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Analytical Solutions of Transient Drift-Diffusion
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Abstract—Radiation detection in applications ranging from
high energy physics to medical imaging rely on solid state
detectors, often hybrid pixel detectors with (1) reverse biased p-n
junction pixel sensors and (2) readout ASICs, attached by flip-
chip-bonding. Transient signals characteristics are important in,
e.g., matching ASIC and sensor design, modeling and optimizing
detector parameters and describing timing and charge sharing
properties. Currently analytical forms of transient signals are
available for only a few limited cases (e.g., drift or diffusion) or
for the steady state (which is not relevant for high energy radia-
tion detection). Tools are available for (relatively slow) numerical
evaluation of the transient charge transport. We present here
the first analytical solutions of partial differential equations de-
scribing drift-diffusion-recombination charge transport in planar
p-n junction sensors in a variety of conditions: (1) undepleted,
(2) fully depleted, (3) taking into account the gradual velocity
saturation, and (4) overdepleted. We deduce the Green’s functions
which can be applied to any detection problem through simple
convolution with the initial conditions. We compare the analytical
solutions with Monte Carlo simulations and industry standard
simulations (Synopsys Sentaurus), demonstrating good agree-
ment. Using the analytical equations enables fast modeling of
the influence of various detector parameters on tracking, imaging
and timing performance, describing performance and enabling
optimizations for different applications. Finally, we illustrate this
model with applications in 3D+T (x,y,z,time) photon tracking and
4D+T (x,y,θ,φ,time) relativistic charged particle tracking.

Index Terms—Hybrid pixel detectors, p-n junction sensors,
transient signals, charge transport, drift-diffusion-recombination
model, partial differential equations

I. INTRODUCTION

Radiation detection in applications ranging from high en-
ergy physics to medical imaging rely on solid state sensors
(often silicon). The last three decades saw significant improve-
ments in hybrid pixel detectors [1], which allow developing
advanced functionality in the CMOS pixel readouts (e.g., dig-
ital photon counting [2], [3], [4], low noise charge integrating
[5], spectroscopy [6], [7], timing [8], [9], [10], sparsification
[9], gain switching [11], [12], other specialized functionality
[13], [14]), while separating ASIC and sensor development and
leveraging the commercial advances in chip fabrication. Most
often, pixel sensors based on reverse biased p-n junctions are
used [15] (see a schematic diagram in Fig. 1). Typical sensor
materials include Si, GaAs, CdTe, Ge. Currently the transient
signals are analytically described for only a few special cases
(e.g., simple thermal diffusion [16]). Steady state solutions
are often presented [16], [17]; while they are useful in other
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Fig. 1. Typical n-type sensor for a hybrid pixel detector. The front entrance
window Al and n+ region are typically small (less than 1 µm each), and are
located at x ≈ 0. A bias voltage of 200 V is applied to fully deplete the n-
bulk. The rear side contacts are flip-chip-bonded to individual pixel readout
channels on a readout ASIC. The minority carriers in the n- bulk are holes.
At moment t = 0 an x-ray photon deposits its entire energy in a concentrated
cloud near (x0, y0, z0).

applications (imaging at low energy, high flux, saturation,
etc.), they are less relevant for discrete high energy quantum
detection, where the steady state is trivial.

Often simulations [18] with technology computer-aided
design (TCAD) packages are used [19], despite being rela-
tively slow and requiring significant training. Other numerical
approaches include finite elements: FEMOS [20], 2D Monte
Carlo: Weightfield2 [21], simple assumptions about the charge
transport: HORUS [22], or measurements and simulations of
simple p-n diodes [23] with resulting limitations in speed,
ease of use, and/or accuracy. These simulation tools typically
require other software frameworks (e.g., IDL, Root) and, with
the exception of Weightfield2, are not easily available.

We present here the first analytical solutions of partial
differential equations describing drift-diffusion-recombination
charge transport in planar p-n junction sensors in a variety of
conditions: (1) undepleted, (2) fully depleted, (3) taking into
account the gradual velocity saturation, and (4) overdepleted.
We deduce the Green’s functions which can be applied to any
detection problem through simple convolution with the initial
conditions. We compare the analytical solutions with Monte
Carlo simulations and industry standard TCAD simulations
(Synopsys Sentaurus [24]), demonstrating good agreement.

Finally, we deduce equations governing transient charge
transport and charge sharing, relating detection parameters
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(location and time, bias voltage, track orientation, and pixel
geometry) and providing examples with 3D+T (x,y,z,time)
photon tracking and 4D+T (x,y,θ,φ,time) relativistic charged
particle tracking. These analytical solutions enable fast model-
ing of the influence of various detector parameters on tracking,
imaging and timing performance, describing performance and
enabling optimizations for different applications.

II. REVERSE BIASED P-N JUNCTION SENSORS

In radiation imaging with semiconductor pixel sensors,
detection typically occurs in discrete events, resulting in
concentrated electron-hole clouds around points or lines at the
location and time of radiation interaction with the semiconduc-
tor sensor. These discrete clouds subsequently drift, diffuse and
recombine until reaching the highly doped front or rear side
contacts (Fig. 1).

The evolution of signals induced by individual photons or
particles are non-equilibrium, non-steady-state processes in
which the time evolution of charge carriers is important.

With high fluxes of radiation, the steady state solution can
be useful. However, low noise radiation detection is usually
measuring signals from single particles. In this case, the steady
state solution is trivial, thus it is necessary to take into account
the transient regime (i.e., spatio-temporal evolution of charge
carrier concentrations).

A. Sensors

Intrinsec semiconductors have relatively high thermal noise
compared to signals induced by single x-ray photons [16]. To
minimize the thermal noise, the sensor material can either be
cooled to cryogenic temperatures (e.g., high purity germanium
detectors) or used as a reverse biased p-n junction.

Most hybrid pixel sensors used in radiation detection are
reverse biased p-n junctions, often a bulk n-type silicon sensor
(thicknesses up to 1 mm are common), with a thin (≤ 1 µm)
p implant region. Fig. 1 shows a cross section of a typical n-
type silicon sensor, with the front entrance window shown on
the left, and several pixel readout contacts on the back plane
shown on the right. Other sensor materials (e.g., CdTe, GaAs,
Ge) can also be used.

The concentration of dopant ND in the n-type sensor bulk
is related to the resistivity ρn by [25]:

ND =
1

µnqeρn
(1)

Usually the resistivity is quoted instead of the concentration
of dopant. A typical value is ρ = 10 kΩ cm, correspoding to
a donor concentration of ND ≈ 4.34× 1011 cm−3.

B. Bias Voltage and Depletion

Applying a reverse bias voltage V results in a fully depleted
detector (i.e., over the entire detector width d), or partially
depleted (i.e., depleted over width W close to the readout
and undepleted over a width d − W close to the entrance
window). We will call the sensor plane near the readout ASIC

TABLE I
CHARGE CARRIERS IN SILICON

Parameter e− h+ Units

µ 1440 474 cm2 V−1 s−1

D 36.38 11.96 cm2 s−1

vs 1.054× 107 0.940× 107 cm s−1

TABLE II
TYPICAL SILICON SENSOR

Parameter Value Formula

εr 11.68

ε 1.034× 10−12Fcm ε0εr

ρn 10 kΩ cm

ND 4.334× 1011 cm−3 1/(µnqeρn)

d 300 µm

VD 30 V qeNDd
2/(2ε)

W W (V )
√

2εV/(qeND)

bp 3.178× 107 s−1 µp/(µnερn)

bn 9.653× 107 s−1 1/(ερn)

”rear plane” and the photon entrance plane ”front plane”. The
depletion width can be calculated [17]:

W =

√
2εV

qeN
(2)

where ε is the silicon permittivity, qe is the elementary charge,
N is the dopant density, and V is the bias voltage.

Table I summarizes relevant constants for electrons and
holes in silicon (values from [23])

If W < d, the sensor is partially depleted. If W ≥ d, the
sensor is fully depleted. The bias voltage VD to fully deplete
a sensor of thickness d results from substituting W and V in
Eq. 2 with d and VD:

VD =
qeNd

2

2ε
(3)

C. Typical Sensor

While there are many types of sensors for hybrid pixel
detectors, an often used configuration is n-type silicon, with
resistivity ρ = 10 kΩ cm and thickness d = 300 µm. A bias
of VD ≈ 30 V will fully deplete such a sensor. Table II
summarizes biasing and drift parameters for the typical sensor.

Throughout this paper we will often refer to and use this
”typical sensor” to show examples of how the drift, diffusion
and charge sharing would affect detection of photons and
relativistic charged particles. However, the equations presented
here are generally applicable to any p-n junction sensor
material (e.g., Si, CdTe, GaAs, Ge), type (p or n), geometry
(sensor thickness, pixels or strips, length and width), with
appropriate choices of carriers and integration limits.

D. Electric Field

1) Fully depleted sensor: The sensor is biased over its
entire length d. The electric field varies linearly from ED =
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Fig. 2. Dependence of electric field E on position x. We introduce the
convention that x = 0 at the interface between the depleted and undepleted
regions, which could be real (inside) or virtual (outside the detector). In this
reference system, the front plane is at x1(V ) and the rear plane is at x2 =
x1 +d. For a few bias conditions V ∈ {0, 30 V, 100 V, 200 V}, the [x1, x2]
coordinates are indicated with labeled line segments under the plot.

(V − VD)/d at front window to (V + VD)/d at rear contacts
[17].

2) Partially depleted sensor: The sensor is depleted over a
region of thickness W from the back contacts and undepleted
in the remaining volume. The electric field is E = 0 in the
undepleted region and increases linearly to E = 2V/W at the
back plane [17].

3) In general: The transport equations are invariant with
translation, so we’ll conveniently set the origin of x axis at
the interface between the depleted and undepleted regions,
which could be real (inside) or virtual (outside the detector).
This choice of coordinate system origin will greatly simplify
accounting for offsets in subsequent sections. The resulting
electric field is:

E(x) =
2VD
d2

x =
1

εµnρn
x (4)

Fig. 2 shows the electric field E(x) dependence on position
and illustrates detector coordinates [x1, x2] for a few different
bias voltages.

E. Arbitrary Bias Voltage

With the x origin at the interface between the undepleted
and depleted regions, different biasing conditions result in
different coordinates of the front and rear planes of the sensor
(indicated in Fig. 2 for V ∈ {0, 30 V, 100 V, 200 V}).

The voltage drop over the sensor can be obtained by
integrating Eq. 4 over x (for simplicity we discard signs here);
x1 and x2 are the positions of the front and back of the sensor,
with x2−x1 = d. In a partially depleted sensor, x2 = W thus
x1 = W − d. In a fully depleted sensor, the bias voltage is
V = 1

εµnρn
d
(
x1 + d

2

)
resulting in:

x1 =

{
W − d if W ≤ d
εµnρnV

d − d
2 if W > d

(5)

x2 = x1 + d (6)

F. Charge Generation, Transport and Recombination

Detecting individual quanta in semiconductors relies on
the transient signals induced by charge transport (drift and
diffusion), which in turn depends on charge generation at the
interaction point(s) and recombination of carriers.

1) Charge Generation: Different particles or photons gen-
erate distinct patterns that can be used to identify the detected
particle. For example, visible and UV light photons generate
single electron pairs. High fluxes are adequately described by
existing steady state approximations.

X-ray photons generate discrete electron-hole clouds with
thousands of carriers near the interaction point. Relativistic
charged particles typically pass through the sensor in straight
lines, depositing a constant amount of energy per length dE

dx
(Bethe formula). The signal can be integrated as a series of
small signals over the track length. The steady state solution
for x-ray photons and relativistic particles is trivial, and the
transient signals have to be evaluated.

2) Thermal Diffusion: Charge carriers undergo thermal
diffusion, with an initial δ(x) distribution of carriers at t = 0
(in the absence of electric fields or boundary conditions)
diffusing to a normal distribution with size [26]:

σ =
√

2Dt (7)

where the diffusion constant D is given by the Einstein relation
[27]: D = µkBT/qe.

3) Charge Drift: Charge drift is determined by electric
fields (accelerating charge carriers) and interactions with the
lattice. At high field intensities, the average drift velocity
asymptotically approaches the saturation velocity vs as the
interactions with the lattice balance out the acceleration in
the electric field. For x > 0, E induces a carrier velocity
component (drift velocity), which for indirect band gap semi-
conductors can be written as:

v(x) =
µE(x)

1 + µE(x)
vs

=
bx

1 + bx
vs

=
bxvs
bx+ vs

, with (8)

bn =
1

ερn
, b = bp =

µp
µnερn

(9)

where vs is the saturation velocity. We call this a ”saturation
velocity model”.

We introduce the bp and bn constants (Eq. 9), as they will
be used extensively throughout this paper. For simplicity we
will often use b instead of bp. They are constant for each
sensor (depending only on doping and, for minority carriers,
also on mobility). Note that the forms in Eq. 9 are valid for n-
type sensors (i.e., electrons are majority carriers and holes are
minority carriers). The b coefficients could be called ”linear
velocity gradients”.

We show an example of drift velocity in Fig. 3 for minority
carriers (holes, black lines) and majority carriers (electrons,
red lines) in a typical sensor. Solid lines correspond to the
saturation velocity model (Eq. 8) while dashed lines corre-
spond to the linear velocity model (Eq. 10), demonstrating
significant differences at bias voltages of 200 V in a typical
sensor.



4

0.0 0.5 1.0 1.5
x (mm)

−1.5

−1.0

−0.5

0.0

0.5

1.0
v

(1
07

cm
/s

)

holes

electrons

saturation model
linear model
overdepletion model

Fig. 3. Charge carrier velocity in Si as function of position-dependent electric
field. Thin black lines (above zero) correspond to holes and thick red lines
(below zero) correspond to electrons. Solid lines depict the saturation model
(Eq. 8), dashed lines show to the linear model (Eq. 10) while the dotted lines
show the overdepletion model (Eq. 11).

When ignoring the saturation effect of carrier velocity
(vs � v(x)), Eq. 8 is simplified to a ”linear velocity model”:

lim
vs→∞

v(x) = µE(x) = bx (10)

which is also appropriate for describing carrier drift in direct
band gap semiconductors under the peak velocity.

If the sensor is overdepleted (i.e., V � VD), the carrier
velocity approaches the saturation velocity asymptotically:

lim
V→∞

v(x) = vs (11)

further called ”overdepletion model”.
4) Charge Recombination: Charge recombination typically

has a time constant in the order of milliseconds [17], much
larger than drift times (typically in the order of nanoseconds,
Table III) and can usually be ignored. If this is not the case
(e.g., after significant radiation damage [28]), the appropriate
recombination rate γ can be used in the full form solutions
(Eq. 13, 42).

G. Partial Differential Equations

Solving the drift-diffusion-recombination partial differential
equation yields the transient signals from single detected
quanta. We solve and discuss the partial differential equations
for minority carriers (i.e., holes in n-type sensors) as they
induce most of the signal into the pixel readout. We will briefly
mention the majority carriers and their solutions.

1) General Equation: The hole density as a function of
time and space can be written as p(x, y, z, t). The effects
of charge transport and recombination mechanisms can be
summarized as:

∂p

∂t
= D∇2p−∇(v(x)p)− γp (12)

where the right hand side terms correspond to thermal dif-
fusion, drift in the electric field1, and charge recombination,

1The minus sign for the drift term in Eq. 12 is correct for positive v
equivalent to moving to the right.

respectively. A similar equation is valid for electron density
n(x, y, z, t).

While these two equations are coupled and electrostatic
effects are present [29], in both the depleted and undepleted
sensor the coupling is relatively weak. Electrostatic interac-
tions become important when large signals are detected in a
small volume and short time, resulting in ”plasma effects”
[30].

2) Field Along x Axis: The electric field components in the
yz plane can usually be neglected2. Usually the recombination
rate does not depend on position and time, allowing us to
extract the recombination term −γp and multiply the solution
with a factor e−γt instead. This allows separating the variables

p(x, y, z, t) = u(x, t)w(y, z, t) e−γt (13)

and results in a 1D drift-diffusion equation (also called
diffusion-advection) along the x axis and diffusion in the yz
plane. Thus we have to solve Eq. 12 only in one dimension
for u(x, t):

∂u

∂t
= D

∂2u

∂x2
− ∂(v(x)u)

∂x
(14)

u(x, 0) = δ(x− ξ0) (15)

3) Charge generation: For clarity, and in line with the
prevailing notation (e.g., [26]), we will denote the initial
conditions on x, y, and z axes with ξ, υ and ζ. A discrete
detection event at t = 0 and location (ξ0, υ0, ζ0) will generate
a charge cloud:

p(x, y, z, 0) = δ(ξ − ξ0)δ(υ − υ0)δ(ζ − ζ0) (16)

Solving the carrier density equation for infinitely small ini-
tial distributions (i.e., δ functions) yields the Green’s function
corresponding to the partial differential equation and initial
and boundary conditions. For finite initial signals, the solution
is a simple convolution of the Green’s function with the initial
signal [26]. For t < 0, p(x, y, z, t), u(x, t), and w(y, z, t) are
zero.

4) Lateral Charge Diffusion: Assuming the sensor is very
large in the yz plane and ignoring in-plane electric field
components, charge drift as a function of time w(y, z, t) will
be determined by:

∂w

∂t
= D∇2w (17)

w(y, z, 0) = δ(υ − υ0)δ(ζ − ζ0) (18)

with the familiar 2D diffusion solution:

w(y, z, t) =
1

4πDt
exp

(
− (y − υ0)2

4Dt

)
exp

(
− (z − ζ0)2

4Dt

)
(19)

2Close to the rear pixel contacts there are electric field components in-plane,
however, their influence is relatively small as minority carriers drift relatively
quickly through this region and are unlikely to diffuse to nearby pixels.
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III. OVERDEPLETION VELOCITY MODEL

A. Green’s Function

With constant velocity v = vs (Eq. 11), this is essentially
the diffusion model, drifting with constant velocity vs. The
corresponding drift equation is:

xc(ξ, t) = ξ + vst (20)

and diffusion equation along x (due to the absence of a
velocity gradient, it reverts to simple thermal diffusion):

σ(t) =
√

2Dt (21)

resulting in a relatively simple Green’s function for minority
carriers:

g(x, ξ, t) =
exp
(
− (x−ξ−vst)2

4Dt

)
√

4πDt
(22)

IV. LINEAR VELOCITY MODEL

In the linear velocity approximation we solve the partial
differential equation (Eq. 14) with initial conditions Eq. 15
and v(x) = bx (Eq. 10). At the boundaries, the recombination
is instantaneous, thus u(x1, t) = 0 and u(x2, t) = 0. Usually
drift dominates diffusion at the boundaries so we can ignore
the boundary conditions (see section V-E for a discussion on
when this approximation is appropriate).

A. Drift

Single charge carriers drift and diffuse randomly. In lo-
calized clouds composed of many carriers, the drift of the
center of the cloud will average out the stochastic diffusion of
individual charge carriers, drifting from ξ ∈ [x1, x2] (inside
the sensor) to x ∈ [ξ, x2] in a time td:

td(ξ, x) =

∫ x

ξ

dx

v(x)
=

1

b
ln

(
x

ξ

)
(23)

Solving for x yields the charge cloud position xc(ξ, t):

xpc(ξ, t) = ξ ebt (24)

The drift equation for majority carriers is obtained similarly:

xnc (ξ, t) = ξ e−bt (25)

B. Diffusion

In appendices A and B we present an approach to separate
diffusion from drift (similar to the method of characteristics
[26]), reducing the partial differential equation (Eq. 14) to
an ordinary differential equation (Eq. 56) and obtaining the
analytical solution for diffusion of minority carriers:

σp(t) =

√
D

b
(e2bt−1) (26)

Note that limb→0 σ(t) =
√

2Dt (calculated using [31]) thus
Eq. 26 is a generalized form of the simple diffusion equation
(Eq. 7), incorporating the linear velocity gradient b.

Similarly for majority carriers, the diffusion equation is:

σn(t) =

√
D

b
(1− e−2bt) (27)

C. Green’s Function

With xcp(ξ, t) and σp(t) calculated above (Eq. 24, 26), the
Green’s function for the linear velocity model is:

g(x, ξ, t) =

exp

(
− (x−ξ ebt)

2

2Db (e2bt−1)

)
√

2π
√

D
b (e2bt−1)

(28)

The Green’s function can be used to calculate u(x, t) for
any initial condition u(ξ, 0) = f(ξ) through convolution over
the initial conditions:

u(x, t) =

∫ x2

x1

g(x, ξ, t)f(ξ)dξ (29)

For initial condition f(ξ) = δ(ξ− ξ0) (point source at ξ = ξ0
and t = 0), the integral above is reduced to the simple form:

u(x, t) = g(x, ξ0, t) (30)

D. Testing and Simulations

Substituting the Green’s function from Eq. 28 and drift
velocity from Eq. 10 in the partial differential equation Eq. 14,
calculating the partial derivatives and canceling identical terms
demonstrates that Eq. 28 is the analytical solution.

To confirm the analytical results, we performed Monte Carlo
simulations (tracking 105 carriers in a typical sensor, with
initial position ξ0 = 500 µm) and found that a time step
∆t = 10 ps yields stable results. We simulated a relatively
long time (1 µs) to prove the validity of the analytical solutions
over wide ranges. The results of the numerical simulation are
compared to the analytical functions in Fig. 4, showing a good
fit between the analytical model and simulations.

However, the results are obviously nonphysical for large
drift times and sensor thicknesses due to the exponential
velocity increase implied by Eq. 24. We will account for the
saturation velocity in a generalized saturation velocity model
in section V, comparing the two models and discussing when
to use each (section V-G).

V. SATURATION VELOCITY MODEL

With larger bias voltages V > VD, the saturation velocity
is usually important, thus we’ll solve the partial differential
equation Eq. 14 with initial conditions in Eq. 15 and the
saturation velocity model in Eq. 8. As in section IV, we ignore
the boundary conditions (see section V-E for a discussion on
when this approximation is appropriate).

A. Drift

Following the approach in section IV-A, the drift time for
minority carriers from ξ to x is:

tpd(ξ, x) =

∫ x

ξ

dx

v(x)
=
x− ξ
vs

+
ln
(
x
ξ

)
b

(31)

Solving for x, we obtain the drift equation for minority carriers
xcp:

xpc(ξ, t) =
vs
b

W

(
bξ

vs
ebt+

bξ
vs

)
(32)
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Fig. 4. Analytical functions (lines) and Monte Carlo simulations (dots) for
holes using the linear velocity model of charge transport in an infinitely long
sensor (resistivity ρn = 10 kΩ cm, initial position ξ = 0.05 cm). Lower
subplots indicate the relative error. (a) shows the position of the charge cloud
as a function of time, with relative errors less than 5× 10−3; (b) shows
the charge cloud size in the x direction, reflecting the supplemental stretching
due to the velocity gradient; relative errors less than 2× 10−2. There is good
agreement between the analytical solution and the simulation. Note however
that the linear velocity model yields nonphysical results for longer times and
large detectors.

where W is the Lambert W function. The drift time and drift
equation for majority carriers are obtained similarly:

tnd (ξ, x) =

∫ x

ξ

dx

−v(x)
=
ξ − x
vs

+
ln
(
ξ
x

)
b

(33)

xnc (ξ, t) =
vs
bn

W

(
bnξ

vs
e−bnt+

bnξ
vs

)
(34)

B. Diffusion

Similarly to section IV-B, in appendices A and C we
obtain an ordinary differential equation for diffusion (Eq. 61),

resulting in the diffusion equation for minority carriers:

σp(ξ, t) =√
bDx2

c

v2s

(
2bt+ 4 ln

(
xc
ξ

))
+ 6Dxc

vs
(xcξ − 1) + D

b (
x2
c

ξ2 − 1)

1 + bxc
vs

(35)

with xc(ξ, t) given by Eq. 32. Note that σ depends on initial
position ξ. In the limit vs →∞, this equation simplifies [31]
to Eq. 26:

lim
vs→∞

σp(ξ, t) =

√
D

b
(e2bt−1) (36)

demonstrating that Eq. 35 is a further generalization of Eq. 26,
incorporating the effects of velocity saturation.

Similarly for majority carriers (moving in the opposite
direction), with xc(ξ, t) given by Eq. 34:

σn(ξ, t) =√
bnDx2

c

v2s

(
2bnt+ 4 ln

(
ξ
xc

))
+ 6Dxc

vs
(1− xc

ξ ) + D
bn

(1− x2
c

ξ2 )

1 + bnxc
vs

(37)

C. Green’s Function

With xc(ξ, t) from Eq. 32 and σ(ξ, t) from Eq. 35, the
Green’s function g(x, ξ, t) for minority carriers in the satura-
tion velocity model is:

g(x, ξ, t) =
exp
(
− (x−xc)2

2σ2

)
√

2πσ
(38)

with the appropriate xc and σ from Eq. 32 and 34 and similarly
for the majority carriers, using Eq. 35 and 37.

D. Simulations

We performed Monte Carlo simulations as described in
section IV-D. Numerical simulations confirm the charge cloud
is close to a normal distribution (with negligible skewness and
kurtosis), drifting along the x axis. Fig. 5 shows the simulation
results (dots) and analytical functions (lines) for both charge
cloud position xc and size (along x axis) σ, demonstrating
good agreement between the analytical model and the simu-
lations (relative error within 2× 10−4 and 2× 10−2 for the
position and size, respectively). Other initial positions ξ ≥ 0
also result in a good match.

E. Boundary Conditions

The Green’s function in Eq. 38 is valid for relatively large
bias voltages where drift dominates diffusion at both the front
and back planes. At low bias voltages, some charge is lost on
recombination on the front surface. The charge loss fraction
due to recombination on the front plane can be shown to be
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Fig. 5. Analytical functions (lines) and Monte Carlo simulations (dots) for
holes using the saturation velocity model of charge transport in an infinitely
long sensor (resistivity ρn = 10 kΩ cm, initial position ξ = 0.05 cm).
Subplots indicate the relative error. (a) shows the position of the charge cloud
as a function of time; errors less than 10−4; (b) shows the charge cloud size
in the x direction, reflecting the supplemental stretching due to the velocity
gradient; errors less than 10−2.

smaller than or equal to the least advantegeous case (small ξ0,
large t, carrier transport dominated by diffusion):

floss(ξ0) ≤ lim
t→∞

lim
x1→0

lim
ξ0→x1

∫ x1

−∞
g(x, ξ0, t)dx

=

[
1− erf

(
−x1
√
b√

2D

)]
/2 (39)

obtained by substituting g(x, ξ, t) from Eq. 28, which is
appropriate for small ξ0.

For a detector with a signal to noise ratio of 1000 and a
typical sensor, Eq. 28 and 38 can be used directly for an initial
position with a charge loss fraction smaller than 10−3. For the
typical sensor we obtain x1 ≥ 19 µm, which can be guaranteed

TABLE III
FRONT TO BACK DRIFT TIME FOR MINORITY CARRIERS

sensor V (V) td(ns) tod(ns) tld(ns)

n-type, 300 µm 50 47.17 3.19 43.98

n-type, 300 µm 100 22.79 3.19 19.60

n-type, 300 µm 200 12.76 3.19 9.57

p-type, 300 µm 100 13.65 2.85 10.80

p-type, 300 µm 200 6.70 2.85 3.85

p-type, 300 µm 400 5.07 2.85 2.22

n-type, 75 µm 50 3.17 0.80 2.37

n-type, 75 µm 100 1.98 0.80 1.19

n-type, 75 µm 200 1.39 0.80 0.59

p-type, 75 µm 50 2.12 0.71 1.41

p-type, 75 µm 100 1.64 0.71 0.93

p-type, 75 µm 200 1.34 0.71 0.63

td is the drift time from the front to the back of the sensor (Eq. 31, 33);
tld is calculated in the linear velocity model (Eq. 24, 25);
tod is calculated in the overdepletion approximation as d/vs.

with a depletion width W ≥ 319 µm, corresponding to a bias
voltage V ≥ 34 V (obtained using Eq. 3).

For V ∈ [30 V, 34 V], the partial differential equation Eq. 14
becomes bounded on a semi-infinite domain. One can account
for the front boundary condition in this case by adding a virtual
negative source, mirrored by the front surface, as shown in
chapter 2.4 of [26].

F. Comparison with Overdepletion Model

The overdepletion approximation results in large errors for
drift in a typical sensor, see summary in Table III, with errors
up to a factor 14 for a typical sensor. At 200 V bias in the
typical sensor, the diffusion equation error is up to ≈ 55 %, as
shown in Fig. 6 (b) and (c). This approximation is appropriate
only for thin p-type sensors with high bias voltages.

G. Comparison with Linear Velocity Model

The saturation velocity model describes accurately the
transient charge transfer in thick detectors or detectors with
large bias voltages. To investigate the differences between the
linear velocity model and the saturation velocity model, we
calculated the drift and diffusion for a typical sensor, showing
the results in Fig. 6.

Both minority carriers (thin black lines) and majority
carriers (thick red lines) were tracked through the detector
volume, with a bias voltage V = 200 V. Three models were
used: saturation drift and diffusion (solid lines), linear drift
and diffusion (dashed lines) and simple diffusion ignoring
the velocity gradients (dotted lines). We used three initial
positions: on the front plane, middle of detector, and rear
plane.

The three drift models diverge quickly, yielding differences
in arrival times of up to 20 % for minority carriers and up
to 40 % for majority carriers. The diffusion equations for
minority carriers diverge more gradually, with similar results in
the first nanoseconds. Only the linear and saturation diffusion
equations for majority carriers are similar over a wide range
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Fig. 6. Comparing the saturation velocity model (solid lines) with the linear
velocity model (dashed lines) and simple diffusion (dotted lines); (a) shows the
position of the charge cloud as a function of time; black thin lines (moving up)
correspond to holes and red thick lines (moving down) correspond to electrons.
The linear velocity model introduces errors of up to 25 % compared to the
saturation velocity model within the typical sensor. (b) shows the cloud charge
σ as a function of time for minority carriers (holes). The dotted line shows a
simple model ignoring the velocity gradient. The simple model underestimates
the actual cloud charge by 10 % while the linear model overestimates it by
10 %. (c) shows the cloud charge σ for majority carriers (electrons). The linear
model largely agrees with the saturation model (errors within 5 %) while the
simple model overestimates it by up to 55 %.

of time (due to the thermal drift balancing the compressing
velocity gradient).

Consequently, the saturation velocity model should always
be used for indirect band gap semiconductors, unless a thin
sensor with low bias V ≈ VD is used. However, see sec-
tion V-E for limitations associated with bias voltages close to
the depletion voltage.

For direct band gap semiconductors (e.g., GaAs, CdTe),
the carrier velocity profile as a function of the electric field
increases more linearly up to a peak velocity vp at Ep and
then decreases asymptotically to a saturation velocity vs. In
this case, the linear model should be used up to Ep, and
possibly extended piecewise with the overdepleted model for
high electric fields.

VI. UNDEPLETED SENSOR

In the case of undepleted sensors we must take into account
the boundary conditions u(−d, t) = 0, u(0, t) = 0 and the
charge recombination rate γ. We will assume that the sensor is
depleted over at least a shallow width, to prevent high thermal
noise. The partial differential equation Eq. 14 is reduced to a
standard Dirichlet problem [26] with corresponding Green’s
function expressed as an infinite sum:

g(x, ξ, t) =
2

U
e−γt

∞∑
n=1

e−
Dπ2n2t
U2 sin

(nπx
U

)
sin

(
nπξ

U

)
(40)

Fig. 7 shows in a first approximation the response of a
relatively thin (10 µm) undepleted region of a partially de-
pleted sensor (V = 80 V). A full model would account for the
coupling at the depletion boundary (x = 0) of the differential
equations on the two domains. However, this model already
allows us to draw some initial conclusions on the signals from
the undepleted region. Fig. 7 (a) shows the evolution of the
transient charge distribution ass a function of initial position
ξ.

The carrier flux entering the readout ASIC is given by the
left to right flux through boundary x = 0 at time t:

Φ(ξ, t) = D
∂g(x, ξ, t)

∂x

∣∣∣∣
x→0

=

=
2πD

U2
e−γt

∞∑
n=1

n e−
Dπ2n2t
U2 sin

(
nπξ

U

)
(41)

Fig. 7 (b) shows the coresponding transient charge flowing into
the depleted region. For a relatively thin undepleted region, the
minority carriers drift through the depletion boundary within
tens of nanoseconds.

Total flux diffusing through boundary x = 0 into the
depleted region:

Φt(0) =

∫ ∞
t=0

Φ(t) = 2πD

∞∑
n=1

n sin
(
nπξ
U

)
n2Dπ2 + γU2

(42)

Note that the recombination rate γ is now tied up inside the
summation terms. For low recombination rates γU2 � Dπ2:

lim
γU2�Dπ2

Φt(0) =
2

π

∞∑
n=1

sin
(
nπξ
U

)
n

= 1− ξ

U
(43)

reflecting charge loss through the front plane.
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Fig. 7. Charge transport in undepleted area of 10 µm for V = 80 V; (a) time
evolution of charge density along x axis for a unitary charge deposited at
ξ0 = −3 µm, with time indicated by labels (in ns); note that at the boundaries,
recombination and drift are relatively fast, resulting in a low carrier density
near the boundaries; (b) shows the time evolution of the carrier flux from the
undepleted to the depleted region for a range of initial positions (indicated
by labels). For a 10 µm undepleted region, the charge diffusion time is in the
order of tens of ns.

VII. APPLICATIONS

A. X-ray Photon Detection

1) Transient Charge Clouds: Using the Green’s function of
the saturation velocity model (Eq. 32 and Eq. 35 inserted in
Eq. 38), we calculate the transient carrier distribution, project
it on the xy plane, and show the result in Fig. 8 for a
typical sensor following a unit detection event in the middle
of the 300 µm sensor. The result is similar to Monte Carlo
simulations, however, it is orders of magnitude faster.

2) Transient Current: The instantaneous current i induced
in one electrode due to the movement of one charge carrier
is given by Ramo’s theorem [32] which requires taking into
account the weighting potential [33]. Note that the weighting
potential is unrelated to the biasing or doping of the detector
and can not be solved analytically in pixel detectors [34].
In pixel sensors the weighting potential decreases quickly
away from a pixel readout pad, thus we can assume in a first
approximation that the weighting field is V ≈ 0 everywhere
except on the current pixel readout pad, where V ≈ 1 V.

The expected current (in the statistical sense, as average of
currents of many single carriers) for a single charge carrier
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x2− x (µm)

0
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y
(µ

m
)
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4 ns
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V =200 V
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Fig. 8. Charge drift for a single photon detected in the middle of a 300 µm
thick sensor (x2 − x = 250 µm) with a bias voltage of 200 V, after time
intervals from 2 ns to 14 ns. Left: electrons, right: holes. Figure shown on
logarithmic scale over 3 orders of magnitude, with individual tracks scaled by
the same amount. Note the extra stretching (holes) and compression (electrons)
in the x direction due to the electric field gradient.

through a boundary x can be calculated easily from g(x, ξ, t)
(Eq. 38):

I(x, ξ, t) = e

(
vg −D∂g

∂x

)
= e

(
v +D

x− xc
σ2

)
g(x, ξ, t)

(44)

A typical detection event generates hundreds or thousands
of carrier pairs, with currents approaching asymptotically the
distribution shown in Eq. 44, multiplied by the number of
carriers. The current density resulting from N carriers is:

J(x, y, z, t) = NI(x, ξ, t)w(y, z, t) (45)

In Fig. 9 we show the current from a single carrier in a
typical sensor with initial position either at the front or in the
middle of the 300 µm sensor for 3 biasing conditions (100 V,
150 V and 200 V). The drift time increases rapidly with lower
bias and initial position closer to the sensor front plane.

3) Charge Cloud Size and Charge Sharing: Assuming a
square pixel in the yz plane with pitch L and center at (0, 0)
collecting charge from a single carrier with initial position
(ξ0, υ0, ζ0), the current entering the pixel at time t is obtained
by integrating w(y, z, t) between the pixel boundaries, result-
ing in:

I1(t) =
I(x, ξ0, t)

4
erf

(
y√
2Dt

) ∣∣∣∣∣
υ0+

L
2

υ0−L2

erf

(
z√
2Dt

) ∣∣∣∣∣
ζ0+

L
2

ζ0−L2
(46)

Eq. 46 can be easily and efficiently extended to 2D pixel
arrays.

The total charge collected in a pixel can be calculated by
integrating Eq. 46 numerically:

Q1 = N

∫ ∞
0

I1(t)dt (47)
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Fig. 9. Expected transient currents induced by minority carriers in a typical
300 µm, n-type Si sensor as a function of time. The solid lines indicates a
bias voltage of 200 V, dashed lines correspond to 150 V and dotted lines to
100 V. The group of peaks at 5 ns to 11 ns describe a carrier with initial
position at the center of the sensor, while the group of peaks at 12 ns to
25 ns correspond to an initial position at the front of the sensor. The drift
time increases rapidly with lower bias and initial position farther away from
the back plane.

In Fig. 10, black dots indicate results of the numerical integra-
tion (Eq. 46, 47) for the typical sensor and a range of initial
positions and biasing conditions.

B. Relativistic Charged Particle Detection

1) Charge Cloud Size: In Fig. 11 we show charge sharing
profiles for relativistic electron tracks for two different bias
settings (200 V and 100 V) and three different incidence angles
(90◦, 53◦ and 34◦). For an application in tracking relativistic
electron beams see [35].

VIII. CONCLUSION

We present for the first time analytical solutions for fast
and accurate calculation of transient carrier densities in p-n
junction sensors by solving the drift-diffusion-recombination
equations for the minority and majority carriers in a variety of
conditions: undepleted, depleted with linear velocity (carrier
velocity proportional to electric field), depleted with saturation
velocity (carrier velocity transitioning from proportional to
electric field to velocity saturation), and overdepleted (carriers
moving with saturation velocity). We also show that the
diffusion equations in the linear velocity model and in the
saturation velocity model are increasingly generalized forms
of the simple diffusion equation. We subsequently obtain the
corresponding Green’s functions which allow describing any
initial conditions with a simple convolution.

Previously, analytical solutions were only available for
simple diffusion (in the absence of drift velocity gradients).
In practice, drift-diffusion is often simulated numerically with
Monte Carlo simulations, finite elements simulations (includ-
ing TCAD tools), or simple assumptions. Comparing our ana-
lytical drift-diffusion solutions with Monte Carlo simulations
and TCAD simulations (using industry standard Synopsys
Sentaurus) shows good agreement.
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Fig. 10. Charge clouds for single photons detected at different bias voltages
(50 V, 100 V, 150 V, 200 V) and different depths (from front surface at x2−
ξ = 300 µm to back surface at x2−ξ = 0), obtained by numerical integration
of Eq. 46, 47; (a) shows the lateral diffusion in the y and z directions; charge
sharing increases rapidly with increasing distance from the back surface and
with decreasing bias voltage; all clouds contain the same total charge, however,
they are shown normalized to 1 in the center to emphasize the spatial charge
sharing; For reference, white grid lines indicate edges of pixels with a pitch
of 50 µm; (b) shows the corresponding cloud sizes σy,z (black dots); lower
bias voltages and larger distances between the readout plane and interaction
point (x2 − ξ) lead to increased charge cloud sizes.

We deduce equations for the transient behaviour of
(1) charge clouds resulting from detection of x-ray and
gamma-ray photons at different depths and (2) detection of
relativistic charged particles and resulting tracks. We illustrate
the results for a typical silicon sensor (n-type, 300 µm thick,
resistivityρ = 10 kΩ cm), however, the analytical equations
can be extended to any reverse-biased p-n junction pixel or
strip sensor.

The transient charge cloud evolution can be used to describe
the behaviour of timing pixel detectors. In particular, ”time of
arrival” and ”time over threshold” measurements (defined as
time until the transient signal exceeds a set threshold, and
time elapsed until the transient signal returns under the set
threshold) depend on threshold setting, photon energy, bias
voltage, pixel geometry, 3D detection position (with subpixel
accuracy); see holistic approaches to model these effects in
Timepix for photons [36], pions [37], protons and carbon ions
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Fig. 11. Charge clouds for single relativistic electron tracks with three
different inclinations (θ incident at 90◦, 53◦ and 34◦ on the sensor plane)
and 2 different bias voltages (200 V top right, 100 V bottom left), assuming
a typical 300 µm thick sensor, n-type Si. Figure shown on logarithmic scale
over 3 orders of magnitude, with individual tracks scaled by the same amount.
For reference, white grid lines indicate edges of pixels with a pitch of 50 µm.

[38]. Timepix3 [9] and tPix [10] have increasing ”time of
arrival” resolutions of 1560 ps and 100 ps, respectively.

Appropriate integration of the transient signals provides
an accurate description of charge sharing for any pixel or
strip detector for different conditions (interaction positions,
track orientations, subpixel position, bias voltage, and pixel
geometry) for photons and relativistic charged particle tracks.
This can be used in extracting the 3D+T (x,y,z,time) of pho-
ton interactions (with subpixel resolution and accurate depth
information) as well as the 4D+T (x,y,θ,φ) track equation for
relativistic charged particles.

APPENDIX A
DIFFUSION IN GRADIENT FIELDS

To separate diffusion from drift, we introduce a coordinate
system change from x to the position s on the characteristic
curve xc(ξ, t) [39]:

s = x− xc (48)

For a normal distribution, positions xc ∓ σ correspond to
locations which separate fractions

[
1− erf

(
±
√

1/2
)]
/2 of

the charge carriers (i.e., where uxx = 0). In this coordinate
system, the evolution of the average standard deviation of the
charge cloud σ is described by:

dσ2

dt
=
∂σ2

∂t
+
∂σ2

∂s

ds

dt
(49)

where σ is a function of t:

dσ2

dt
= 2σ

dσ

dt
(50)

with the definition of σ above, diffusion leads to:

∂σ2

∂t
= ±2D (51)

and σ is identical with its position in coordinate s:

∂σ2

∂s
= 2σ (52)

We can also estimate:

ds

dt
=

d(x− xc)
dt

= v(x)−v(xc) = v(s+xc)−v(xc) (53)

Substituting Eq. 50-53 in Eq. 49 and reducing by 2σ (σ > 0
for t > 0) results in:

dσ

dt
=
D

σ
+ v(σ + xc)− v(xc) (54)

APPENDIX B
DIFFUSION IN LINEAR VELOCITY MODEL

With v(x) = bx:

v(σ + xc)− v(σ) = b(σ + xc)− bxc = bσ (55)

and substituting in Eq. 54 results in an ordinary differential
equation:

dσ

dt
=
D

σ
+ bσ (56)

with solution [31]:

σ(t) =

√
D

b
(e2bt−1) (57)

leading, with Eq. 24, to a Green’s function:

g(x, ξ, t) =

exp

(
− (x−ξ ebt)

2

2Db (e2bt−1)

)
√

2π
√

D
b (e2bt−1)

(58)

which is an analytical solution for the partial differential
equation. Note that the same result can be obtained [40] by
substituting z = x+C e−bt and showing that Eq. 14 is reduced
to an ordinary differential equation aw(z)′′−bzw(z)′−bw = 0
which is straightforward to solve and yields the same solution.

APPENDIX C
DIFFUSION WITH SATURATION VELOCITY

We can expand Eq. 53 in Taylor series:

ds

dt
= v(σ + xc)− v(σ) =

∞∑
n=1

v(n)(xc)
sn

n!
(59)

Substituting the actual saturation velocity formula (Eq. 8),
noting that D � bd2 thus σ � xc, and keeping only the
first term, after some cancellation:

ds

dt
= v(σ + xc)− v(σ) ≈ dv(xc)

dx
σ =

bv2s
(vs + bxc)2

σ (60)

which results in an ordinary differential equation for diffusion:

dσ

dt
=
D

σ
+

bv2s
(vs + bxc(ξ, t))2

σ (61)
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Substituting xc from Eq. 32 and solving analytically [31] the
ordinary differential equation (Eq. 61) with initial condition
σ(0) = 0, we obtain:

σ(ξ, t) =√
bDx2

c

v2s

(
2bt+ 4 ln

(
xc
ξ

))
+ 6Dxc

vs
(xcξ − 1) + D

b (
x2
c

ξ2 − 1)

1 + bxc
vs

(62)

which is a function of both t and ξ in the saturation velocity
model; xc from Eq. 32.

It is interesting to note that the series in Eq. 59 using v(x)
from Eq. 8 can be written as:

ds

dt
= − v2s

vs + bxc

∞∑
n=1

( −σ
vs
b + xc

)n
=

v2s
vs + bxc

σ

σ + xc + vs
b

(63)

with a corresponding ordinary differential equation:

dσ

dt
=
D

σ
+

v2s
vs + bxc(ξ, t)

σ

σ + xc(ξ, t) + vs
b

(64)

which could be useful in finite elements analysis. However,
this equation is difficult to solve analytically (xc depends on
time t).
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