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Abstract

The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predic-

tions which are independent of the choice of the renormalization scheme, as well as the choice of

the initial renormalization scale. In this article, we will test the PMC by comparing its predic-

tions for the strong coupling αsg1(Q), defined from the Bjorken sum rule, with predictions using

conventional pQCD scale-setting. The two results are found to be compatible with each other and

with the available experimental data. However, the PMC provides a significantly more precise

determination, although its domain of applicability (Q & 1.5 GeV) does not extend to as small

values of momentum transfer as that of a conventional pQCD analysis (Q & 1 GeV). We suggest

that the PMC range of applicability could be improved by a modified intermediate scheme choice

or using a single effective PMC scale.
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I. INTRODUCTION

The gauge theory of the strong interactions, Quantum Chromodynamics (QCD) is defined

to provide objective predictions for physical observables; its predictions should not depend

on arbitrary theory conventions, such as the choice of the gauge or the choice of renormal-

ization scheme (RS). However, conventional calculations are typically carried out using a

perturbative formalism where the truncated high-order predictions are RS-dependent. Fur-

thermore, the n! growth of the nth order coefficient of the resulting series –the renormalon

problem [1]– makes the convergence of the series problematic, even at high momentum trans-

fer where the QCD coupling αs becomes small. A methodology to solve these problems has

been developed, starting with the BLM procedure [2], extended by Commensurate Scale

Relations [3], and culminating with the Principle of Maximum Conformality (PMC) [4–8].

The PMC provides a systematic method to eliminate the renormalization scheme and

scale dependences of conventional pQCD predictions for high-momentum transfer processes.

It reduces in the Abelian limit (Nc → 0) [9] to the QED Gell-Mann-Low scale-setting

method [10], and it provides the underlying principle for the BLM procedure, extending

it unambiguously to all orders consistent with renormalization group methods. The PMC

has a solid theoretical foundation, satisfying renormalization group invariance [11, 12] and

all other self-consistency conditions, such as reflexivity, symmetry, and transitivity derived

from the renormalization group [13].

The PMC scales in the pQCD series are determined by shifting the arguments of the

strong coupling αs(Q
2) at each order n to eliminate all occurrences of the non-conformal

{βi}-terms. The terms involving {βi} are identified at each order using the recursive pattern

dictated by the renormalization group equation (RGE) [7, 8]. This unambiguous procedure

determines the scales Qn of the strong coupling at each specific order. As in QED, the PMC

scales have a physical meaning in the sense that they are proportional to the virtuality of

the gluon propagators at each given order, as well as setting the effective number nf of

active quark flavors. After applying the PMC, the divergent renormalon series disappear,

and the pQCD convergence is automatically improved. After normalizing the coupling to

experiment at a single scale, the PMC predictions become scheme-independent. The PMC

has been successfully applied to many high-energy processes; see, e.g., Ref. [14].

In this paper, we shall test the applicability of the PMC by comparing its prediction for
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the evolution of the QCD strong coupling αs(Q) to the corresponding prediction based on

conventional scale-setting, where the renormalization scale at each order is estimated as a

typical momentum transfer of the process and where arbitrary range and systematic error

are assigned to estimate the uncertainty of the fixed-order pQCD predictions.

The PMC will be applied in this paper in order to determine the behavior of the run-

ning coupling αg1(Q), using the MS-scheme as an auxiliary RS. The coupling αg1(Q) is an

“effective charge” [15] – i.e., an observable – defined from the Bjorken sum rule [16, 17]. It

involves the spin-dependent g1 structure function; hence, its name. The PMC prediction

for αg1(Q) is RS-independent, whereas the conventional pQCD calculation of αg1(Q) retains

RS-dependence, typically chosen as the MS scheme.

This article is organized as follow: In Sec. II, we recall the formalism which defines the

αMS(Q) renormalization scheme and the pQCD expansion for the effective charge αg1(Q)

using conventional pQCD scale-setting. In Sec. III, we provide the formulae which allow

the computation of αg1(Q) using the PMC. In Sec. IV, we compare the two calculations. In

Sec. V, we discuss the possibility of using the PMC in a procedure that employs αs to relate

the fundamental QCD parameter ΛMS to hadron masses or, equivalently, to the confine-

ment scale κ emerging from the Light-Front Holographic QCD approach to nonperturbative

QCD [18]. We summarize the results in the final section.

II. PQCD COMPUTATION OF THE EFFECTIVE CHARGE αg1 IN THE MS

SCHEME

In the MS-scheme, the effective charge αg1 has the leading-twist perturbative expansion

[19]:

αg1(Q)

π
=
∑
i≥1

ai

(
αMS(Q)

π

)i
. (1)

The perturbative coefficients ai are known up to four loops [20, 21]. (The values are given

explicitly in Section III, Eq. 10.) The definition of αg1 stems from the Bjorken sum rule [16,

17]. At leading-twist:∫ 1−

0

gp−n1 (xBj, Q) dxBj =
ga
6

[
1−

∑
i≥1

ai

(
αMS(Q)

π

)i]
≡ ga

6

[
1− αg1(Q)

π

]
, (2)
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where the integration runs over the Bjorken scaling variable xBj. The nucleon axial charge

is ga and the label p-n indicates the isovector part of the spin structure function g1. The

Bjorken integral is well measured, including the transition region between perturbative to

nonperturbative QCD [22]. The Q2-evolution of the strong coupling αMS(Q2) in the MS-

scheme is governed by the RGE:

Q2 ∂

∂Q2

(αs
4π

)
= β (αs) = −

∑
n≥0

(αs
4π

)n+2

βn, (3)

which is known up to 5-loops:

β0 = 11− 2

3
nf ,

β1 = 102− 38

3
nf ,

β2 =
2857

2
− 5033

18
nf +

325

54
n2
f ,

β3 =
149753

6
+ 3564ξ3 −

(
1078361

162
+

6508

27
ξ3

)
nf +

(
50065

162
+

6472

81
ξ3

)
n2
f +

1093

729
n3
f ,

β4 =
8157455

16
+

621885

2
ξ3 −

88209

2
ξ4 − 288090ξ5 +

(
− 336460813

1944
− 4811164

81
ξ3 +

33935

6
ξ4

+
1358995

27
ξ5

)
nf +

(
25960913

1944
+

698531

81
ξ3 −

10526

9
ξ4 −

381760

81
ξ5

)
n2
f +(

− 630559

5832
− 48722

243
ξ3 +

1618

27
ξ4 +

460

9
ξ5

)
n3
f +

(
1205

2916
− 152

81
ξ3

)
n4
f ,

where ξn is the Riemann zeta function [23, 24]. The coefficients βi are expressed utilizing

the MS-scheme except for β0 and β1 which are scheme independent.

Solving Eq. (3) iteratively yields the approximate five-loop expression of αpQCD

MS
[25],

αpQCD

MS
(Q) =

4π

β0t

[
1− β1

β2
0

ln(t)

t
+

β2
1

β4
0t

2

(
ln2(t)− ln(t)− 1 +

β2β0
β2
1

)
+

β3
1

β6
0t

3

(
−ln3(t) +

5

2
ln2(t)

+2ln(t)− 1

2
− 3

β2β0
β2
1

ln(t) +
β3β

2
0

2β3
1

)
+

β4
1

β8
0t

4

(
ln4(t)− 13

3
ln3(t)− 3

2
ln2(t) + 4ln(t)

+
7

6
+

3β2β0
β2
1

(
2 ln2(t)− ln(t)− 1

)
− β3β

2
0

β3
1

(
2 ln(t) +

1

6

)
+

5β2
2β

2
0

3β4
1

+
β4β

3
0

3β4
0

)]
+ · · · , (4)

where t = ln (Q2/Λ2
s) and Λs is the asymptotic scale. Eqs. (1) to (4) allow us to compute

αg1(Q) in the pQCD domain. Although αg1 is an observable, the MS RS-dependence remains

in its pQCD approximant due to the truncations of Eqs. (1) to (4).
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III. PMC SCALE-SETTING FOR αg1(Q2)

Following the basic PMC procedure, we first identify the conformal and nonconformal

pQCD contributions for αg1 . The corresponding expression (1) is then reorganized as [8, 26]

αg1(Q)

π
= r1,0

αMS(Q)

π
+ (r2,0 + β0r2,1)

(
αMS(Q)

π

)2

+ (r3,0 + β1r2,1 + 2β0r3,1 +

β2
0r3,2)

(
αMS(Q)

π

)3

+ (r4,0 + β2r2,1 + 2β1r3,1 +
5

2
β0β1r3,2 + 3β0r4,1

+3β2
0r4,2 + β3

0r4,3)

(
αMS(Q)

π

)4

+ · · · . (5)

where the coefficients ri,0 for i > 0 are the conformal coefficients of pQCD for β = 0, and

ri,j for i > 0, j > 0 are the non-conformal coefficients of the {βi}-terms.

Here as for Eq. (1), we have implicitly set the initial renormalization scale µ asQ, although

as a basic property of PMC scale-setting, the determined scales of the coupling Qi at each

order turn out to be minimally dependent on the initial choice of scale. Any residual initial

scale dependence at finite order in pQCD is highly suppressed, especially at the presently

considered four-loop order. (One can test the initial scale dependence by recomputing the

PMC predictions for µ 6= Q; this can be conveniently done by applying the RGE.)

The conformal coefficients ri,0 are:

r1,0 =
3

4
γns1 ,

r2,0 =
3

4
γns2 −

9

16

(
γns1
)2
,

r3,0 =
3

4
γns3 −

9

8
γns2 γ

ns
1 +

27

64

(
γns1
)3
,

r4,0 =
3

4
γns4 −

9

8
γns3 γ

ns
1 −

9

16

(
γns2
)2

+
81

64
γns2
(
γns1
)2 − 81

256

(
γns1
)4
,

and the non-conformal coefficients ri,j read:

r2,1 =
3

4
Πns

1 +Kns
1 ,

r3,1 =
3

4
Πns

2 +
1

2
Kns

2 −
γns1
4

(
3

2
Kns

1 +
9

4
Πns

1

)
, r3,2 = 0,

r4,1 =
3

4
Πns

3 +
1

3
Kns

3 −
1

4
γns1 (Kns

2 + 3Πns
2 )− γns2

4

(
Kns

1 +
3

2
Πns

1

)
+

(
γns1
)2

16

(
3Kns

1 +
27

4
Πns

1

)
,

r4,2 = − 3

16

(
Πns

1

)2 − 1

4
Kns

1 Πns
1 , r4,3 = 0,
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where the expressions for γnsi , Πns
i and Kns

i are given explicitly in Refs. [20, 21].

As indicated by Eq. (5), because the running of αMS at each order has its own {βi}-series

as governed by the RGE, the β-pattern for the pQCD series at each order is a superposition

of all of the {βi}-terms which govern the evolution of the lower-order αs contributions at this

particular order. All known {βi}-terms should be absorbed into αMS at each order according

to the RGE [7, 8], thus determining its correct running behavior at each order. Hence, after

applying PMC scale-setting, only the conformal coefficients remain. The result is:

αg1(Q)

π
=
∑
i≥1

ri,0

(
αMS(Qi)

π

)i
. (6)

The elimination of the divergent renormalon terms naturally leads to a pQCD series more

convergent than the original one in Eq. (5). The PMC scales Qi are functions of Q and read:

ln
Q2

1

Q2
= −r2,1

r1,0
−
β0
(
r1,0r3,2 − r22,1

)
4r21,0

αMS(Q)

π
(7)

+

[
β2
0

16

(
−
r32,1
r31,0

+
2r3,2r2,1
r21,0

− r4,3
r1,0

)
+
β1
16

(
3r22,1
2r21,0

− 3r3,2
2r1,0

)](
αMS(Q)

π

)2

+O
((αMS

π

)3)
,

ln
Q2

2

Q2
= −r3,1

r2,0
−

3β0
(
r2,0r4,2 − r23,1

)
8r22,0

αMS(Q)

π
+O

((αMS

π

)2)
, (8)

ln
Q2

3

Q2
= −r4,1

r3,0
+O

(αMS

π

)
. (9)

These expressions show that the PMC scales Qi are given as a perturbative series; any

residual scale dependences in Qi is due to unknown higher-order terms. This is the first

kind of residual scale dependence; the contributions from unknown high-order terms are

exponentially suppressed and are thus generally small.

A number of PMC applications have been summarized in the review [27]; in each case the

PMC works successfully and leads to improved agreement with experiment. Furthermore,

this multi-scale PMC approach corresponds to the fact that separate renormalization scales

and effective numbers of quark flavors appear for each skeleton graph. The coefficients of

the resulting pQCD series match the coefficients of the corresponding conformal theory with

β = 0, ensuring the scheme-independence of the PMC predictions at any fixed order.

For convenience, we provide the conformal coefficients ri,0 and PMC scales Qi after sub-

stitution of the γnsi , Πns
i and Kns

i into Eq. (5). They are, up to four-loop order:
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r1,0 = 1,

r2,0 = 1.6042− 0.1528nf ,

r3,0 = 5.5335− 1.7370nf − 0.01980n2
f ,

r4,0 = 21.5613− 8.4884nf + 0.5050n2
f + 0.004503n3

f ,

ln
Q2

1

Q2
= −1.08333 + (3.2274− 0.1956nf )

αMS(Q)

π

+(1.6076− 0.2282nf − 0.03532n2
f )

(
αMS(Q)

π

)2

+O
((αMS

π

)3)
,

ln
Q2

2

Q2
= −5.2728− 0.5918nf

1.6042− 0.1528nf
−

0.08756n3
f − 3.00195n2

f + 32.6111nf − 114.146

0.02334n2
f − 0.4902nf + 2.5734

αMS(Q)

π

+O
((αMS

π

)2)
,

ln
Q2

3

Q2
= −

44.1983− 8.7216nf + 0.2165n2
f

5.5335− 1.7371nf − 0.01980n2
f

+O
(αMS

π

)
.

The PMC scale of the last known order, Q4, remains undetermined because the five-loop and

higher order {βi}-terms are unknown. As a test, we can set Q4 = Q3 or Q4 = Q, which leads

to the second kind of residual scale dependence. This scale dependence, however, generates

negligible uncertainty. For example, we have computed αg1(Q) using both prescriptions, and

the results are nearly identical because of the fast convergence of the PMC series.

We note that the small values of Q (around 1 GeV), with nf = 3 lead to an almost zero

Q3; this reflects the fact that in the soft Q-region, the intermediate gluons are effectively

nonperturbative, and thus information on the behavior of αs at low momentum is required.

We shall adopt a natural extension of the perturbative αs-running behavior as determined

from the high Q-region. Then, to avoid having Q3 enter the nonperturbative region, we

will use as the alternative scale Q3 = 40 × Q [28]. Although we have also performed the

calculations for values of nf determined by the PMC scale Qi, we will use nf = 3 for the

results in the next sections in order to compare meaningfully with the results reported in

Refs. [29–31].

The results in this article use αg1(Q) computed with the scales Qi calculated up to next-

to-next leading order. However, for reference, we also provide here their values for nf = 3
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and at leading order:

Q1 = 0.581Q,

Q2 = 0.217Q,

Q3 = 40Q.

It is informative to compare the coefficients ai obtained from the conventional pQCD

series, Eq. (1), to the PMC coefficients ri,0. The ai values for nf = 3 are [20, 32]:

a1 = 1,

a2 = 3.58,

a3 = 20.21,

a4 = 175.7,

a5 ∼ 893.38, (10)

which can be compared with the ri,0 for nf = 3:

r1,0 = 1,

r2,0 = 1.14583,

r3,0 = 0.144097,

r4,0 = 0.762723, (11)

The ai values become very large at high orders, a manifestation of the factorial renormalon

growth (αs/π)nβn0n! of pQCD series using conventional scale setting. In contrast, the confor-

mal coefficients ri,0 have reasonable values of order 1, as expected from the PMC procedure.

This much-improved convergence allows for more precise predictions.

IV. COMPARISONS OF THE PMC AND CONVENTIONAL PREDICTIONS

FOR THE BJORKEN SUM RULE

The PMC approach can be tested by comparing αg1(Q) computed using the PMC pre-

diction (6) versus the conventional pQCD calculation (1). In each case, the prediction will

be estimated up to fourth order and with nf = 3. For these computations, we will evaluate
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Q (GeV)

!
g1
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)/"

!g1/" JLab

!g1(#)/" OPAL

!F3/"

!g1/" DESY

!g1/" CERN

!g1/" SLAC

PMC

Conventional
pQCD in MS

0

0.1

0.2

0.3

0.4

0.5

0.6

10 -1 1 10

FIG. 1: (Color online) the PMC and conventional MS predictions for αg1(Q)/π computed for nf =

3, with Λ
(nf=3)

s,MS
= 0.332(17) [33]. The various symbols represent the experimental determinations

of αg1(Q2) or αF3(Q2).

αMS up to five loops assuming Λ
(nf=3)

MS
= 0.332(17) GeV [33], which is the current world

average from various experimental and lattice QCD data using χ2 minimization.

In Fig. 1, we display αg1(Q)/π calculated using the RS-independent PMC prediction

versus the conventional pQCD in the MS-scheme, together with the available experimental

data [19]. We also show the experimental data for αF3(Q), since the two effective charges αF3

and αg1 are in practice nearly identical [19]. We compute αg1(Q) for values of the argument

of αMS(µ) greater than 1 GeV, µ > 1 GeV. In the conventional pQCD prediction of αg1(Q)

the renormalization scale is directly set to Q and αg1(Q) is computed for Q > 1 GeV. For

the PMC scale-setting calculation, µ > 1 GeV implies that αg1(Q) is computed for Q > 1.48

GeV, the reason for which will be discussed in the next subsection.

The total uncertainties of the two predictions stem from several sources:

• The uncertainty of the perturbative approximant for αMS, which we estimate by taking

the difference between the expressions of αMS at order β3 and at order β4.

• The 17 MeV uncertainty on the value of Λ
(nf=3)

MS
[33];

9



• The truncation uncertainty in the PMC series (6) or in the conventional MS series

(1). For the PMC series, it is estimated by taking the difference between the fourth

order and third order terms:
(
αMS/π

)3(
r4,0αMS/π − r3,0

)
. For the conventional MS

pQCD series, it is taken as the difference between the estimated fifth order term and

the calculated fourth order term:
(
αMS/π

)4(
a5αMS/π − a4

)
.

Fig. 1 shows that the four-loop PMC and the conventional pQCD calculations of αg1(Q)

are consistent with each other, although only marginally for Q below a few GeV.

We have also performed the same calculations by computing the value of the quark flavor

variable nf , according to the quark mass threshold as determined by the value of Q, in the

case of the conventional pQCD calculation of αg1(Q), or the values of the Qi PMC scales

for the PMC calculation. The results are similar to that shown in Fig. 1.

A notable feature in Fig. 1 is that the theoretical uncertainty of the PMC prediction is

significantly smaller than that of the conventional pQCD prediction. As seen from Eqs. (10)

and (11), this is due to the fact that the pQCD series using PMC scale-setting converges

much faster than the conventional pQCD series.

V. MATCHING TO THE NONPERTURBATIVE DOMAIN

In Refs. [29, 30], a method has been proposed to relate the perturbative QCD asymptotic

scale Λs to the hadron mass scale such as the proton mass. The scale Q0 which signifies the

transition between the perturbative and nonperturbative domains of QCD is also determined

by this method. Both Λs and Q0 are obtained in any renormalization scheme in the pQCD

domain. This method uses the analytic form of αg1 [34] predicted in the nonperturbative

domain by Light Front Holographic QCD (LFHQCD) [18]:

αg1 (Q) = π exp

(
− Q

2

4κ2

)
, (12)

where κ is a universal nonperturbative scale derived from hadron masses, for example, κ =

Mρ/
√

2 = 0.548 GeV, where Mρ is the mass of the ρ–meson. Alternatively, κ can be obtained

from fits to hadron form-factors, the Regge slopes, or the Bjorken sum rule Eq. (2). Although

the value of κ is universal, in practice, the approximations used in LFHQCD induce a ' 10%

variation. The latest determination gives κ = 0.523(24) GeV [35]. The Gaussian form
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Eq. (12) is in excellent agreement with data and the various nonperturbative calculations of

αs(Q) [30, 36], including the recent result based on Schwinger-Dyson Equations [37].

The basis for the matching procedure to determine Λs is the overlap of the domains of

applicability of LFHQCD (Q . 1.3 GeV) with the pQCD (Q & 1.0 GeV) [38]. Continuity of

αg1(Q) and its first derivative implies that Eq. (1) and Eq. (12), as well as their corresponding

β–functions, can be equated in the overlap region. The simultaneous solution to these two

equations provides an analytical relation between Λs and κ, as well as the transition scale

Q0. This leads to a determination of Λ
(nf=3)

MS
= 0.339(19) GeV [31], with a precision on par

with that of the averaged world data of 0.332(17) GeV [33].

Since the PMC provides a more precise determination of αg1(Q) than conventional renor-

malization scale-setting, it is interesting to investigate if the procedure is also applicable

using Eq. (6) rather than Eq. (1) to improve the determination of Λs.

Q (GeV)

!
g1

(Q
)/"

!g1/" JLab

!g1(#)/" OPAL
!F3/"

!g1/" DESY
!g1/" CERN

!g1/" SLAC

LFHQCD+pQCD (2016)

LFHQCD+pQCD (PMC)

LFHQCD

PMC
Conventional
pQCD in MS

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

FIG. 2: (Color online) Matching procedure applied to PMC calculation (blue line). It is matched

to the LFHQCD results (magenta line) by requiring the continuity of both αg1 and its β-function.

The blue band is the PMC prediction evaluated down to Q = 1.5 GeV, and the red band shows

the conventional MS prediction from Ref. [31]. We use κ = 0.523 GeV for LFHQCD.

Following the same matching procedure, we have computed the PMC prediction using

κ = 0.523 GeV. To reach the matching point Q0, it is necessary to extrapolate the PMC

11



prediction down to Q = 1 GeV, which implies that the αMS(µ) must be extrapolated down to

µ = 0.68 GeV. The result is shown in Fig. 2. As a comparison, we also show the conventional

MS prediction [31] in the figure.

The matching of the PMC prediction to LFHQCD yields a large value for Λ
(nf=3)

s,MS
=

0.406(17) GeV. This explains why, compared to Fig. 1, a better agreement between the

matched PMC curve (blue line) and the conventional MS pQCD calculations (red band) is

observed in Fig. 2.

The determined transition scale, Q0 = 1.14 GeV, is below the scale at which the present

PMC calculation is applicable (Q ≈ 1.48 GeV). The failure of this self-consistency check

indicates that the matching procedure cannot be used with the PMC calculation, at least

when MS is used as an auxiliary RS. This explains why the matching procedure yields

Λ
(nf=3)

MS
= 0.406(17) GeV, which is somewhat larger than the world data. This is reflected

in Fig. 2 by the fact that the blue line does not lie within the blue band.

In the case of conventional scale-setting, the renormalization scale µ is fixed at its initial

value Q. In contrast, as shown by Eqs. (8) and (9), the determined PMC scale Qi for each

order is a function of Q which can result in Qi scales that are larger or smaller than Q. This

has consequences for the matching procedure proposed in Ref. [29], which requires that the

transition between nonperturbative and perturbative QCD occurs at a point Q0 rather than

over a non-zero Q range.

In the case of conventional scale-setting, the meaning of the inflection point Q0 is un-

ambiguous: αs(Q) has perturbative behavior for Q > Q0 and nonperturbative behavior for

Q < Q0. These are determined by pQCD and LFHQCD, respectively. On the other hand,

in the case of the PMC scale-setting, some PMC scales are smaller than the determined

Q0, thus leading to an apparent incompatibility; i.e., if the determined PMC scale Qi is

less than Q0, the meaning of Q0 is questionable since Qi is now within the nonperturbative

region. This is indeed the case for the present procedure. Thus, due to the fast convergence

of PMC series, we have αg1(Q) ∼ αMS(Q1), where the PMC scale Q1 = 0.45 GeV is signif-

icantly smaller than the transition scale Q0 = 1.14 GeV. This conflict could be due to the

fact that some of nonperturbative effects which are not accounted for in the (perturbative)

derivation of the PMC scales Qi, such as those from the high-twist terms [39], may have

already come into the higher-order calculations. For example, the renormalization scale for

the heavy-quark loop which appears in the three-gluon coupling depends nontrivially on the
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virtualities of the three gluons entering the three-gluon vertex [40].
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FIG. 3: (Color online) The strong coupling αs(Q
2) for various renormalization schemes [30]. The

lines in the perturbative region are the perturbative calculations done at order β3. The dashed

curves are their matched LFHQCD continuations into the nonperturbative domain.

This problem may be solved by transforming to a different MS-like scheme; e.g., the Rδ

scheme [7, 8] where the subtraction ln 4π − ΓE − δ is used within the minimal subtraction

procedure. (The conventional MS-scheme is the Rδ-scheme corresponding to δ = 0.) The

scheme transformation between different Rδ-schemes corresponds simply to a displacement

of their corresponding scales; µ2
δ = µ2

MS
exp(δ); thus a proper choice of δ may avoid the

small scale problem found for the MS-scheme. This problem may also be solved by using

a different auxiliary RS, such as the MOM scheme with ξ = 0 (Landau gauge) [41], or the

V scheme [42]. This possibility is motivated by comparing the running behaviors of αs for

different schemes; examples are presented in Fig. 3. It shows that to ensure the scheme-

independence of the couplings, e.g. αMS(µMS) = αV(µV ) = αMOM(µMOM), we must have

µMS < µV < µMOM. This fact has been observed by the LO commensurate scale relations

among different effective couplings [3]. Thus a larger PMC scale can be achieved when

the V -scheme or MOM-scheme is adopted as the auxiliary RS. For example, in the case of

the V -scheme, the PMC prediction is applicable down to Q = 1 GeV if the perturbative

behavior of αMS(µ) can be extrapolated down to µ = 0.85 GeV [3], which is larger than the

corresponding value of µ = 0.68 GeV required for the MS-scheme.
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Another avenue to address the problem could be to use the single-scale approach for the

PMC [43], where a single effective scale replaces the individual PMC scales in the sense of

a mean value theorem; this can avoid the small scale problem which can appear at specific

orders in the multi-scale PMC approach. These investigations will be reported in a future

publication.

VI. SUMMARY AND CONCLUSION

In this paper, we have tested the PMC scale-setting procedure by comparing its prediction

in the MS scheme for the effective charge αg1(Q) defined from the Bjorken sum rule with

the prediction obtained using conventional renormalization scale-setting. To this end, we

have calculated the necessary PMC coefficients and renormalization scales. We have verified

that the PMC series converges much faster than the conventional MS pQCD series, which

results in a significantly smaller uncertainty for the PMC pQCD prediction. Thus the central

objective of the PMC is realized: it provides a determination of αg1(Q) compatible with the

data and the conventional pQCD calculation, but without scheme-dependence and with

significantly improved precision.

As an important application, we have investigated the possibility of determining ΛMS from

hadronic scales by matching the PMC calculation for pQCD to the nonperturbative light-

front holographic QCD prediction for αg1(Q). This had been done previously using the con-

ventional scale-setting pQCD prediction; this worked well, giving Λ
(nf=3)

MS
= 0.339(19) GeV.

However, we have found that the domain of applicability of the nonperturbative LFHQCD

and the domain of applicability of the perturbative PMC predictions do not overlap if the

MS-scheme is used as the auxiliary scheme, causing the matching procedure to fail. This

problem arises from the fact that the PMC scales at certain orders in the MS-scheme are,

in some cases, smaller than the transition scale Q0. A detailed investigation for solving this

problem, using alternative renormalization schemes and/or the single-scale PMC procedure

for pQCD, is in preparation.
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