for shifting the power
between different colors.

If k0 � |k1ξE/B|, the sidebands are very close to the harmonic kE and can become
comparable in amplitude. The ratio is,

bn,m(k±)

bn,m(kE)
≈ ∓J1(A0ξE)

J0(A0ξE)
. (31)

They are approximately equal when |A0ξE| ' 1.4, so the energy modulation must satisfy

A0 < |1.4/ξE| (32)

to keep the sideband bunching smaller than the harmonic bunching. If so, we obtain the
approximate relation,

bn,m(k±)

bn,m(kE)
≈ ∓A0ξE

2

(
1 +

(A0ξE)2

8

)
. (33)
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FIG. 9: EEHG bunching simulations for the aE = 100 harmonic of 266 nm lasers in the presence of

broadband MBI energy modulations with rms energy spread a) σp0=1, b) σp0 =
√

3, c) σp0=3. The

beam is modeled after the parameters of LCLS-II; E = 4 GeV, σE = 500 keV, and σz/c = 100 fs

(σ0 = 10−5). The EEHG energy modulations are A1,2 = 3 and the dispersions are R
(1)
56 = 12 mm

(B1 = 35.46) and R
(2)
56 = 118 µm (B2 = 0.35). At these settings ξE = −0.53.

From the explicit dependence on the scaling parameter in this expression, we conclude that
the contrast between the harmonic bunching at kE and the nearest sidebands at kE ± k0
is about twice as high in EEHG than in HGHG for the same A0. The EEHG bunching
spectrum therefore appears to be more immune to sideband excitations.

C. Broadband Modulations

The single frequency initial energy modulations in this analytic model agree well with nu-
merical simulations of the bunching. Realistic beams, however, often have energy structures
that span a broad range of wavelengths.

Figure 9 shows the simulation results of EEHG on a beam that has a broad spectrum
of energy modulations similar to those encountered from the MBI. The width of the plot-
ted window is defined the EB given by Eq. (26). The spectrum of MBI energy structure
is modeled to mimic the general microbunching gain spectrum due to longitudinal space
charge (e.g., [27]), and has the form p0 = p + C

∑N
i δ

2
i exp(−δ2i ) sin(δik0z + φi), where N

is the number of individual modulations (here 40), δi is the frequency factor, and φi is a
random phase. The initial modulation spectrum is peaked at the wavelength λ0 = 3 µm
here, and the value of the amplitude C is chosen to adjust the integrated energy spread σp0
after the modulations for the different cases. A range of frequencies for δi is chosen that
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FIG. 10: FEL output spectrum for EEHG with ξE < 0 (red) shows reduced spectral pedestal than

ξE > 0 (blue) on beam with σp0 =
√

3 broadband MBI noise. A1,2 = 3, aE = 75, ρ = 1.58× 10−3.

extends well into the high (� λ0) and low (� λ0) cutoff regions, with δi picked randomly
from within each of the N evenly divided spectral portions. As N becomes large, the energy
kick on each electron is effectively statistical, and the bunching at the harmonic is predicted

to be attenuated by the factor e−ξ
2
E(σ2

p0
−1)/2 [22]. This is confirmed quantitatively by the

steady reduction of the peak.
As σp0 increases from the noisy modulations, a growing pedestal is observed surrounding

the central harmonic. The pedestal spectrum fluctuates in shape in each simulation owing to
its simulated MBI origin, but the general EEHG envelope is clearly revealed in the emergence
of specific regions of pedestal growth over multiple simulation runs, particularly for larger
σp0 . The fraction of power (in |bn,m(k)|2) as a function of bandwidth is also plotted. From
this example and in general, the contrast between the harmonic peak and pedestal height
in the presence of such energy structures is significantly enhanced when A1 > σp0 .

The spectral pedestal in Figure 9 is clearly not symmetric about kE; there is an satellite
region of pedestal at shorter wavelengths. This is because the center of the EEHG bunching
spectrum envelope at ξ = 0 (where the bunching is also zero), is shifted as usual from kE by
−ξEk1/B. The satellite pedestal reflects the shape of the envelopes illustrated in Figure 7,
which plots the optimized envelopes |b̄n,m| for ξE = 1/2 and ξE = −1/2. Both EEHG
tunes generate the same harmonic bunching, but with the ξE = 1/2 tune, the envelope is
red-shifted compared to kE, whereas for ξE = −1/2 it is blue-shifted. Figure 10 shows that
this feature may be useful for purifying the FEL output spectrum. The spectrum is the
output from multiple 3D simulations with the code PUFFIN [28] on a beam with noisy
broadband energy modulations. Results show it is advantageous to choose the EEHG tune
with ξE < 0 so that most of the sideband pedestal is at higher frequencies, particularly if
the FEL bandwidth is less than the excitation bandwidth. This tune takes advantage of the
red-shifted asymmetry of the FEL gain bandwidth to reduce the portion of the bunching
pedestal that is amplified. Note also that certain frequencies can be further suppressed by
the J±1(−ξ(k±)A0) term.

D. Bunching at Long Wavelengths

The coherent bunching at the sideband frequencies kE ± k0 is not the only source of
FEL pedestal formation. These frequencies are amplified exponentially, but bunching in
the electron beam at much longer wavelengths (e.g, at λ0) can also produce a pedestal
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by parasitically mixing frequencies into the FEL bandwidth that grow even faster during
high-gain lasing [13].

In the present model, we can also calculate bunching at the frequency k0 generated during
transport of the energy-modulated beam through the EEHG transformation. It is given by
(41),

b0,0(k0) =e−(ξ
′)2/2J0(ξ

′A1)J0(k0A2B2/k1)J1(−ξ′A0), (34)

where ξ′ = k0B/k1. Inspection shows that the excitation bandwidth is exactly the same as
in (26), namely, the bunching at frequencies k0 > 2k1/B is strongly damped by the strong
dispersion. Assuming k0 � k1/B and expanding to lowest order, the bunching is peaked

near the frequency k′0 ≈ k1
B

2
√

2/3√
A2

0+2A2
1+4

, at which the bunching is,

|b0,0(k′0)| ≈
A0

3

2
√

2/3√
A2

0 + 2A2
1 + 4

. (35)

The analysis in [13] showed that at |b0,0| ≈ 1/3 the rapidly growing sideband reaches the
same power level as the coherently seeded harmonic peak at FEL saturation. This constraint
suggests that the modulation amplitude at k′0 should satisfy,

A0 < A1 (36)

to keep the FEL sideband power from equaling the harmonic power.
HGHG is essentially insensitive to density modulations produced at long wavelengths in

this manner because the required dispersion is too weak to produce significant bunching at
k0 from the pure energy modulations considered here. The long wavelength energy modu-
lations, however, can also produce sidebands that grow quadratically in the FEL [13]. This
phenomena applies to both HGHG and EEHG if the energy modulations survive through
the harmonic up-conversion stages, and is a topic of future study.

V. CONCLUSIONS

With a simple model we have shown that EEHG and HGHG quantitatively exhibit dif-
ferent sensitivities to a variety of energy modulations imprinted on the electron beam prior
to the harmonic up-conversion process. The sensitivities are governed primarily by the
respective scaling parameters defined for each scheme, ξE and ξH , with EEHG being gener-
ally less sensitive to both long and intermediate wavelength modulations because typically
|ξE| < ξH . For this reason the spectral bunching pedestal amplitude in EEHG is also smaller.
The pedestal width in each scheme has also been examined and quantified by the intrinsic
excitation bandwidth, EB. The strong dispersion required for EEHG leads to strong damp-
ing of sideband frequencies and therefore a much narrower EB, which can lead to a cleaner
FEL spectrum if it is narrower than the FEL bandwidth. The EEHG bunching envelope
may also be partially blue-shifted outside the FEL bandwidth with a ξE < 0 tune to further
reduce the amplified pedestal. In general, the coherently seeded pedestal in both schemes is
smaller the more strongly that A0 < |1.4/ξE,H | is satisfied.
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VII. APPENDIX

The derivation and notation of [3] for EEHG have been closely followed where applicable.
Energy variables are expressed with respect to the mean beam energy and normalized to the
slice energy spread, i.e., pi = ∆Ei/σE. We consider a finite beam with an initial longitudinal

phase space distribution function f(p, z) = (2πσz)
−1e−p

2/2−z2/2σ2
z where σz is the rms length.

Prior to the EEHG transformations, the beam is assumed to undergo a general initial energy
modulation of the form:

p0 = p+ A0 sin(k0z + φ)− A0 sin(φ), (37)

where A0 = ∆E0/σE is the normalized energy modulation amplitude, λ0 = 2π/k0 is the
modulation wavelength, and φ is the phase. In anticipation of effects due to long wavelength
modulations (e.g., wakes or rf chirps), the last term keeps the energy E of electrons in the
beam core (z = 0) unchanged regardless of the phase.

The beam then enters the EEHG system of two pairs of laser modulators (k1,2 � k0) and
chicanes. The successive transformations are described by,

p1 = p0 + A1 sin(k1z),

z1 = z +B1p1/k1,

p2 = p1 + A2 sin(k2z1),

z2 = z1 +B2p2/k1.

(38)

Ideal lasers are assumed that completely cover the electron beam both longitudinally and
transversally. Phase differences between the two lasers are assumed negligible. The bunching
factor at the exit of the last chicane is defined as

b(k) =

∫
f(p, z)e−ikz2(p,z)dpdz, (39)

In terms of the initial coordinates (p, z) the exponential factor is,
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e−ikz2(p,z) = e−ikz
∞∑

n,m=−∞

ei(nk1+mk2)z−iξp0(p,z)Jn(−ξA1)Jm(−kA2B2/k1) (40a)

=
∞∑

q,n,m=−∞

e−i(k−qk0−nk1−mk2)ze−iξpeiqφ+iξA0 sin(φ)Jq(−ξA0)Jn(−ξA1)Jm(−kA2B2/k1)

(40b)

The integrals in Eq. (39) over the initial coordinates are straightforward. The full bunching
can be written as a sum of the bunching at the different laser harmonics, b(k) =

∑
n,m bn,m(k),

where
bn,m(k) =b̄n,m(k)eiξA0 sinφ

×
∞∑

q=−∞

eiqφ−
1
2
σ2
z(k−qk0−nk1−mk2)2Jq(−ξA0),

(41)

where the bunching spectrum envelope b̄n,m(k) is defined in Eq. (15). For intermediate
wavelength modulations described here, the overall phase of the initial modulation is ignored.

For long wavelength modulations λ0 � 2πσz the first modulation p0 is expanded to
second order for the linear and quadratic chirps,

p0 = p+ h1k1z + h2k
2
1z

2. (42)

In terms of the initial amplitude and phase of Eq. (37) we have h1 = A0k0 cos(φ)/k1 and
h2 = −A0k

2
0 sin(φ)/2k21. Substitution into Eq. (40a) and calculation of the integral in (39)

yield the bunching spectrum in Eq. (13).
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