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Abstract

This paper proposes a system-wide optimal resource dispatch strategy that enables a shift from a primarily energy
cost-based approach, to a strategy using simultaneous price signals for energy, power and ramping behavior. A formal
method to compute the optimal sub-hourly power trajectory is derived for a system when the price of energy and ramping
are both significant. Optimal control functions are obtained in both time and frequency domains, and a discrete-time
solution suitable for periodic feedback control systems is presented. The method is applied to North America Western
Interconnection for the planning year 2024, and it is shown that an optimal dispatch strategy that simultaneously
considers both the cost of energy and the cost of ramping leads to significant cost savings in systems with high levels of
renewable generation: the savings exceed 25% of the total system operating cost for a 50% renewables scenario.

Keywords: Electricity pricing, bulk electric system, optimal energy dispatch, optimal ramping, renewable integration,
resource allocation

Highlights

• A method to minimize the cost of subhourly dispatch
of bulk electric power systems.

• Dispatch based on simultaneous use of energy and
ramping costs yields significant savings

• Savings from optimal dispatch increase as transmis-
sion constraints increase.

• Savings from optimal dispatch increase as variable
generation increases.

1. Introduction

The growth of renewable electricity generation resources
is driven in part by climate-change mitigation policies that
seek to reduce the long-term societal costs of continued de-
pendence on fossil-based electricity generation and meet
growing electric system load using lower cost resources.
However, each class of renewable generation comes with
one or more disadvantages that can limit the degree to
which they may be effectively integrated into bulk system
operations.

Hydro-electric generation has long been employed as a
significant renewable electric energy and ramping resource.
But climate change may jeopardize the magnitude and cer-
tainty with which the existing assets can meet demand
[1, 2]. Concerns about population displacement, habi-
tat loss and fishery sustainability often limit the growth

of new hydro-electric generation assets, placing additional
constraints on new ramping response resources, such as
requiring the use of additional reserves and ramping re-
sources. Shifts in both load and hydro-electric generation
potentially increase uncertainty in long term planning and
further enhance the need for technological configurations
that support operational flexibility [3].

Wind power has seen rapid growth, but concern about
system reliability has limited the amount of wind gen-
eration that can be supported without additional plan-
ning and operational measures, such as committing more
carbon-intensive firming resources [4]. Solar resources are
also becoming increasingly available but the intermittency
challenges are similar to those of wind. In addition, resi-
dential rooftop solar resources are challenging the classical
utility revenue model [5], can cause voltage control issues
in distribution systems [6], and in extreme cases can result
in overgeneration [7]. Taken together these considerations
have given rise to questions about the reliable, robust con-
trol and optimal operation of an increasingly complex bulk
electricity system [8].

The conventional utility approach to addressing renew-
able generation variability is to allocate additional firm
generation resources to replace all potentially non-firm
renewables resources. These firm resources are typically
fast-responding thermal fossil resources or hydro resources
when and where available. For new renewable resources
the impact of this approach is quantified as an intermit-
tency factor, which discounts for instance the contribution
of wind in addition to its capacity factor and limits the de-
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gree to which renewables can contribute to meeting peak
demand [9]. However, the intermittency factor does not
account for the ramping requirements created by poten-
tially fast-changing renewable resources [10]. The need for
fast-ramping resources discourages the dispatch of high-
efficiency fossil and nuclear generation assets and can en-
courage reliance on low-efficiency fossil-fuel resources for
regulation services and reserves [11].

One solution to overcoming the renewable generation
variability at the bulk electric level is to tie together a num-
ber of electric control areas into a super-grid so that they
can share generation and reserve units through optimal
scheduling of system interties [12]. In an interconnected
system, the combined power fluctuations are smaller than
the sum of the variations in individual control areas. Fur-
thermore, fast-acting energy storage systems and demand
response programs can provide required ancillary services
such as real-time power balancing [13] and frequency regu-
lation [14] if they are equipped with suitable control mech-
anisms. A competitive market framework in which energy
resources participate to sell and buy ancillary service prod-
ucts can accelerate the transition to a high-renewable sce-
nario by supporting the long-term economic sustainability
of flexible resources.

Concerns about the financial sustainability of utilities
under high level of renewables are also beginning to arise.
The question is particularly challenging when one seeks so-
lutions that explicitly maximize social welfare rather than
simply minimizing production cost [15]. The growth of
low-marginal cost renewable resources can lead one to ex-
pect utility revenues to decline to the point where they can
no longer recover their long term average costs. But this
conclusion may be erroneous if one fails to consider both
the impact of demand own-price elasticity, as well as the
impact of load control automation on substitution elastic-
ity. The latter type of demand response can significantly
increase the total ramping resource on peak and decrease
ramping resource scarcity. One option for replacing en-
ergy resource scarcity rent is increasing fixed payments.
But this may lead to economic inefficiencies as well as an
unraveling of the market-based mechanisms built so far.
Another option is to enable payments based on ramping re-
source scarcity rent through existing markets for ancillary
services. At the present time, the majority of resources
continue to be dispatched based on the energy marginal
cost merit order. But it is not unreasonable to consider
how one might operate a system in which the energy price
is near zero and resources are dispatched instead according
the ramping cost merit order.

In the presence of high levels of variable generation,
the scheduling problem is a co-optimization for allocating
energy and ramping resources [16]. Under existing energy
deregulation policies, there is usually a market in which
energy producers compete to sell energy, and a separate
market in which they compete to sell power ramping re-
sources for flexibility. Producers get paid for their energy
deliveries in the energy market and for power ramping flex-

ibility in the flexibility market. But today’s dual-pricing
mechanism is dominated by the energy markets, which
drives generation resources to secure revenue primarily in
the energy market, and only deliver residual ramping re-
sources in the flexibility market. Meanwhile poor access to
energy markets leads loads and storage to seek participa-
tion primarily in the flexibility market while only reveal-
ing their elasticities to the energy market. This relegates
loads and storage to only a marginal role in the overall
operation of the system, which is the motivation for seek-
ing policy solutions to improving their access to wholesale
energy markets, such as FERC Orders 745 and 755.

1.1. Recent Work

Work to address the problem of integrating ramping
behavior into electricity pricing mechanisms originated with
efforts to minimize total production cost by dispatching
generators subject to ramping constraints in addition to
system capacity reserve constraints, fuel and emission con-
straints, network line flow limits [17]. If all costs are
revealed to the system operator, as in a fully regulated
system, then the optimal power flow solution satisfies all
the constraints under a fixed demand assumption [18]. To
address the problem of elastic demand, the developers of
transactive control have relied on the fact that a solution
can be found in a deregulated environment where entire
cost functions are not revealed [19], provided only gen-
eration capacity, demand response capacity and line flow
constraints are considered. The solutions demonstrated to
date have not addressed ramping constraints or the cost of
dispatching both supply and demand ramping resources.

Studies of the strategic use of ramping rates beyond
the limits of a generator’s self-dispatch in a power market
illustrate the use of a set of ramping processes based on
ramping-cost versus ramping time. The approach includes
ramping costs for various levels of ramping rates that ex-
ceed the performance limit of the generators and showed
that the benefit from the strategic use of ramp rates limits
the supply capacity available for dispatch based solely on
ramping prices [20].

The problem becomes more difficult when integrating
renewable energy resources into the bulk power grid. Sys-
tem reliability requires that supply and demand remain
balanced at all times. However, some distributed energy
resources are more flexible than generators and can provide
lower cost dispatch opportunities both in the day-ahead
scheduling and the real-time dispatch. In spite of the avail-
ability of ramping resources being uncertain over time, the
two-level scheduling problem can be solved in closed form,
and when the resources are persistent the problem reduces
to a standard Markov decision process that can be solved
using standard techniques without recourse to explicit use
of ramping prices from bulk energy markets [21].

Growing recognition of the problem with discovering
and responding to ramp prices emerged with new insights
into classical real-time pricing (RTP). The concept of the
real-time ramping costs was derived from an extended form
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of RTP that achieves the optimal rate of change in quan-
tity demanded by explicitly taking the ramping costs into
account [22]. Using this approach, the energy price is re-
duced during the onset of a high ramp, and then raised
toward the end of th period. This results is a more con-
trolled ramp rate with associated reliability benefits. The
use of a single RTP energy price to capture the ramp costs
also ensures that the optimal response is achieved by al-
locating both generation and demand response resources
efficiently.

To address the problem of ramping resource shortages
and associated ramping cost volatility. The current ISO
practice is to pay for these resources as increased reserve
margin, withholding supply capacity and/or offsetting the
forecast load, scheduling additional fast-start supply units,
scheduling must-run units, and sometimes using multi-
interval dispatch in the real-time markets. But these can
distort energy markets and may not fully remedy the prob-
lem. The solution appears to lie with a market model that
discovers the ramp price independently of the energy and
capacity prices [23]. The following key features of this
market model have been identified:

• Ramping requirements are specified to meet fore-
casted and uncertain variability within a defined re-
sponse time.

• Resource contributions to ramping include allowances
for availability offers and contributions from offline
units if desired.

• Ramp capability demand curves model the value of
meeting the desired level variability coverage.

• Prices for up- and down-ramping products provide
market transparency and market-based incentives.

• Simultaneous cooptimization of the ramp capability
with energy and ancillary services.

The general conclusion from this is that ancillary mar-
kets must change to consider the scarcity rent on ramping
resources [24]. The addition of an explicit and indepen-
dent ramping resource scarcity price provides an oppor-
tunity to consider new resource dispatch strategies that
can facilitate economically efficient tracking of hourly im-
port/export energy schedules by individual control area
within an ISO territory while continuing to maintain high
system reliability and robust frequency regulation.

Most recently the use of local markets was proposed so
distribution system operators can maintain the stability
and security of the distribution network at minimum cost
using the flexibility of customer resources such as on-site
generation, storage devices, and electric vehicles. These
local markets can act like transactive systems for ramping
resources and clear the local flexibility bids in the whole-
sale market [25].

Moreover, the aggregation of demand-side flexibility
services is regarded as necessary to allow small customers

to deliver resources in both transmission and distribution
networks. Aggregators need to obtain local flexibility ser-
vices using local retail markets for distribution. This cre-
ates a potentially valuable opportunity to export excess
resources to the wholesale market. However, technical and
regulatory barriers to the development of such retail aggre-
gators persist, including a lack of smart resource metering,
unsuitable markets conditions such as minimum bidding
volume and bid durations, market entry barriers, lack of
resource performance criteria, and the absences of local
flexibility markets [26].

Mixed integer linear programming problems for aggre-
gators can be solved to manage and bid flexibility services
from the point of view of an aggregator that control a port-
folio of commercial and industrial flexilibity resources [27].
An effective method for generalized modeling and control
of aggregated residential resources is also available using
a Nash bargaining coordination strategy. This approach
is based on the virtual battery model that can be used to
aggregate thermostatic loads, energy storage, residential
pool pumps, and electric vehicles [28]. Using these meth-
ods, aggregators can optimize any number of objectives
such as start/stop times, expected revenues, duration, or
peak power [29]. Voltage control, congestion management,
network capacity, loss reduction, increased hosting capac-
ity and reduced distributed/renewable generation curtail-
ment have also been identified as important opportunities
where joint flexibility from demand and generation can re-
sult in tangible benefits for distribution system operators
[30].

1.2. Contribution

The existing literature reveals a wide range of out-
standing problems and issues. The problem we are moti-
vated to address in this paper focuses the detemination of
what production or consumption profile operators, aggre-
gators and resources should choose to maximize their own
benefit given that ramping may be priced separately from
energy and capacity in the near future, and that some-
times the ramping price may contribute more to the long-
term average cost of electricity than energy or capacity.
This question remains open and its answer seems likely to
be relevant at every level of system operation below the
ISO itself, i.e., where control area operator, aggregators
and retailers have the ability to set dispatch levels in a
profit/utility maximizing way.

Consequently, this paper presents a novel optimal re-
source dispatch strategy that enables a progressive shift
from primarily energy cost-based approach to primarily
ramping cost-based one. This optimal dispatch answers
the question of what power schedule to follow during each
hour as a function of the marginal prices of energy, power
and ramping over the hour1. The main contributions of

1We define the marginal price of a product or service as the change
in its price when the quantity produced or delivered is increased by
one unit.
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this paper are (1) the derivation of the formal method
to compute the optimal sub-hourly power trajectory for
a system when the cost of energy and ramping are both
of the same order, (2) the development of an optimal re-
source allocation strategy based on this optimal trajectory,
and (3) a simulation method to evaluate the cost savings
of choosing the optimal trajectory over the conventional
sub-hourly dispatch used in today’s system operation.

In Section 2 we develop the optimal control function
in both time and frequency domains. In the case of the
frequency domain optimal control function the solution is
presented as a continuous function. A discrete-time solu-
tion suitable for periodic feedback control systems is pre-
sented in Section 3. In Section 4 we examine the perfor-
mance of this optimal dispatch solution in terms of vary-
ing prices for a given “typical” hour and in Section 5, we
analyze the cost savings in an interconnection that mod-
els the Western Electric Coordinating Council (WECC)
system for the year 2024 under both low (13%) and high
(50%) renewable generation scenarios. Finally, in Section 6
we discuss some of the consequences that appear to arise
from this new paradigm and our perspectives on possible
future research on this topic.

2. Methodology

Consider a utility’s cost minimization problem over a
time interval T . The utility’s customers purchase their net
energy use E(T ) at a pre-determined retail price. So in to-
day’s systems, profit maximization and cost minimization
are essentially the same problem. For each hour the util-
ity pays for energy delivered at a real-time locationally-
dependent wholesale price that is also dependent on de-
mand under typical deregulated nodal pricing markets.
The utility’s scheduled energy use is forecast for each hour
based on their customers’ expected net energy use, which
is then used to compute the utility’s net load over that
hour. We assume that over any interval T the utility may
incur additional costs for any deviation in actual net load
from the scheduled load.

The price function at the operating point is split up
into the marginal price of energy a = ∂P

∂Q (measured in

$/MW2·h), the marginal price of power b = ∂R
∂Q (mea-

sured in $/MW2), and the marginal price of ramping c =
∂R
∂Q̇

(measured in $·h/MW2). In order to reflect resource

scarcity all cost functions are assumed to be quadratic so
that the price function for each is linear as shown in Fig. 1.
The marginal prices a and b determine prices as a function
of the power demand Q, and the marginal price c deter-
mines prices based on the ramp rates Q̇. The cost param-
eters arise from the schedule and may vary from hour to
hour, but do not change within any given hour. Any of
the marginal prices may be zero or positive depending on
the market design and prevailing conditions in the system.
For the purposes of this paper, we will assume that they
cannot be negative.
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Fig. 1: Energy price (left) and ramp price (center and right)
functions.

Over the time interval T the total cost of both the
power trajectory Q(t) and the ramping trajectory Q̇(t)
given the power price P (t) = aQ(t) and ramp price R(t) =
bQ(t) + cQ̇(t), respectively, is given by

C(T ) =

∫ T

0

P [Q(t)]Q(t) +R[Q(t), Q̇(t)]Q̇(t)dt. (1)

Given the dispatch from Q(0) to Q(T ) and the scheduled

energy use E(T ) =
∫ T

0
Q(t)dt we augment the cost func-

tion with the Lagrange multiplier λ so that we have∫ T

0

a(Q−Qz)Q+ b(Q−Qz)|Q̇|+ cQ̇2 + λQ dt (2)

=

∫ T

0

G(t, Q, Q̇)dt, (3)

where the |Q̇| represents the magnitude of the ramp rate
Q̇, and QZ is the amount of must-take generation having
zero or effectively zero marginal energy cost. Then the
optimal dispatch trajectory Q(t) is the critical function
obtained by solving the Euler-Lagrange equation

∂G

∂Q
− d

dt

∂G

∂Q̇
= 0. (4)

From this we form a second-order ordinary differential
equation describing the critical load trajectory

Q̈− a

c
Q =

µ

2c
. (5)

where µ = λ− aQZ . Using the Laplace transform we find
the critical system response in s-domain is

Q̂(s) =
Q0s

2 + Q̇0s+ µ
2c

s(s2 − ω2)
, (6)

where ω2 = a
c . The general time-domain solution for the

critical function over the interval 0 ≤ t < T is

Q(t) =
(
Q0 +

µ

2a

)
coshωt+

Q̇0

ω
sinhωt− µ

2a
, (7)

where Q0 and Q̇0 are initial power and ramp values.
We can determine whether this solution is an extremum

by computing the second variation

∂2C

∂Q2
(T ) =

∫ T

0

[α(v)2 + 2β(vv′) + γ(v′)2]dt (8)

=

∫ T

0

H(t)dt, (9)
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with H(t) > 0 for all v 6= 0 subject to v(0) = 0 = v(T ).
We then have

α =
∂2G

∂Q2
= 2a, β =

∂2G

∂Q∂Q̇
= b, γ =

∂2G

∂Q̇2
= 2c.

(10)

Thus for all a, b, c > 0, H(t) > 0 and Q(t) is a minimizer.
Since the only physical meaningful non-zero values of a
and c are positive, this is satisfactory. We will examine
cases when a and c are zero separately. Note that when
Q̇ < 0, we have b < 0, so that the sign of b does not affect
the general solution.

Given the constraints
∫ T

0
Q(t)dt = ET and Q(T ) =

QT , which come from the hour-ahead schedule, we obtain
the solution for µ and Q̇0 for the case where a, c > 0:[

µ

Q̇0

]
=

[
A B
C D

]−1 [
E∆

Q∆

]
, (11)

where

A =
sinhωT − ωT

2aω
B =

coshωT − 1

ω2
(12)

C =
coshωT − 1

2a
D =

sinhωT

ω
(13)

E∆ = ET −
sinhωT

ω
Q0 Q∆ = QT −Q0 coshωT . (14)

When a = 0, the cost of energy is zero and only the
ramping cost is considered. Then the time-domain solu-
tion is

Q(t) =
µ

4c
t2 + Q̇0t+Q0, (15)

with

A =
T 3

12c
B =

T 2

2
(16)

C =
T 2

4c
D = T (17)

E∆ = ET −Q0T Q∆ = QT −Q0, (18)

which gives the critical response in s-domain

Q̂(s) =
µ

4cs3
+
Q̇0

s2
+
Q0

s
. (19)

When c = 0, there is no scarcity for ramping so that the
ramping price is based only on the marginal energy cost
of additional units that are dispatched. Then we have the
time-domain solution

Q(t) = − µ

2a
, (20)

with

µ = −2aET
T

. (21)

This gives the critical response is s-domain

Q̂(s) = − µ

2as
, (22)

and the initial and final ramps from Q(0) to − µ
2a and from

− µ
2a to Q(T ) are limited by the ramping limits of the re-

sponding units.

µ // 1
4a

//

��

2

−
��

Q0
// 1

2
// + //

−
��

ωeωtsz
z−1

// + // Q

Q̇0
// 1

2ω
//

OO

2 // + // ωe
−ωtsz
z−1

OO

Fig. 2: Optimal dispatch controller with discrete update time
ts.

3. Optimal Dispatch Controller

The partial fraction expansion of Eq. 6 is

K1

s+ ω
+
K2

s
+

K3

s− ω
, (23)

where K1 = Q0

2 −
Q̇0

2ω + µ
4a , K2 = − µ

2a , and K3 = Q0

2 +
Q̇0

2ω + µ
4a , with the values of the parameters are computed

from Eq. 11.
The initial response of the optimal controller is domi-

nated by the forward-time solution

K1 e
−ωt = L−1

[
Q0

2 −
Q̇0

2ω + µ
4a

s+ ω

]
(s), (24)

which handles the transition from the initial system load
Q0 to the scheduled load QE = − µ

2as . The central re-
sponse is dominated by the scheduled load solution

K2 = L−1
[
− µ

2as

]
(s). (25)

Finally, the terminal response is dominated by the reverse-
time solution

K3 e
ωt = L−1

[
Q0

2 + Q̇0

2ω + µ
4a

s− ω

]
(s), (26)

which handles the transition from the scheduled load to
the terminal load QT . A discrete-time controller that im-
plements the solution of Eq. 23 is shown in Figure 2. The
controller implements the three main components to the
optimal solution with step inputs µ, Q0, and Q̇0. Note
that the marginal prices a, b and c for the entire hour are
constants in the controller blocks, which makes the con-
troller design linear time-invariant within each hour, but
time-variant over multiple hours. The discrete-time solu-
tion is then

Q∗(k) =


K1τ

k +K2 +K3τ
−k : a > 0, c > 0

µ
4c t

2
sk

2 + Q̇0tsk +Q0 : a = 0, c > 0
− µ

2a : a > 0, c = 0
(27)

where τ = eωts .
The discrete-time dispatch control is illustrated in Fig-

ure 3 for various values of ω =
√
a/c with discrete sam-

pling time ts = 5 minutes. When the value of ω is large,
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Fig. 3: Optimal discrete time control for various energy-to-
ramp price ratios, ω.

the optimal dispatch is dominated by the energy cost and
the cost of high ramp rates is negligible compared to the
energy cost. The result is a dispatch that moves as quickly
as possible to scheduled loadQE . In the limit of zero ramp-
ing cost, the optimal response is a step function2. As the
cost of ramping increases relative to the energy cost, the
optimal dispatch begins to reduce the ramp rate while still
following a trajectory that satisfies the hourly energy de-
livery requirement. In the limit of zero energy cost, the
optimal dispatch trajectory is parabolic.

4. Performance Evaluation

In this section we develop the cost performance met-
ric of the optimal dispatch control design. The optimal
dispatch cost function is found by evaluating Equation 1
using Equations 7, 15 and 20. Thus when a, b, c > 0 we
have3

C(T ) =
sinh 2ωT

2ω

[
a(A2 +B2) + bABω

]
(28)

+
sinh2 ωT

2ω

[
b(A2 +B2)ω + 4aAB

]
(29)

+
coshωT − 1

ω
[(bAω + 2aB)C − (aB + bAω)Qz]

(30)

+
sinhωT

ω
[(bBω + 2aA)C − (aA+ bBω)Qz] (31)

+
[
aC2 − aCQz

]
T. (32)

2Step responses are only possible by generation or load tripping,
which is not considered as part of the conventional control strategy.

3Note that if the ramp rate Q̇ changes sign at the time tc =
1
ω

tanh−1(−B
A

) and 0 < tc < T , then we must divide the cost integral

into two parts to account for the absolute value of Q̇ on b terms.

where A = Q0 + µ/2a, B = Q̇0/ω and C = −µ/2a. For
the case when a = 0 we have

C(T ) = 1
2bA

2T 4 + [bB + 4
3cA]AT 3 (33)

+ [ 1
2b(B

2 + 2AC) + 2cAB − bAQz]T 2 (34)

+ [(bC + cB)B − bBQz]T, (35)

where A = µ/4c, B = Q̇0, and C = Q0. When c = 0 we
have

C(T ) = aET

(
ET
T
−Qz

)
. (36)

We use as the base case a conventional unit dispatch
strategy that requires generators ramp to their new oper-
ating point during the 20 minutes spanning the top of the
hour. Accordingly the generators begin ramping 10 min-
utes before the hour and end ramping 10 minutes after
the hour. In the aggregate for a given hour this strategy
is illustrated in Figure 4 where

QE =
6

5

(
ET −

Q0 +QT
12

)
, (37)

with the initial and terminal ramp rates

Q̇0 = 6(QE −Q0) and Q̇T = 6(QT −QE). (38)

Three cases are shown for production errors that can arise
from renewable, load and demand response forecasting er-
rors. Shown are the dispatch profiles needed to compen-
sate for past under-production (red), no past production
error (black), and past over-production error (blue) that
must be compensated for in the current dispatch.

The cost of the base case is then

Cbase(T ) = aT
18 (Q2

T +QTQE + 14Q2
E +QEQ0 +Q2

0)
(39)

− aT
12 (QT + 10QE +Q0)Qz (40)

+ | b2 (QE −Q0)|(QE +Q0 − 2Qz) (41)

+ | b2 (QT −QE)|(QT +QE − 2Qz) (42)

+ 6c
T (Q2

T − 2QTQE + 2Q2
E − 2Q0QE +Q2

0).
(43)

The zero-order hold ramp discrete form of Equation 1
gives us the cost of operating with a discrete control time-
step ts, i.e.,

C∗(T ) =

T/ts∑
k=0

(
P ∗[Q∗(k)]Q∗(k) +R∗[Q∗(k), Q̇∗(k)]Q̇∗(k)

)
ts

(44)

=

T/ts∑
k=0

ats
4

[
Q∗(k)2 + 2Q∗(k)Q̇∗(k) (45)

+ Q̇∗(k)2 − 2Qz[Q
∗(k) + Q̇∗(k)]

]
(46)

+ 1
2

[∣∣∣b(Q̇∗(k)−Q∗(k))
∣∣∣ (Q̇∗(k) +Q∗(k)− 2Qz

]
(47)

+ c
ts

[
Q∗(k)2 − 2Q∗(k)Q̇∗(k) + Q̇∗(k)2

]
(48)
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Fig. 4: Base-case dispatch for large under-production (top),
small production (center), and large over-production (bottom)
errors.

where Q∗(k) = Q(kts) and Q̇∗(k) = Q∗(k + 1). We eval-
uate the performance of the control strategy for different
control update rates ts using two future scenarios, one for
low renewables where ω > 1, and one for high renewables
where ω < 1 for both unconstrained and constrained trans-
mission operating conditions.

5. Case Study: WECC 2024

In this section we examine the cost savings associated
with using the optimal control solution on the WECC
2024 base case model introduced in [12]. The WECC 2024
model is a 20-area base case used by WECC for planning
studies. The 20-area model combines a number of smaller

control areas based on the anticipated intertie transfer lim-
its reported in the WECC 2024 common case [31]. In this
model constraints within control areas are ignored, while
internal losses are approximated. The peak load, annual
energy production and demand consumption are forecast,
including intermittent wind, solar, and run-of-river hydro
for the entire year.

The model also includes a hypothetical market for each
consolidated control area, with a flat zero-cost supply curve
for all renewable and must-take generation resources and
a constant positive supply curve slope for all dispatchable
units. The hourly generation of intermittent resources is
provided by the base case model and incorporated into the
supply curve so that there is effectively no marginal cost of
production for renewable energy and must take generation.
All generating units are paid the hourly clearing price, and
when the marginal energy price in a control area is zero
then renewable generation may be curtailed. As a result,
under the high renewable scenario, zero energy prices are
commonplace and renewable generation is curtailed more
frequently. Demand response is similarly considered for
each control area and the output of this scheduling model
provides the hourly nodal prices required to satisfy the
transmission constraints, if any.

The low renewables case is the WECC forecast for the
year 2024, which correspond to 29.5 GW (16.1%) of renew-
able capacity and 117.8 GW (63.5%) of annual renewable
generation. The high renewables case is given as 400% of
capacity of the WECC forecast for the year 2024, which
corresponds to 117.8 GW (63.5%) and 523.9 TWh (49.6%)
respectively. The blended energy price of operations is
$130.6/MWh and $50.2/MWh for the low and high re-
newables cases, respectively.

The ramping price was not considered in the WECC
2024 base case model. For this study we have assumed
that the ramping energy cost is based on the marginal en-
ergy cost for the dispatchable generation and the demand
response, as well as the cost of changing the dispatchable
generation output, as shown in Table 1. In both cases, the
marginal price of power b is the average marginal price of
energy a over the hour. In the low renewables case the
marginal price of ramping c is the marginal price of power
b multiplied by 12 seconds. In the high renewables case,
c is the marginal price of power b multiplied by 49 hours.
The value of ω is approximately 121 times greater in the
low renewable case than it is in the high renewable case.
Note that a is zero when renewables are curtailed while
b is assumed to also be zero because curtailed renewables
and demand response are presumed to be dispatchable.

The values of the ramping response constant c were also
selected such that the overall cost of operating the system
remains more or less constant when going from the low to
high renewables scenarios under the base case. This allows
us to evaluate the impact of the optimal control strategy
without involving the question of revenue adequacy under
the high renewables scenario. Given that there are few
markets from which to determine these values, we must
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Fig. 5: Optimal dispatch for low (top) and high (bottom)
renewable scenarios for various production errors.

be satisfied with this assumption for now.
The statistical nature of the intermittency and load

forecast errors and their connection to load following and
regulation was studied at length in [32]. The authors
showed that consolidated control of WECC could yield
both cost savings and performance improvements. In par-
ticular, the study showed that with high accuracy control
1% standard deviation in load forecast was expected, with
0% real-time mean error at 0.15% standard deviation at
peak load. However, for the purposes of a preliminary
study like the one presented in this paper, we will consider
the scheduling error to be Gaussian with a mean error of 0
MW and a standard deviation of 100 MW. We believe that
energy and flexibility markets should be efficient enough
to remove all systematic error from the price signals leav-
ing only the random noise that is satisfactorily modeled
by Gaussian noise.

The comparison of the conventional and optimal dis-
patch for a typical case is shown in Figure 5. The con-
ventional control strategy is shown in dotted lines, with
the 10 minute optimal-dispatch trajectory shown as solid
lines. Note that the ramp rate is constant between discrete
control updates. The evaluation is completed with the
marginal prices and marginal costs at 100 GW, as shown
in Table 1. The dispatch changes according to a varying
energy production error remaining at the end of the pre-
vious dispatch interval. These production errors typically
arise from renewable, load, and demand response forecast-
ing errors and the results show how these errors can be
corrected by optimal redispatch during the upcoming in-
terval, regardless of the previous production schedule. A
−5% error represents an accrued energy deficit of 5 GWh
for a 105 GWh schedule, while a +5% error represents an
energy surplus of 5 GWh.

The marginal prices in Table 1 are chosen to satisfy the

Table 1: Marginal prices and marginal costs cases in Figure 5.

Variable Base case Study case Units

Marginal prices:
a 1.27× 10−3 6.34× 10−4 $/MW2·h
b 1.27× 10−3 6.34× 10−4 $/MW2

c 4.23× 10−6 3.09× 10−2 $·h/MW2

Marginal costs:
P 133.09 66.55 $/MW·h
R 133.13 375.19 $/MW

ω 17.3 0.1433 h−1

following conditions:

1. The system operating cost is roughly $100/MWh at
a system load of 100 GW.

2. For the low renewables case, the energy cost is roughly
10 times the ramping cost, while for the high renew-
ables case the ramping cost is roughly 10 times the
energy cost for the nominal schedule. This was nec-
essary to ensure that costs were the same for both
cases.

3. The marginal power price b for both cases is equal to
the marginal energy price a of the respective case.

We considered the performance degradation resulting
from longer dispatch intervals by evaluating the perfor-
mance using 5 minute updates, 1 minute updates, and 4
second discrete control timesteps but found no appreciable
difference in the economic performance. The results shown
in Table 2 are shown for the 5 minute dispatch interval.
The output of the presented discrete control method is a
load profile that does not necessarily lead to the scheduled
hourly energy, because the load trajectory over each time
intervals (which is linear) is slightly different from the op-
timal load trajectory (that often has a curvature). One
approach to deal with this energy deficiency is to use a
higher time resolution, so that the trajectories lay on each
other more precisely. Another approach is to adjust the
targeted load such that it delivers the scheduled energy
over each time interval. In this case, the discrete control
load is not necessarily equal to the optimal load.

Generally at low levels of renewables savings are not
possible using the optimal control strategy. The cost sav-
ings observed in the extreme low renewables dispatch cases
in Table 2 are due to the fact that discrete dispatch control
follows the optimal trajectory sampling every ts seconds.
This dispatch error can result in small over or underpro-
duction depending on the degree of asymmetry in the op-
timal trajectory.

At higher levels of renewables the savings are poten-
tially more significant. In addition, the savings are max-
imum when dispatch tracks the original schedule, which
suggests that there may be a strong economic incentive to
avoid carrying over energy tracking error from one sched-
ule interval to the next.

8



Table 2: Single hour cost savings under low and high renewable for a case shown in Figure 5.

Dispatch Reference Cost Optimal Cost Cost Dispatch
Energy Energy Ramp Total Price Energy Ramp Total Price Savings Error
(GWh) ($M) ($M) ($M) ($/MWh) ($M) ($M) ($M) ($/MWh) ($M/h) (%) (%)

Low renewable scenario
110.3 10.8 1.2 12.0 108.62 10.8 1.1 11.9 107.93 0.1 0.6 -0.8
107.1 10.1 0.9 11.0 102.50 10.1 0.9 11.0 102.50 0.0 0.0 -0.4
105.0 9.6 0.9 10.5 100.00 9.6 0.9 10.5 99.98 0.0 0.0 0.0
102.9 9.1 0.9 10.0 97.53 9.1 0.9 10.0 97.51 0.0 0.0 0.4
99.8 8.4 1.1 9.6 96.06 8.4 1.1 9.5 95.42 0.1 0.7 0.9

High renewable scenario
110.3 1.6 24.1 25.7 232.77 1.6 13.5 15.1 136.75 10.6 41.3 -2.0
107.1 1.3 11.7 13.0 121.55 1.3 4.8 6.1 57.27 6.9 52.9 -0.8
105.0 1.1 9.4 10.5 100.00 1.1 3.2 4.3 41.25 6.2 58.8 -0.0
102.9 1.0 11.7 12.7 123.35 1.0 4.8 5.8 56.43 6.9 54.2 -0.7
99.8 0.7 24.1 24.8 248.95 0.8 13.4 14.2 142.37 10.6 42.8 -1.9

Table 3: WECC 2024 cost savings from optimal dispatch un-
der different transmission constraint and renewable scenarios.

Cost
Scenario Base case Optimal Savings
Model ($B/y) ($B/y) ($B/y)

Unconstrained:
Low 126.0 125.9 0.16 (0.1%)
High 108.6 77.8 30.85 (28.4%)

Constrained:
Low 184.4 184.1 0.26 (0.1%)
High 388.3 231.2 157.12 (40.5%)

Table 4: Energy and price impacts of optimal dispatch for the
WECC 2024 base case.

Total Price
Scenario Energy Base case Optimal
Model (TWh) ($/MWh) ($/MWh)

Unconstrained:
Low 1054.6 119.5 119.35 (-0.1%)
High 1067.2 101.8 67.29 (-51.2%)

Constrained:
Low 1054.5 174.8 174.55 (-0.2%)
High 1055.7 367.8 87.96 (-318.2%)

The interconnetion-wide scheduling solution in [12] in-
cludes a 20-area constrained solution. The hourly en-
ergy prices for each area are computed considering both
supply and demand energy price elasticities. The energy
prices are computed for the interconnection-wide surplus-
maximizing schedule over the entire year. The marginal
power price is the price of energy for the schedule hour.
The marginal price of ramping is 1/300 marginal price of
power in the low renewable case, and 49 times the marginal
price of power in the high renewable case. The costs, sav-
ings and price impact of using this scheduling solution

Fig. 6: WECC 2024 unconstrained load (top) and cost savings
(bottom) duration curves.

compared to the base case are presented in Tables 3 and
4. The unconstrained solution is evidently less costly be-
cause the combined system-wide fluctuations are smaller
than the sum of the individual of the variations in each
balancing authority.

The WECC 2024 system-wide load and savings dura-
tion curves4 are shown in Figures 6 and 7 for the con-
strained and unconstrained cases, respectively. The load
duration (top) and optimal dispatch savings duration (bot-
tom) using discrete optimal control at 5-minute dispatch
rate are shown with scatter plots for the corresponding
cost (red) and load (blue) values for the durations curves
shown. The potential savings are very significant for all
scenarios, with the highest savings being found when high
levels of renewable resources are available. The savings

4A duration curve shows the number of hours per year that a
time-series quantity is above a particular value. It is obtained by
sorting the time-series data in descending order of magnitude and
plotting the resulting monotonically descending curve.
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Fig. 7: WECC 2024 constrained duration curves for load (top)
and cost savings (bottom).

when more transmission constraints are active are aug-
mented considerably with respect to unconstrained system
conditions.

6. Discussion

The significance of the results shown in Figure 3 cannot
be understated. First we observe that when a >> c, the
optimal response is very similar to the conventional dis-
patch strategy, giving us some assurance that today’s op-
erations are very nearly optimal. However, when a << c
today’s hourly dispatch strategy is not optimal. As the
fraction of cost attributed to energy decreases relative to
the cost attributed to ramping, we see that ω decreases
and the value of changing the dispatch strategy increases
dramatically. In the limit of a very high renewable scenario
the savings achievable using the optimal dispatch strategy
can be extremely significant. Failure to adopt an optimal
dispatch such as the one proposed could result in major
and likely unnecessary costs. Utilities will inevitably find
it necessary to mitigating these costs, either by reducing
the amount of renewables, by increasing the revenues from
their customers, or by developing some kind of optimal re-
source allocation strategy such as the one proposed.

A sensitivity analysis of the savings as a function of
the marginal price of ramping c shows that the savings are
not overly sensitive to changes in our assumption of the
cost of ramping scarcity. Figure 8 shows that for a 50%
decrease in c, we observe a 10.3% decrease in savings, while
a 50% increase in c results in a 3.9% increase in savings.
This suggests that the savings from employing the optimal
dispatch strategy is quite robust to our uncertainty about
the marginal price of ramping resources.

In any financially sustainable future scenario, we must
consider how the long-term average costs and fixed costs
are recovered under the pricing mechanism. We have as-
sumed in this study that renewable generation and utili-
ties cannot sustainably continue employing complex power

Fig. 8: Sensitivity of savings to marginal price of ramping
resources.

purchasing agreements and subsidies to hedge against en-
ergy price volatility. Instead all parties should come to
rely on separate real-time pricing mechanisms for energy,
power and ramping response of the resources they control.

Shifting revenue from resource allocation mechanisms
based primarily on energy resource scarcity to ones based
primarily on flexibility resource scarcity can be expected to
have a significant impact on the cost of subhourly resource
dispatch. The optimal strategy for low renewable condi-
tions very closely matches the strategy employed today
when moving hour-to-hour from one scheduled operating
point to another. Indeed, the optimal dispatch strategy
does not offer any significant cost savings when overall
pricing is dominated by energy resource scarcity.

However, as increasing amounts of renewables are in-
troduced, the scarcity rents may shift from energy to flex-
ibility resources. The optimal subhourly dispatch strategy
may be expected to change with increasing emphasis on
avoiding high ramp rates over sustained periods at the ex-
pense of maintaining a constant power level over the hour.

The relationship between existing price signals for vari-
ous grid services and the three principle price components
needed to implement this optimal strategy requires fur-
ther investigation. It is evident that the marginal price a
represents a linearization of the energy price itself at the
current operating point. But it is not clear yet whether
and to what degree the marginal prices b and c can be
connected to any existing price signals, such as the capac-
ity price or the price of ancillary services like frequency
regulation resources, generation reserves, and demand re-
sponse. The links do suggest themselves based on both the
resource behaviors and physical dimensions of the param-
eters. However, it is not certain yet whether this will be
simply a matter of obtaining a linearization of the services’
cost functions at the appropriate operating point.

Additionally, it is instructive to note that the marginal
price of redispatched power b is not important to the op-
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timal dispatch strategy, insofar as the parameter does not
appear in Eq. 6. This leads one to conclude that to the
extent capacity limits do not affect either energy or ramp-
ing scarcity rents (or are already captured in them), the
marginal cost of additional resource capacity is never con-
sidered for optimal subhourly dispatch control. This is
consistent with the expectation that sunk costs should not
be a factor in the selection of which units to dispatch at
what level, at least to the extent that these costs are not
entering into the energy or ramping costs.

In the presence of significant renewables, the energy
marginal cost does not entirely reflect the grid condition
without considering the cost of ramping up and down ser-
vices. Therefore, the energy price cannot be solely used as
a control signal to the generation and load units to achieve
the optimal utilization of resources. In order to quantify
the value of ramping product we suggest using a market
framework in which flexible generation and load resources
compete to sell their ancillary service products at the bulk
electric system level. As renewable level rises the energy
marginal cost decrease (smaller a value) because renew-
ables are zero-generation cost resources, but the ramping
marginal cost increases (larger c value) because the system
requires more flexibility to handle the generation variation.
In long run, inflexible units get retired and more flexible
units are built to support the renewable integration since
flexibility will be a revenue source rather than energy.

The availability of high renewables can lead to situa-
tions where low cost energy is being supplied to areas with
high cost flexibility resources through constrained inter-
ties. The optimal strategy avoids dispatching these high
cost flexilibity resources to the extent possible by reduc-
ing the ramping schedule. The more transmission capacity
is available, the lower the overall cost, but we note that
even when the system is constrained, the cost of optimally
dispatching flexibility resources can be significantly lower
under the high renewables case than under a low renew-
ables scenario.

It seems that the use of energy-only market designs run
counter to the results of this study. Flexilibity resource
markets may become increasingly important, even in re-
gions that are not dominated by local renewable genera-
tion. This is especially true in cases where adequate trans-
mission capacity is available for renewables in remote re-
gions to displace local dispatchable generation. This may
give rise to a new set of challenges for utility and system
operators as they seek a revenue model that not only pro-
vides for operating costs, but also maintains the coupling
between retail demand response and wholesale supply and
retail delivery constraints. If the cost of the wholesale sys-
tem becomes increasingly dominated by ramping resource
constraints, while retail continues to use energy prices to
encourage consumer efficiency, then retail behavior will be
not affected as much by short-term wholesale price fluctua-
tions. This trend runs against the desire for more engaged
consumers who can respond to system conditions in real
time. Clearly a new utility revenue model is needed if the

transformation to a high renewable modus operandi is to
occur successfully in the coming decades.

7. Conclusions

The principal finding of this paper is that the use of an
optimal dispatch strategy that considers both the cost of
energy and the cost of ramping resources simultaneously
leads to significant cost savings in systems with high levels
of renewable generation. For the WECC 2024 common
case the savings can exceed 25% of total operating costs
in a 50% renewables scenario.

As the bulk power interconnection resource mix shifts
from primarily dispatchable non-zero marginal cost re-
sources (e.g., natural gas) to primarily non-dispatchable
zero marginal cost renewable resources (e.g., run-of-river
hydro, wind, solar) we expect a steady shift in bulk sys-
tem costs from energy resource scarcity rent to ramping
resource scarcity rent. While the total revenue must re-
main largely the same for financial sustainability, operat-
ing strategies must adapt to reflect changes in resource
scarcity costs.
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Nomenclature

Q̈ Ramping rate of change in MW/h2.

Q̇ Ramping in MW/h.

Q̇∗ Discrete power at next time step in MW.

Q̇0 Initial ramping in MW/h.

Q̇T Terminal ramping in MW/h.

λ Lagrange multiplier (excluding Qz) in $/MWh.

µ Lagrange multiplier (including Qz) in $/MWh.

ω Square root of energy to ramping marginal price ratio in
h−1.

A A cost parameter (unit varies according to context).

a Marginal price of energy in $/MW2·h.

B A cost parameter (unit varies according to context).

b Marginal price of power in $/MW2.

C A cost parameter (unit varies according to context).

c Marginal price of ramping in $·h/MW2.

C(t) Cost over the time interval 0 to t in $.
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C∗ Cost associated with discrete time control in $.

Cbase Cost associated with base case control in $.

D A cost parameter (unit varies according to context).

E(t) Energy over the time interval 0 to t in MWh.

E∆ Energy demand parameter in MWh.

ET Energy over T in MWh.

G(t, Q, Q̇) Cost Lagrangian in $.

k Discrete time step in p.u. ts.

P (Q) Power price function in $/MWh.

Q(t) Power in MW.

Q∗ Discrete power in MW.

Q0 Initial load in MW.

Q∆ Power demand parameter in MW.

QE Scheduled load in MW.

QT Terminal load in MW.

Qz Must-take generation in MW.

R(Q, Q̇) Ramping price function in $/MW.

s Frequency domain complex variable in h−1.

T Interval terminating time in hours.

t Time domain real variable in hours.

ts Time step in seconds.
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