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1 Introduction

The origin of the observed excess of matter over anti-matter in the universe is one of the

fundamental questions in particle physics [1]. A dynamical explanation must satisfy

Sakharov’s three criteria: violation of baryon number (B), violation of charge (C) and

charge-parity (CP ) invariance, and a departure from thermal equilibrium [2]. In many

proposed scenarios CP violation is intrinsically tied to the departure from thermal

equilibrium. For example, in electroweak baryogenesis CP -violating interactions with the

advancing bubble wall (which drives plasma just outside out of equilibrium) are

responsible for the generation of a chiral asymmetry that is then reprocessed into

baryons [3, 4]. In the standard out-of-equilibrium decay scenarios like GUT baryogenesis

and leptogenesis, the couplings of the decaying particle violate CP , allowing for an

asymmetry to be created (see Refs. [5, 6] and the reviews [7–9]). In this paper, we explore

a class of models where CP violation and the departure from thermal equilibrium are

disentangled. We consider scenarios where an existing asymmetric particle density biases

an otherwise CP -conserving process through the effects of quantum statistics, i.e. Pauli

blocking and Bose enhancement, resulting in baryon number production.

Charge-Parity violation can occur in ways that are not seen in the visible sector

Lagrangian. After all, the prevalence of baryons over anti-baryons is itself a violation of

CP . Thus, it is clear that aside from a fundamental parameter in the Lagrangian, CP

can also be violated by matter effects, i.e. by any pre-existing charge densities. This

matter-induced CP violation has the distinct advantage of typically being testable if the

charge corresponding to the asymmetry is conserved until late times. For example, this is

the case for asymmetric dark matter (DM). The asymmetry and stability on cosmological
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time scales guarantee that there is a particle currently present in the universe that has a

CP -violating number abundance. Note that we make a distinction between the CP

breaking number abundances and the CP breaking Lagrangian parameters that they

often come from (for some exceptions see Ref. [10–13]). We will consider the case where

physics in the visible sector is CP -preserving (up to the Standard Model (SM)

Cabibbo-Kobayashi-Maskawa phase) and CP violation in the early universe results from

the presence of an asymmetric particle population rather than CP violation that might

have caused their production.

There are several observed particles that can break CP with their number densities

and therefore can be used to implement baryogenesis. Photons and gravitons can be

chiral and thus break CP . For example, chiral magnetic fields in the early universe can

generate a B + L asymmetry via the weak anomaly [14–17], while chiral gravitational

waves can source a B − L asymmetry through the gravitational anomaly [18].

A dark matter asymmetry can also source the creation of baryon number. There are

many ways to achieve this. The asymmetric dark matter (ADM) paradigm postulates

that dark matter carries baryon number. Thus an asymmetry in DM entails an

asymmetry in baryons; it is communicated to the SM via a transfer operator [19].

However, in this case, dark matter is not the source of CP violation, but rather a hidden

reservoir of baryons (or anti-baryons [20]). The alternative we consider in this work

utilizes the fact that the DM number density J0
D 6= 0 breaks CP , which can be used to

generate baryon number from an otherwise CP preserving decay. The existence of a

chemical potential splits the energy levels of particles and anti-particles. As a result, the

CPT symmetry is broken in this non-vacuum background. This can also be seen from the

fact that J0
D is CPT odd and non-zero in the presence of a dark asymmetry. Thus, CPT

breaking allows for baryon asymmetry production at tree level without any interference

effects. The use of a CPT -violating background is similar in spirit to models of

spontaneous baryogenesis [21, 22] 1. Another example of this effect is the use of J0
D to

generate a CP violating coupling in the Lagrangian much in the same way that the Higgs

vacuum expectation value allows for one to write a SU(2)W breaking Lagrangian

coupling [23].

In this paper, we use quantum statistics to transmit the CP violation from the dark

sector to the SM. As a simple example of this mechanism in action, consider the

out-of-equilibrium decays of a real scalar ϕ with the interaction

L ⊃ 1

Λ
ϕψBψDφ

†
D + h.c. (1.1)

where ψB is a fermion that carries baryon number and ψD (φD) is a fermion (scalar) that

carries a U(1)D dark quantum number. This interaction gives rise to two decay channels

1In the model given in Eq. 1.1, one can explicitly see the difference between spontaneous baryogenesis

and the models we consider in this paper. If the interactions were in thermal equilibrium, then there would

be no baryon number generated.
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for ϕ,

ϕ → ψBψDφ
†
D (1.2)

ϕ → ψ†Bψ
†
DφD. (1.3)

The decays of ϕ violate baryon number but preserve dark matter number. In the absence

of any CP violation, Lagrangian or otherwise, these two decays have equal probabilities

so that no baryon number asymmetry is generated. Now suppose that the existing DM

density is asymmetric: the plasma contains more ψ†D (φ†D) than ψD (φD). Given the

simple set-up above, this is the only source of CP violation. At finite density and

temperature, the ϕ decay rate includes the effects of Pauli blocking and Bose

enhancement due to the existence the final state particles in the plasma. As a result the

channel 1.2 is preferred over 1.3, so the decays produce a baryon number asymmetry. In

the limit of a large dark matter asymmetry, the anti-baryon channel 1.3 can be

completely forbidden. We see that both boson and fermion statistics generate an

asymmetry with the same sign at tree level. As we will show in Sec. 2, the effect of Bose

enhancement is significantly larger than Pauli exclusion for this model.

In the scenarios we consider the baryon asymmetry is roughly bounded from above by

the dark sector asymmetry. If this asymmetry persists to late times, the dark sector

particle must be lighter than baryons since Ωcdm/Ωb ∼ 5. However, if these states

eventually decay, their mass is not constrained. In what follows, we refer to the

asymmetric dark sector states as DM, even if they are unstable on cosmological

timescales and do not comprise the entire DM density of the universe today.

Standard baryogenesis via out-of-equilibrium decay is an “infra-red dominated”

process, in which the decays of the particle and the desired asymmetry are generated at

the same time t ∼ H−1 ∼ Γ−1
ϕ , where Γϕ is the ϕ decay rate. The small fraction of decays

that occur when Γϕt� 1 is irrelevant for the production of the asymmetry. This

intuition rests on the assumption that the decay asymmetry does not depend on

temperature. In contrast, in the models where quantum statistics is responsible for the

generation of the asymmetry, we find important temperature dependence. As we describe

in the following sections, this causes the majority of the asymmetry to be produced at

early times, well before t ∼ Γ−1
ϕ .

This paper is organized as follows. In Section 2, we consider the model of Eq. 1.1 in

detail. We show numerically and analytically that Bose enhancement of individual decay

channels can result in a baryon asymmetry parametrically of the same size as the dark

matter asymmetry. Surprisingly, we find that for certain parameters the baryon

asymmetry can be larger by O(1) factors. In Section 3, we present a second model where

Pauli exclusion rather than Bose enhancement is the dominant effect responsible for

generating a large asymmetry in the visible sector. We discuss our results and conclude in

Section 4.
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2 Asymmetries through Bose Enhancement

In this section, we examine the model presented in the introduction. We consider the

Lagrangian

L ⊃
(

1

Λ
ϕψBψDφ

†
D −mψD

ψDψ
c
D −mψB

ψBψ
c
B + h.c.

)
−m2

φD
|φD|2. (2.1)

The fermion ψB carries baryon number B and its interactions with ϕ break B. We

assume that an asymmetry in ψB can be converted into a SM baryon asymmetry

through, e.g., the neutron portal

L ⊃ 1

Λ2
ψBu

c
Rd

c
Rd

c
R + h.c. (2.2)

We neglected the allowed interaction ϕψBψ
c
DφD/Λ

′. If included, it would not

qualitatively change the results as long as Λ′ 6= Λ.

Chemical equilibrium among the dark sector states ψD and φD can be maintained

with the inclusion of additional states that can mediate the reaction ψDψD ↔ φDφD.

This process can occur through an s-channel exchange of a U(1)D-charged scalar Φ with

interactions

Φ†φDφD + Φ†ψDψD + ΦψcDψ
c
D + h.c., (2.3)

or through a t-channel fermion mediator χ coupling to DM via

φ†DψDχ+ φDψ
c
Dχ+ h.c. (2.4)

In what follows we remain agnostic to the origin of the chemical equilibriation of DM

with itself. The first term in Eq. 2.1 combined with one of the equilibriation mechanisms

above generates a Majorana mass for ψB, which is small for parameters of interest (where

ϕ decays out of equilibrium) and will be ignored.

We imagine that the scalar ϕ decays far out of equilibrium when the universe is

already populated by asymmetric dark matter. At finite temperature the rate for a single

decay channel is

Γ(ϕ→ ψBψDϕ
†
D) =

1

2Mϕ

∫
dΦ3|M|2(1 + fφD)(1− fψD

)(1− fψB
), (2.5)

whereM is the decay matrix element, dΦ3 is the three-body phase space volume element.

The distribution functions fi have their equilibrium Bose-Einstein or Fermi-Dirac forms

fBE,FD =

[
exp

(
E − µ
T

)
∓ 1

]−1

, (2.6)

for bosons and fermions, respectively. The sign of the chemical potentials is reversed for

anti-particle distributions. Chemical potentials are related to particle density

asymmetries via

∆ni = ni − nī = gi

∫
d3p

(2π)3
[f(E,µ)− f(E,−µ)] , (2.7)
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where gi is the number of internal degrees of freedom of species i. We require that

|µφD | < mφD in order to avoid φD getting a vacuum expectation value.

The product of statistical factors in Eq. 2.5 encodes stimulated emission (Bose

enhancement) and Pauli blocking by the particles already present in the bath. Note that

their effects are large in the region of phase space where the final state particles are

produced with energy less than T . As we will be taking Mϕ � T , when one particle has

energy . T , the other two will have large energies of order Mϕ.

The total width of ϕ at leading order in T/Mϕ is given by

Γϕ = Γ(ϕ→ ψBψDφ
†
D) + Γ(ϕ→ ψ̄Bψ̄DφD) =

1

768π3

M3
ϕ

Λ2
. (2.8)

The dependence on chemical potentials of final state particles and the effects of the

statistical factors enter at higher order in T/Mϕ. In the right panel of Fig. 1, we show the

numerical and analytic results for the total width. As long as Mϕ & 3T , the analytic

estimate provides a good approximation for the total width. The decay width determines

the number density of ϕ through the Boltzmann equation

ṅϕ + 3Hnϕ = −Γϕnϕ. (2.9)

The out-of-equilibrium assumption ensures that inverse decays are not important.

As ϕ decays, an asymmetry ∆nψB
6= 0 can be generated because the rates for the two

decay channels of ϕ are not equal when the DM is asymmetric, i.e. when there are

non-zero chemical potentials for φD and ψD. The resulting production of baryon number

is governed by

∆ṅψB
+ 3H∆nψB

= ∆Γnϕ, (2.10)

where the decay asymmetry

∆Γ = Γ(ϕ→ ψBψDφ
†
D)− Γ(ϕ→ ψ̄Bψ̄DφD) (2.11)

depends implicitly on the abundances of ψD, φD and ψB through their chemical

potentials - see Eq. 2.7. Since the observed baryon asymmetry nψB
/s ∼ 10−10, we can

restrict our attention to small chemical potentials µ/T � 1, such that ∆Γ is linear in ∆ni
to a good approximation. An analytic expression for ∆Γ can be obtained in the

interesting limit µ/T � mφD/T � T/Mϕ � 12

∆Γ = Γϕ

[
12 ln

[
m2
φD

2T 2

]
µφDT

M2
ϕ

− 4π2 (µψD
+ µψB

− 4µφD)T 2

M3
ϕ

]
, (2.12)

where we have assumed that the visible and dark sectors are in thermal equilibrium. We

have kept µφD 6= µψD
to differentiate between the contributions coming from final state

bosons and fermions. The logarithm of mφD/T is a remnant of Bose enhancement

encoded by the stimulated emission factor (1 + fφD) in Eq. 2.5. It arises because the

2In the other limit where final state masses are larger than the temperature, the resulting asymmetries

are Boltzmann suppressed.
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Figure 1: Decay widths as function of Mϕ/T . The left plot compares numerical compu-

tations (solid lines) to the analytic approximations (dashed lines) of the decay asymmetry

discussed in the text for fixed value of mφD/T . Contributions from Bose enhancement due

to φD and Pauli blocking due to ψD are isolated by choosing µφD 6= 0 and µψD
6= 0 one

at a time. The chemical potentials are assumed to be small, such that the resulting ∆Γ

is linear in µi/T . The right plot compares the various physical rates to Hubble for fixed

masses mφD = mψD
= mψB

= 300 GeV, Mϕ = 100 TeV and ∆nφD/s = 10−5. As before,

the solid lines are numerical calculations while the dashed lines correspond to analytic

approximations. The dips in ∆Γ show where these approximations break down, namely

where Mϕ/T ∼ 1 and mφD/T ∼ 1.

phase space density diverges as EφD → µφD indicating that φD is condensing; the

divergence is regulated by the mass mφD . In the left panel of Fig. 1 we compare the

analytic expression in Eq. 2.12 to the numerical evaluation in the limit of small chemical

potentials, finding excellent agreement in the relevant range of parameters.

As expected, we see that the leading order corrections from Bose enhancement and

Pauli exclusion are of the same sign. This sign is readily understood: for µψD
, µφD > 0

(corresponding to more DM than anti-DM), Pauli exclusion blocks the channel with ψD
in the final state, while Bose enhancement favors the channel involving φD. Comparing

this with the definition of the asymmetry, Eq. 2.11, means that ∆Γ < 0 for µi > 0, in

agreement with Eq. 2.12. Note that the sub-leading correction for Bose enhancement is in

fact larger than the leading order effect from Pauli exclusion for µψD
= µφD . Therefore,

for the rest of the section we will focus on the dominant Bose enhancement effect.

The final important feature of Eq. 2.12 is that the decay asymmetry is largest at

early times and higher T . As we show below, this causes the bulk of the visible sector

asymmetry to be generated well before the majority of ϕ decays at t ∼ Γ−1
ϕ .

The system of Boltzmann equations for ϕ, nψB
(Eqs. 2.9 and 2.10, respectively) and

– 6 –



the DM is closed once we include the Friedmann equation

H2 =
8π

3M2
Pl

(ρR + ρϕ) , (2.13)

and radiation (or entropy) production due to ϕ decays

ρ̇R + 4HρR = +Γϕρϕ, (2.14)

where ρϕ = Mϕnϕ. The size of the radiation density at the time of the ϕ decay

determines two distinct possibilities. When ρϕ � ρR, the universe is initially

ϕ-dominated and a large asymmetry produced by the decays is diluted by the significant

entropy dump. In the opposite regime ρϕ � ρR, the universe is radiation dominated. The

above system is easily solved numerically for any choice of parameters. Sample solutions

are shown in Fig. 2 for the ϕ- and radiation-dominated cases. Below we use approximate

analytic solutions to better understand these results.

Using the same approximations as before, µ/T � mφD/T � T/Mϕ � 1, we can

easily estimate the baryon asymmetry yield. This limit allows us to neglect washout

reactions generated by the first term in Eq. 2.1, e.g. ψBψDφ
†
D ↔ ψ†Bψ

†
DφD, since these

are suppressed by (T/Mϕ)4 � 1. For the analytic results below we make the additional

assumption that µφD = µψD
, i.e. that the transfer reactions φDφD ↔ ψDψD are in

equilibrium. This ensures that ∆nφDa
3 and ∆nψD

a3 are constant. Note that these

comoving number densities are insensitive to dilution from entropy release.

We first consider the radiation-dominated (RD) scenario where ρϕ � ρR ∼ T 4 prior

to the decay. In this limit, the entropy produced by ϕ is negligible, which means that

YφD ≡ ∆nφD/s is constant. As alluded to above, one can see that the standard intuition

of the asymmetry being generated by the decay occurring when Γ ∼ H is incorrect.

Comparing ∆Γ to the Hubble rate during radiation domination H ∼ T 2/MPl ∼ 1/t:

∆Γ ∼ ΓϕYφD
T 2

M2
ϕ

ln(mφD/T ) ∼ ln t

t
, (2.15)

we find that ∆Γ/H is only logarithmically dependent on time and in fact favors earlier

times! This means that roughly an equal amount of asymmetry is being generated every

single e-folding, suggesting that the naive instantaneous decay estimate must be corrected

by the number of e-foldings. This is logarithmically sensitive to the initial time, which

depends on when the out-of-equilibrium ϕ density and the dark matter asymmetry were

generated.

Using these limits, we can solve the Boltzmann equations analytically. A simple

closed form can be obtained when Γϕ/Hi � 1, where Hi is the initial Hubble rate that

determines the initial time ti ∼ H−1
i . We find the final baryon number abundance to be

RD:
YψB

YφD
= kg∗ ln

[
m2
φD

2T 2
i

]
Yϕ

(
TRH

Mϕ

)2

exp

(
Γϕ
2Hi

) ∣∣∣∣Ei

(
− Γϕ

2Hi

)∣∣∣∣
≈ kg∗ ln

[
m2
φD

2T 2
i

]
Yϕ

(
TRH

Mϕ

)2

log

(
Γϕ
2Hi

)
, (2.16)
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Figure 2: Evolution of the baryon and dark matter asymmetries during ϕ decay for

radiation-dominated (left plot) and matter-dominated (right plot) initial conditions. We

chose ρϕ,i/ρR,i = 10−3 in the former case, and ρϕ,i/ρR,i = 103 in the latter. The solid

lines show the numerical solution of the Boltzmann equations, while the dashed lines show

the analytic approximations for the final abundances discussed in the text. Note that the

bulk of the visible asymmetry YψB
is produced before ϕ decays. We used Mϕ = 100 TeV,

TRH = 2.5 TeV, YφD,i = 10−5 and Ti = 3TRH in these examples.

where k = 4π2/5 ≈ 7.9, Ti is the initial temperature, Ei(−z) is the exponential integral

with Ei(−z) ∼ γE + ln z for z � 1 and in the second line we used the approximation that

Γϕ � Hi. The temperature TRH is defined in Eq. 2.17 and in the radiation-dominated

regime it is used as a proxy for Γϕ rather than an actual reheat temperature. The correct

baryon number asymmetry can be obtained for reasonable values such as

YφD ∼ Yϕ ∼ 10−4 and Mϕ ∼ 102 T . This analytical result is compared with the full

numerical solution in the left panel of Fig. 2.

Next we consider the matter-dominated (MD) case, that is ρϕ � ρR ∼ T 4 just before

the decay. In this case, ϕ decays generate a large amount of entropy, reheating the

universe. The reheat temperature defined by Γϕ = H(TRH) is [24]

TRH =

(
90

π2g∗(TRH)

)1/4√
ΓϕMPl. (2.17)

As before, we can see that the asymmetry is produced at early times by comparing

∆Γ to Hubble H ∼ 1/t:

∆Γ ∼ ΓϕYφD
T 2

M2
ϕ

ln(mφD/T ) ∼ ln t√
t
, (2.18)

where we have used T ∼ 1/t1/4 [25]. From this, we see that ∆Γ/H is largest for t < Γ−1
ϕ ,

so most of the asymmetry is in fact generated before ϕ decay. The later decays are a

subdominant contribution to the asymmetry.

– 8 –



The Boltzmann equations can be solved for t� Γ−1
ϕ for ∆nψB

[25, 26]. The final

baryon yield YψB
= ∆nψB

/sf can then be evaluated as

MD:
YψB

YφD
≈ kg∗ ln

[
m2
φD

2T 2
i

](
TRH

Mϕ

)3(Hi

Γϕ

)3/4

, (2.19)

where we assumed that the logarithmic part of ∆Γ is constant. The left hand side

contains quantities evaluated at late times; in particular YφD includes dilution due to ϕ

decays. The constant k is given by

k ≈ 4
45

2

(
π2

30

)(
2

5

)3/4 2Γ
(

9
20

)
Γ
(

3
4

)
Γ
(

1
5

) ≈ 15.6. (2.20)

Equation 2.19 contains the initial Hubble, indicating that it is a UV dominated process.

Parametrically YψB
. YφD because the last two factors on the right hand side of Eq. 2.19

can be written as (Tmax/Mϕ)3, where Tmax is the maximum temperature achieved during

reheating [25]. We require that Tmax < Mϕ to avoid washout and to ensure that our

approximations for ∆Γ are valid. However, the baryon asymmetry can be larger than the

DM asymmetry even if Tmax .Mϕ since kg∗ ∼ O(103) is large for TRH high enough. This

is demonstrated by the numerical solution of the Boltzmann equations shown in the right

panel of Fig. 2. For the benchmark point shown, Tmax/Mϕ . 10−1 and wash-out is

expected to be unimportant.

This result should be compared with the standard out-of-equilibrium decay scenario

where ∆Γ does not depend on temperature and the yield YψB
≈ ∆ΓTRH/(ΓϕMϕ) is

independent of initial conditions [27]. In the case considered in this section, a larger

initial ϕ density (larger Hi) results in the production of a larger asymmetry. Thus we find

that when Bose enhancement is responsible for communicating the asymmetry between

the dark and visible sectors, initial conditions become important. In the following section

we reach a similar conclusion for the class of models where Pauli blocking rather than

Bose enhancement is responsible for asymmetry production.

3 Asymmetries through Pauli Blocking

In the previous section we presented a model where a particle asymmetry was generated

dominantly by Bose enhancement. In this section we consider the complementary case

where the leading effect is due to Pauli exclusion. This is easily implemented in the toy

theory

L =
1

2
ϕψ̄B(a+ ibγ5)ψCB + λψCBψDΦDB + h.c. (3.1)

where ψB (and its charge conjugate ψCB) and ψD are now Dirac fermions with masses

mψB
, mψD

, charged under baryon and dark matter number, respectively; ΦDB is a

complex scalar with mass mΦDB
, carrying opposite charge under both symmetries. Thus,

the second term preserves both U(1)B and U(1)D. We will show that decays of the ϕ will

violate CP in the presence of a ψD asymmetry, even if they are CP -symmetric at zero
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Figure 3: Ratio of baryon to DM asymmetry yield at late times as a function of the

initial ϕ density. The left (right) dashed lines show the approximate analytic solutions

in the radiation-dominated (matter-dominated) universe as discussed in the text. We see

that these analytic solutions very quickly become good approximations in their respective

regions of validity.

temperature. As in the previous section, we assume that a ψB asymmetry can be

converted into visible baryons, via, e.g. the neutron portal, Eq. 2.2.

The decays of ϕ tend to wash out any existing ψB asymmetry. For example, if there

are more ψB than ψ̄B then Pauli blocking biases ϕ decays to generate more ψ̄B,

eventually destroying any baryon number present. We first consider what happens when

there is an non-zero dark matter asymmetry and zero initial baryon number asymmetry.

Conservation of U(1)B charge ensures that

(nψB
− nψ̄B

)− (nΦDB
− n

Φ†
DB

) = 0, (3.2)

which implies µψB
= µΦDB

at temperatures above ψB and ΦDB masses. The second

interaction in Eq. 3.1 enforces chemical equilibrium

µψB
+ µψD

+ µΦDB
= 0. (3.3)

It is easy to solve for chemical potentials in the limit of small asymmetries, see e.g. [28];

the result is

YΦDB
= YψB

= −YψD

2
, (3.4)

where Yi = (ni − nī)/s. Despite the absence of any initial baryon number, ψB has a

non-zero asymmetry.

Next we consider what happens when ϕ decays. As discussed above Pauli exclusion

pushes the system towards a configuration where YψB
= 0. As long as there is a large

enough number density of ϕ, YψB
will be driven to zero. We can now calculate the baryon
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number generated by the decays to find that

YB ≡ YψB
− YΦDB

=
YψD
− YΦDB

2
=
YD
2

(3.5)

Chemical equilibrium “hides” baryon number in the scalar states ΦDB, protecting it from

wash-out via ϕ decays. For mΦDB
> mψB

+mψD
, after ΦDB freezes out and decays, its

asymmetry will be transferred back into ψB and ψD. Thus we see that the Pauli

exclusion principle can make an otherwise CP preserving decay generate baryon number.

Note that this setup is closely related to models where baryon number is generated in

thermal equilibrium [29, 30]. In particular, in Ref. [30] an existing DM asymmetry is used

to bias electroweak sphalerons (which are in equilibrium prior to the electroweak phase

transition) to generate a baryon asymmetry. A similar scenario is realized in the present

model if Mϕ . T and the relevant couplings are large enough, such that B-violating

scattering like ψBψB ↔ ψ̄Bψ̄B is in equilibrium. In this limit one can solve for the

chemical potentials to find the same result of a non-zero baryon number existing in

thermal equilibrium with the value shown in Eq. 3.5. If B-violating ϕ-mediated

scattering continues after ΦDB freeze-out and decay, any existing baryon number would

be washed out, so such processes must go out of equilibrium. In Ref. [30] baryon number

violating sphalerons are turned off by a first order electroweak phase transition. In our

model, such a rapid shut off is not possible. Thus, we focus on the out-of-equilibrium

decay scenario, where baryon number violation turns off once ϕ decays.

An important restriction on this model arises from the fact that the rate at which

baryon number is generated is Boltzmann suppressed in the limit Mϕ � T . This is

because in the two-body decay ϕ→ ψBψB, the ψB final state energy is fixed to be Mϕ/2,

while Pauli exclusion is most effective at energies below the temperature. However, in the

limit where Mϕ � T , the inverse decays ψBψB → ϕ become important and wash out the

asymmetry. Thus there is only a finite range of parameters with Mϕ & TRH where Pauli

blocked decays generate a significant asymmetry. Due to the lack of parametric control,

we explore this situation numerically and provide a useful analytic estimate of the final

asymmetry. In the following two subsections, we first write down the coupled set of

Boltzmann equations and then discuss their solutions.

3.1 Boltzmann Equations

The Boltzmann equations for the particle asymmetries ∆ni = ni − nī have the form

d∆ni
dt

+ 3H∆ni = Ci[∆nj ], (3.6)

where Ci are the collision terms which include the effects of number-changing interactions

that enforce chemical equilibrium. In writing this system of equations we approximated

the phase space distributions by their Maxwell-Boltzmann limits. For simplicity we make

the additional assumption of kinetic equilibrium and small asymmetries, i.e. µi/T � 1,

such that ni + nī ≈ 2neq
i . Note that this requires the existence of efficient interactions of

the ψD, ψB and ΦDB states with the thermal bath, which we leave unspecified.
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Given the interactions in Eq. 3.1, the ψD and ΦDB collision terms at leading order in

the coupling λ include only 1↔ 2 processes:

CψD
= −〈ΓD〉

(
∆nψD

+
neq
ψD

neq
ψB

∆nψB
+

neq
ψD

neq
ΦDB

∆nΦDB

)
+ perms., (3.7)

CΦDB
= −〈ΓDB〉

(
∆nΦDB

+
neq

ΦDB

neq
ψB

∆nψB
+
neq

ΦDB

neq
ψD

∆nψD

)
+ perms., (3.8)

where the 〈ΓD〉 = ΓDK1(mψD
/T )/K2(mψD

/T ) is the thermally-averaged decay rate for

ψD → ΦDBψ
†
B and similarly for ΓDB; “perms.” stands for terms with identical structure

but with D, B and DB permuted. These rates are given in Appendix A. For a given

choice of masses, only one of ΓD,B,DB is non-zero. Note that with the above assumptions

∆ni/(2n
eq
i ) ≈ µi/T , such that the collision terms above vanish when

µψD
+ µψB

+ µΦDB
= 0, i.e. in chemical equilibrium.

The ψB collision term includes additional contributions from B-violating ϕ decays

and ϕ mediated scattering. The decay contribution is given by

CψB
⊃
∫
dΦ3|M(ϕ→ ψBψB)|2

[
fϕ(1− fψB ,1)(1− fψB ,2)− fψB ,1fψB ,2(1 + fϕ)− (ψB → ψ̄B)

]
≈ − 1

2Mϕ

∫
dΦ2|M(ϕ→ ψBψB)|2

2nϕ
∆nψB

neq
ψB

e−Mϕ/2T + neq
ϕ

(
n2
ψB
− n2

ψ̄B

)
(neq
ψB

)2


= −2Γϕ

(
∆nψB

neq
ψB

)[
nϕe

−Mϕ/2T + neq
ϕ

]
, (3.9)

where in the first step we approximated Eϕ ≈Mϕ, used detailed balance to replace

fψB ,1fψB ,2 by exp(−Eϕ/T )n2
ψB
/(neq

ψB
)2 and performed the integral over pϕ. The former

approximation (along with the Maxwell-Boltzmann limit used throughout this section)

breaks down when T ∼Mϕ. This is also the regime where the DM-induced decay

asymmetry is largest. Note that in the last line Γϕ is the total decay rate (both to ψBψB
and ψ̄Bψ̄B), including a symmetry factor for identical final state particles. The full

collision term can now be written as

CψB
=− 〈ΓB〉

(
∆nψB

+
neq
ψB

neq
ψD

∆nψD
+

neq
ψB

neq
ΦDB

∆nΦDB

)
+ perms.

− 2Γϕ

(
∆nψB

neq
ψB

)(
nϕe

−Mϕ/2T + neq
ϕ

)
− 4〈σv〉RISSn

eq
ψB

∆nψB
, (3.10)

where 〈σv〉RISS is the Real Intermediate State-subtracted (RISS) wash out cross-section

for the ϕ-mediated process ψBψB ↔ ψ̄Bψ̄B discussed in Appendix A.2. Using the same

approximations we can write the ϕ collision term as:

Cϕ = −Γϕ

(
nϕ

[
1− 2e−Mϕ/(2T )

]
− neq

ϕ

)
. (3.11)

The remaining Boltzmann equation governs the radiation density

ρ̇R + 4HρR = −MϕCϕ, (3.12)
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where the minus on the right-hand side simply cancels the one in Eq. 3.11. In the

following section we study this system of Boltzmann equations analytically and

numerically.

3.2 Solutions and Numerical Examples

Simple approximations to the Boltzmann equations discussed in the previous section

allow us to determine the final baryon asymmetry analytically. For concreteness we

assume that the universe is radiation dominated with an out-of-equilibrium ϕ density.3

The ϕ equation can be integrated neglecting inverse processes and statistical factors in

the collision term of Eq. 3.11.4 Inserting the resulting solution into the Eq. 3.10, assuming

chemical potentials are small and integrating this equation we find the baryon asymmetry

YψB
=

∆nψB

s
≈ −4

(
µψB ,i

Ti

)(
Γϕ
Hi

)[
Yϕ,if1(Mϕ/Ti,Γϕ/Hi) + Y eq

ϕ,if2(Mϕ/Ti)
]

(3.13)

where quantities with the subscript i are evaluated at the initial time and temperature.

In particular µψB ,i/Ti can be determined from the DM asymmetry using the charge

neutrality and chemical equilibrium conditions, Eqs. 3.2 and 3.3, respectively:

µψB ,i

Ti
= −µψD,i

Ti

{
1/2 Ti � m

(1 + neq
ψB
/neq

ΦDB
)−1 Ti < m.

(3.14)

Finally, the functions f1 and f2 have the following form in the limit z = Mϕ/Ti � 1 and

γ = Γϕ/Hi � 1:

f1(z, γ) ∼ 2z−4
(
2z2 + z3 − γ

[
24 + 12z + 2z2

]
+O(zγ2)

)
e−z/2, (3.15)

f2(z) ∼ z−1 +
5

2
z−2 +

15

4
z−3 +O(z−4). (3.16)

Note that Y eq
ϕ,i ∼ z3/2 exp(−z) so that both terms in Eq. 3.13 are Boltzmann suppressed

in the non-relativistic limit. As in the Bose case considered in Sec. 2, we see that the

asymmetry production favors early times and higher temperatures. In fact, the bulk of

the asymmetry is produced before t ∼ Γϕ. Note that this only holds up to Ti ∼Mϕ where

the asymmetry would be damped by the (neglected) wash-out terms.

The sensitivity of the final asymmetry to early times emphasizes the importance of

initial conditions in this scenario. In particular, a physical set of initial conditions

depends on the origins of the ϕ density and DM asymmetry. There are several ways to

obtain an out-of-equilibrium density of ϕ. The simplest mechanism for this is freeze-out,

which would occur at T ∼Mϕ/20. Thus the decay and asymmetry production would

happen at even lower temperatures. From the analytical solution, Eq. 3.13, it is clear

that the final asymmetry would be exponentially suppressed.

3In a ϕ dominated universe ϕ decays deposit a large amount of entropy, diluting the newly-created

baryon asymmetry. Such an entropy release can be compensated for with a higher initial DM asymmetry.
4The omission of the small chemical potentials in this step corresponds to dropping sub-leading O(µ/T )

terms in the final asymmetry.

– 13 –



Another possibility for generating an out-of-equilibrium density of ϕ is the

misalignment mechanism. If ϕ was displaced from the minimum of its potential during

inflation, then its field value would remain Hubble damped until H ∼Mϕ (corresponding

to a temperature Tosc ∼
√
MϕMPl). At this point ϕ begins coherent oscillations, with the

energy density in these fluctuations red-shifting as matter. The asymmetry generation

cannot begin until the DM develops a chemical potential, since it is required to bias ϕ

decays. Thus, in principle, the ψB asymmetry can be created any time between Tosc and

TRH ∼
√

ΓϕMPl. However, as discussed above, we are working in the Maxwell-Boltzmann

limit, so our Boltzmann equations are valid only for T < Mϕ. Thus we confine our

attention to the region of parameters where TRH < Mϕ � Tosc. We emphasize that this is

not a fundamental requirement, but merely a computational aid. The condition

TRH < Mϕ has the additional benefit of making the rates for wash out processes, i.e.,

inverse decays and B-violating 2→ 2 scattering, very slow.

We show the numerical solutions to the system of Boltzmann equations in Fig. 4 for

Mϕ = 1 TeV, TRH = 100 GeV, Ti = Mϕ/3 and ρϕ(Ti) = 10−2ρR(Ti). The initial DM

asymmetry is chosen to be YψD
/s = 2× 10−8 in order to obtain YB = 10−10 at late times;

the other asymmetries are determined from the initial U(1)B charge neutrality and

chemical equilibrium requirements in Eqs. 3.2 and 3.3, respectively. The remaining

masses are chosen to satisfy Mϕ > 2mψB
and mΦDB

> mψD
+mψB

: mψB
= 100 GeV,

mψD
= 150 GeV and mΦDB

= 300 GeV. Note, however, that the mechanism is not

sensitive to a particular choice of masses, as long as the relevant processes are

kinematically allowed. These initial conditions are chosen to produce the correct order of

magnitude for the baryon asymmetry.

In the left panel of Fig. 4 we show the evolution of various number densities as a

function of the scale factor a, normalized to ai, its value at the initial time. At early

times, chemical equilibrium with the asymmetric DM results in non-zero asymmetries for

ψB and ΦDB, while YΦDB
= YψB

is guaranteed due to vanishing initial U(1)B charge.

However, ϕ decays quickly drive the YψB
asymmetry to 0, such that the only remaining B

number is stored in ΦDB. When ΦDB decays, its asymmetry flows into ψB and ψD,

resulting in a final non-zero B number. The dashed line in this figure shows the net B

number density, i.e. YψB
− YΦDB

, which explicitly shows that the B asymmetry is

generated well before ϕ fully decays. The dotted line shows the analytic solution of

Eq. 3.13.

In the right panel of Fig. 4 we show the final DM and baryon asymmetries as a

function of TRH. The light red dashed line shows the analytic solution, while the dashed

purple line shows the initial DM asymmetry. Increasing TRH corresponds to higher decay

rates Γϕ, which in turn, leads to more ϕ decaying at early times, thereby enhancing the

effect of Pauli blocking and asymmetry generation. Note that this cannot continue

indefinitely, because at a high enough temperature wash out due to inverse decays and

2↔ 2 reactions becomes important. We do not extend the calculation to TRH/Mϕ > 1

because the Maxwell-Boltzmann approximation used throughout this section breaks

down, but as emphasized before, this is not a fundamental limitation of this scenario.

Note that at low TRH the entropy injection due to ϕ decays is large enough to partially
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Figure 4: Numerical solutions to the Boltzmann equations describing asymmetry pro-

duction through Pauli-blocked decays of ϕ. The left panel shows the evolution of the

various number densities as a function of the scale factor. The dotted line is the ana-

lytic approximation of Eq. 3.13. The dashed line line shows that the net baryon number,

YB = YψB
− YΦDB

is produced at early times, before ϕ decays. The right panel shows

the dependence of the final baryon yield on the decay temperature of ϕ, TRH. The red

dashed line is the analytic solution for YψB
, while the purple dashed line is the initial DM

asymmetry. This initial asymmetry is diluted by the ϕ entropy injection at low TRH. The

initial conditions and parameter values used are described in the text.

dilute the initial DM asymmetry, resulting in a decreased YD yield.

4 Discussion and Conclusion

In this paper we have investigated CP violation through matter effects at finite

temperature in the early universe. We have shown that quantum statistical effects play a

crucial role in this class of baryogenesis models. We considered models where the visible

sector Lagrangian is CP invariant and CP violation arises from an asymmetric

background density of particles. Such a background is expected to exist, if, e.g., dark

matter is asymmetric or if there another other quasi-stable asymmetric species during

this epoch. Out-of-equilibrium baryon number violating decays of a scalar ϕ were shown

to generate baryon number in this background, despite the absence of CP violation in the

interactions of ϕ. This is distinct from the standard out-of-equilibrium decay scenario

employed in, e.g., leptogenesis or GUT baryogenesis, where CP is violated through the

interference of tree and loop contributions to the decay rate. Instead, the dark matter

asymmetry biases ϕ decay to prefer some channels over others through Pauli blocking or

Bose enhancement of the corresponding final states. We considered two toy models where

only one of these effects is dominant. Thus, we provide the first example of a
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baryogenesis scenario where statistical factors play a critical role – no asymmetry is

produced when Pauli blocking and Bose enhancement are neglected.

Finally, we note that the models considered in this paper are far from complete.

While they illustrate the general “CP violation through matter effects” mechanism, we

have not attempted to embed them in realistic scenarios, which, e.g., describe the ϕ

production mechanism in the early universe, the origin of baryon number violation, or the

nature of the dark sector asymmetry. These details are important for setting the initial

conditions which play a crucial role in determining the baryon yield when the B-violating

decay asymmetry is generated by quantum statistical effects. Moreover, these directions

may identify concrete experimental probes for this class of models. A complete model of

baryon number violation in our scenarios (i.e. a UV completion of the non-renormalizable

operators in Eqs. 2.1 and 2.2) may be testable at nucleon decay or neutron oscillation

experiments. Similarly, different mechanisms of generating the dark matter asymmetry

can give rise to observable signatures. For example, if the dark asymmetry is created in a

strongly first order phase transition à la electroweak baryogenesis, a detectable

gravitational wave background may be generated. The necessity for interactions between

the dark and visible sectors in our scenarios suggests the possibility of complementary

probes. We leave a detailed investigation of these issues to future work.
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A Wash-out and Decay Rates in the Pauli Scenario

In this Appendix we collect the decay rates and wash-out cross-section relevant for the

scenario in discussed in Sec. 3.

A.1 Decays

The first term in Eq. 3.1 gives rise to B-violating ϕ decays with the rate

Γ(ϕ→ ψBψB) = Γ(ϕ→ ψ̄Bψ̄B) =
Mϕ

32π

[
|a|2 + |b|2 − 4y2|a|2

] [
1− 4y2

]1/2
, (A.1)

where y = mψB
/Mϕ. Assuming these are the only two channels the total ϕ decay rate is

Γϕ =
Mϕ

16π

[
|a|2 + |b|2 − 4y2|a|2

] [
1− 4y2

]1/2
. (A.2)

The second term in Eq. 3.1 is responsible for sharing the U(1)B and U(1)D numbers,

such that ϕ decays generate a baryon asymmetry. The leading physical processes that
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enforce this are the following decays and inverse decays

ΓDB = Γ(ΦDB → ψ̄Dψ̄B) = Γ(Φ†DB → ψDψB) =
|λ|2
8π

mΦDB
β(mΦDB

,mψD
,mψB

), (A.3)

ΓB = Γ(ψB → ψ̄DΦ†DB) = Γ(ψ̄B → ψDΦDB) =
|λ|2
16π

mψB
β(mψB

,mψD
,mΦDB

), (A.4)

ΓD = Γ(ψD → Φ†DBψ̄B) = Γ(ψ̄D → ΦDBψB) =
|λ|2
16π

mψD
β(mψD

,mΦDB
,mψB

), (A.5)

where

β(x, y, z) =
|m2

ΦDB
− (mψB

+mψD
)2|

x2

[
1− (y + z)2

x2

]1/2 [
1− (y − z)2

x2

]1/2

θ(x− y − z).
(A.6)

Note that for a given mass ordering only one of these rates is non-zero.

A.2 Scattering and Real Intermediate States

In addition to ϕ decays, the B-violating interaction in Eq. 3.1 induces the wash-out

reaction ψBψB ↔ ψ̄Bψ̄B with an intermediate s-channel ϕ. If this process is active it will

drive any existing baryon asymmetry to zero. Fortunately, the rate for this wash out

process is small when ϕ decays out-of-equilibrium, as required in the scenario of Sec. 3.

However, this rate can be enhanced when the intermediate ϕ goes on-shell, so we evaluate

it below. The corresponding cross-section is

σvlab =
1

128πs

(
1− 4m2

ψB
/s
)1/2(

1− 2m2
ψB
/s
) (

1−M2
ϕ/s
)2
(
|a|2 + |b|2 −

4m2
ψB

s
|a|2
)2

(A.7)

≈
|b|4m2

ψB

16πM4
ϕ

(
1− 4m2

ψB
/M2

ϕ

)2

√
ε+O(ε3/2), (A.8)

where ε = (s− 4m2
ψB

)/4m2
ψB

is the kinetic energy per unit mass in the lab frame [31, 32].

Note that the leading contribution from the scalar interaction ∝ a is velocity suppressed.

This is because the bilinear ψ̄Bψ
C
B can only create states with orbital angular momentum

L = 1 [33]. The thermal average can be performed analytically in the large x = mψB
/T

limit or numerically, keeping all ε and x dependence in the cross-section. The analytical

result is

〈σv〉(ψBψB ↔ ψ̄Bψ̄B) =
1√
πx

 |b|4m2
ψB

16πM4
ϕ

(
1− 4m2

ψB
/M2

ϕ

)2

 , (A.9)

where the quantity in the braces is the cross-section at threshold. We are interested in

this rate while ψB and ψ̄B are still in chemical equilibrium, which means x is not large.

Moreover, for long-lived ϕ the cross-section is strongly peaked around the resonance,

away from ε = 0. This means that the ε expansion is not valid. The full rate (without
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Figure 5: Thermally averaged cross-section for ψBψB ↔ ψ̄Bψ̄B as a function of

x = mψB
/T for a = 0, b = 1 and mψB

/Mϕ = 0.1. The solid blue line is the standard

thermal average computed from the numerical integral in Eq. A.10, which includes the

resonant enhancement for s ≈ M2
ϕ. The solid orange line shows same cross-section with

the real intermediate state contribution subtracted to avoid double counting in solving

the Boltzmann equations. The dashed line is the analytical large x approximation from

Eq. A.9.

making these approximations) is then determined by numerically performing the integral5

〈σv〉(ψBψB ↔ ψ̄Bψ̄B) =
x

K2(x)2

∫
dε
√
ε(1 + 2ε)K1(2x

√
1 + ε)σvlab, (A.10)

where we included a factor of 1/2 for identical initial states in the definition of the

thermal average. This rate includes processes occurring through on-shell ϕ exchange

when s = M2
ϕ. However, the on-shell decays and inverse decays ϕ↔ ψBψB, ψ̄Bψ̄B are

already present in the Boltzmann equations – see Eq. 3.10. To avoid double counting the

resonant contribution to 〈σv〉(ψBψB ↔ ψ̄Bψ̄B) must be subtracted [34–36]. One simple

approach to implement this Real Intermediate State (RIS) subtraction is to modify the

squared s channel propagator as

1

(s−M2
ϕ)2 + Γ2

ϕM
2
ϕ

→ 1

(s−M2
ϕ)2 + Γ2

ϕM
2
ϕ

− π

MϕΓϕ
δ(s−M2

ϕ), (A.11)

where Γϕ is the total decay rate. The RIS contribution corresponding to the Dirac delta

5This thermal average procedure is valid only in the non-relativistic limit, so the results for x . 1 should

be considered to be rough estimates.
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function is easily computed:

〈σv〉RIS =
1

2M2
ϕ

π2xK1(x/y)

y5K2(x)2
Br(ϕ→ ψBψB)Br(ϕ→ ψ̄Bψ̄B)

Γϕ
Mϕ

(A.12)

=
neq
ϕ

(neq
ψB

)2
Br(ϕ→ ψBψB)Br(ϕ→ ψ̄Bψ̄B)

K1(x/y)

K2(x/y)
Γϕ. (A.13)

In the last line we wrote the RIS rate in terms of the equilibrium distributions for ψB and

ϕ. The proper RIS-subtracted (RISS) rate that enters the Boltzmann equation 3.10 is

obtained by taking the difference of Eqs. A.10 and A.13. We compare the

RIS-subtracted cross-section with other approximations in Fig. 5. Note that the RISS

cross-section becomes negative in the resonance region near x ∼ 1. Numerically this

happens because the RIS rate in Eq. A.13 is slightly larger than the standard rate in

Eq. A.10; this, in turn, is because of the finite width of the resonance peak. This was also

observed in Ref. [37].
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