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1 Introduction

Correlators, and thus propagators, are the central objects of interest in any quantum field the-
ory (QFT). Despite their importance, the non-perturbative structure of propagators in physical
theories such as quantum electrodynamics (QED) and quantum chromodynamics (QCD) re-
mains largely unknown. Nevertheless, there are several techniques which have the potential to
probe this non-perturbative behaviour. Axiomatic quantum field theory (AQFT) is one such
approach, and consists of defining a QFT in a mathematically rigorous manner via the definition
of a series of physically motivated axioms [1, 2, 3, 4, 5]. Although different axiomatic schemes
have been proposed, these schemes generally consist of a common core set of axioms which
are often referred to as the Wightman axioms [1]. These axioms include assumptions such as
relativistic covariance, fields as (operator-valued) distributions, and locality1.

In the case of quantised gauge theories such as QED and QCD, the standard Wightman axioms
no longer apply. In particular, gauge symmetry provides an obstacle to the locality of fields
in the theory. To quantise a gauge theory one therefore has to either accept that fields can be
non-local, as is the case in Coulomb gauge, or one can preserve locality by adopting a local quan-

tisation. In local quantisations, additional degrees of freedom are introduced into the theory,
resulting in a space of states V which no longer possesses a positive-definite inner product. Since
negative norm states are unphysical, one must define an external condition in order to specify
the physical states Vphys ⊂ V . For gauge theories such as QED and QCD, BRST quantisation

is an important example of a local quantisation. In this case, auxiliary gauge-fixing and ghost
term are added to the equations of motion of the theory in order to break the gauge invariance,
and thus preserve the locality of the fields. Although the gauge-fixed theory is no longer gauge
invariant, it remains invariant under a residual BRST symmetry, which has a corresponding
conserved charge QB. Physical states are then defined by the requirement that the quantised
equations of motion must hold for these states, and it turns out that this is equivalent to the
condition: QBVphys = 0 [4]. Due to the preservation of locality, BRST quantisation is usually
employed when analysing the non-perturbative structure of the photon and gluon propagators.
The modification of the Wightman axioms required to facilitate the indefinite inner product
space of states V in this approach is referred to as the Pseudo-Wightman formalism [5]. Al-
though many of the results derived from the standard Wightman axioms are maintained in this
formalism [6], the modification of the axioms can lead to significant changes in the structure of
correlators and propagators, and it is precisely these differences which will be explored in this
paper.

The rest of this paper is structured as follows: in section 2 the general properties of Lorentz
covariant correlators is outlined, and these properties are applied in order to derive the general
form of the correlator and propagator of an arbitrary vector field; in section 3 the results derived
in section 2, together with the model-dependent constraints, are used to derive the structure of
the non-perturbative photon propagator in free (quantised) electromagnetism and QED, as well
as the gluon propagator in QCD; in section 4, the issue of whether a transverse-longitudinal
decomposition exists for the interacting photon and gluon propagator is discussed; and finally
in section 5 the key findings are summarised.

1See [1, 2, 3, 4, 5] for a more in-depth discussion of these axioms.
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2 The non-perturbative structure of vector correlators and

propagators

2.1 The vector correlator

In axiomatic formulations of QFT [1], the basic field correlators 〈0|φ1(x1)φ2(x2)|0〉 = T(1,2)(x1−
x2) are defined to be tempered distributions S ′(R1,3), and hence their Fourier transforms

T̂(1,2)(p) = F
[
T(1,2)(x1 − x2)

]
are in S ′(R1,3). Moreover, since quantised fields are also as-

sumed to transform covariantly under Lorentz transformations, T̂(1,2)(p) is a Lorentz covariant

distribution, and therefore satisfies the following condition [5]:

T̂(1,2)(Λp) = S(Λ) T̂(1,2)(p) (2.1)

where Λ ∈ L
↑
+
∼= SL(2,C). The structure of the Lorentz covariant distribution T̂(1,2)(p) is de-

pendent upon how the fields φ1 and φ2 transform under Lorentz transformations. In particular,
T̂(1,2)(p) has the following decomposition [5]:

T̂(1,2)(p) =
N∑

α=1

Qα(p) T̂α(1,2)(p) (2.2)

where T̂α(1,2)(p) are Lorentz invariant distributions (i.e. T̂α(1,2)(Λp) = T̂α(1,2)(p)), and Qα(p)
are Lorentz covariant polynomial functions of p which carry the Lorentz index structure of
φ1 and φ2. Before discussing the specific structure of the photon and gluon correlators and
propagators, one must first consider the general case where φi are both arbitrary vector fields.
Given that φ1 = Aµ and φ2 = Aν , it turns out that there are two possible Lorentz covariant
polynomials: Q1(p) = gµν and Q2(p) = pµpν . Due to equation 2.2 it therefore follows that:

D̂µν(p) = F [〈0|Aµ(x)Aν(y)|0〉] = gµν D̂1(p) + pµpν D̂2(p) (2.3)

In order to further specify the structure of D̂µν(p) one must first understand the behaviour of

the Lorentz invariant components D̂1(p) and D̂2(p). It is well known that Lorentz invariant

distributions T̂α ∈ S ′(R1,3) have certain structural properties. In particular, if T̂α is restricted
to have support in the closed forward light cone V +, as is required in axiomatic formulations of
QFT, T̂α can be written in the following general manner [5]:

T̂α(p) = P (∂2)δ(p) +

∫ ∞

0

ds θ(p0)δ(p2 − s)ρα(s) (2.4)

where P (∂2) is some arbitrary polynomial of finite order in the d’Alembert operator ∂2 =
gµν

∂
∂pµ

∂
∂pν

(with complex coefficients), and ρα(s) ∈ S ′(R+). This is the spectral representation

of T̂α, and ρα is the spectral density. In the case of the vector field correlator (equation 2.3),

equation 2.4 can be used to write D̂µν(p) in the form:

D̂µν(p) =

∫ ∞

0

ds θ(p0)δ(p2 − s) [gµνρ1(s) + pµpνρ2(s)] +
[
gµνP1(∂

2) + pµpνP2(∂
2)
]
δ(p) (2.5)

where P1 and P2 are polynomials of finite order. Performing the inverse Fourier transform of
this expression leads to the following general representation of the position space correlator:

〈0|Aµ(x)Aν (y)|0〉 =
i

2π

∫ ∞

0

ds [−gµνρ1(s) + ρ2(s)∂µ∂ν ]D
(−)(x− y; s)

+
1

(2π)4
gµνP1

(
−(x− y)2

)
−

1

(2π)4
∂µ∂νP2

(
−(x− y)2

)
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P1 and P2 are arbitrary complex polynomials of finite order and hence one can set: P1(∂
2) =∑L

l=0 al(∂
2)l, and P2(∂

2) =
∑M

m=0 bm(∂2)m where al, bm ∈ C. Since the polynomial term
P2

(
−(x− y)2

)
involves derivatives, not all of the terms will contribute to the correlator. In

fact, one can write:

∂µ∂νP2

(
−(x− y)2

)
= −2b1gµν + ∂µ∂ν

(
M∑

m=2

bm(−(x− y)2)m · · ·

)

︸ ︷︷ ︸
:=P̃2(−(x−y)2)

Finally, by setting ã0 = a0 + 2b1 (and ãl = al for l ≥ 1) the correlator takes the form:

〈0|Aµ(x)Aν(y)|0〉 =
i

2π

∫ ∞

0

ds [−gµνρ1(s) + ρ2(s)∂µ∂ν ]D
(−)(x− y; s)

+
1

(2π)4
gµνP̃1

(
−(x− y)2

)
−

1

(2π)4
∂µ∂ν P̃2

(
−(x− y)2

)
(2.6)

where now P̃1(−(x− y)2) =
∑L

l=0 ãl(−(x − y)2)l.

2.2 The vector propagator

In general, the vector propagator involves a time-ordered product of fields, and is defined as:

〈0|T {Aµ(x)Aν (y)}|0〉 := θ(x0 − y0)〈0|Aµ(x)Aν(y)|0〉+ θ(y0 − x0)〈0|Aν(y)Aµ(x)|0〉 (2.7)

Using the spectral representation of the vector correlator in equation 2.5, the propagator can
be written:

〈0|T {Aµ(x)Aν (y)}|0〉 = θ(x0 − y0)

∫ ∞

0

ds

∫
d4p

(2π)4
e−ip(x−y)θ(p0)δ(p2 − s) [gµνρ1(s) + pµpνρ2(s)]

+ θ(x0 − y0)

∫
d4p

(2π)4
e−ip(x−y)

[
gµνP̃1(∂

2) + pµpνP̃2(∂
2)
]
δ(p)

+ θ(y0 − x0)

∫ ∞

0

ds

∫
d4p

(2π)4
eip(x−y)θ(p0)δ(p2 − s) [gµνρ1(s) + pµpνρ2(s)]

+ θ(y0 − x0)

∫
d4p

(2π)4
eip(x−y)

[
gµνP̃1(∂

2) + pµpνP̃2(∂
2)
]
δ(p) (2.8)

In order to simplify this expression one can use the relation:

∂x
µ∂

x
ν

[
θ(x0 − y0)e−ip(x−y) + θ(y0 − x0)eip(x−y)

]
=− pµpν

[
θ(x0 − y0)e−ip(x−y) + θ(y0 − x0)eip(x−y)

]

− i(pµgν0 + pνgµ0) δ(x
0 − y0)

[
e−ip(x−y) + eip(x−y)

]

+ gµ0gν0 δ
′(x0 − y0)

[
e−ip(x−y) − eip(x−y)

]

which upon substitution into equation 2.8 implies that the vector propagator has the following
general structure:

〈0|T {Aµ(x)Aν (y)}|0〉 =

∫ ∞

0

ds

2π

[
−gµνρ1(s) + ρ2(s)∂

x
µ∂

x
ν

]
i∆F (x− y; s)

−
i

2π
gµ0gν0 δ(x− y)

∫ ∞

0

ds ρ2(s)

+
1

(2π)4
gµνP̃1

(
−(x− y)2

)
−

1

(2π)4
∂x
µ∂

x
ν P̃2

(
−(x− y)2

)
(2.9)
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and thus the Fourier transformed propagator D̂F
µν = F [〈0|T {Aµ(x)Aν (y)}|0〉] is given by:

D̂F
µν(p) = i

∫ ∞

0

ds

2π

[gµνρ1(s) + pµpνρ2(s)]

p2 − s+ iǫ
−

i

2π
gµ0gν0

∫ ∞

0

ds ρ2(s)

+ gµνP̃1(∂
2)δ(p) + pµpνP̃2(∂

2)δ(p) (2.10)

A shared feature of the position and momentum space vector propagators is that they both
contain an explicitly non-covariant term proportional to gµ0gν0. This is in fact not surprising
because unlike correlators, propagators involve time-ordered fields, and this requires one to sin-
gle out a non-covariant plane (x0 − y0 = 0) with which to chronologically order the fields. It is
clear from equation 2.10 that whether or not this non-covariant term appears depends on the
integral of the spectral density ρ2.

In order to rigorously make sense of the integral appearing in the first term of equation 2.10,
one introduces the following notion of distributional convolution [5]:

(
1

p2 + iǫ
∗ ρ, f

)
:=

(
ρ,

1

−p2 + iǫ
∗ f

)
(2.11)

where 1
p2+iǫ

∗ ρ =
∫
ds

ρ(s)
p2−s+iǫ

, and (D, f) :=
∫
d4xD(x)f(x) represents the smearing of the

distribution D with the test function f . For this definition to make sense for all test functions
f ∈ S, this requires that ρ is extended from the class S ′(R+), as defined in section 2.1, to the
class S ′(R+ ∪ ∞). In other words, the distribution ρ must be permitted to have support at
(positive) infinity. The origin of this requirement stems from the fact that propagators contain
a product between theta distributions and ordinary correlators (see equation 2.7), which is in
general ill-defined. By extending the domain of validity of ρ, and thus making sense of the
convolution 1

p2+iǫ
∗ ρ, this is equivalent to defining this product [5]. A direct consequence of

this extension is that the constant function f ≡ 1 is now a valid test function for the spectral
density (since 1 ∈ S(R+∪∞)), and this therefore guarantees that the expressions

∫
dsρ2(s) and∫

dsρ1(s) are both well defined.

An important property of the representations in equations 2.9 and 2.10 is that they follow only
from the assumption that Fourier transformed correlators are Lorentz covariant tempered dis-
tributions with support in V +. Since this is a ubiquitous feature of any axiomatically defined
QFT, this means that these representations are model independent. Therefore, in order to
further constrain the structure of particular propagators, one must introduce dynamical infor-
mation about the fields Aµ, such as equations of motion or (anti-)commutation relations. In
section 3 these constraints will be outlined in the cases where Aµ is a free photon field, the
photon field in QED, and the gluon field in QCD, and the effect that they have on the form of
the corresponding propagators will be discussed.

3 Explicit vector propagators

3.1 The free photon propagator

When Aµ is a free (locally) quantised electromagnetic field, it satisfies the following equations
of motion:

∂νFνµ + ∂µΛ = 0, ξΛ = ∂µAµ (3.1)

5



where Λ is a gauge fixing auxiliary field. As with any free theory, quantisation is performed by
imposing equal-time commutation relations (ETCRs), which in this case are:

[Λ(x),Λ(y)]x0=y0
= 0 (3.2)

[Λ(x), Aν(y)]x0=y0
= ig0νδ(x− y) (3.3)

[F0i(x), Aν (y)]x0=y0
= igiνδ(x− y) (3.4)

[Aµ(x), Aν(y)]x0=y0
= 0 (3.5)

It follows immediately from the equations of motion that: ∂2Λ = −∂µ∂νFνµ = 0, and thus Λ
satisfies a free wave equation. Among other things, this implies that any unequal-time com-
mutator involving the field Λ is uniquely determined (as a distribution) by the corresponding
equal-time commutator [4]. In particular, one has:

[Λ(x),Λ(y)] = 0 (3.6)

[Λ(x), Aν(y)] = i∂x
νD0(x − y) (3.7)

Moreover, since Λ is a free field, one can decompose it into positive and negative frequency
components: Λ = Λ+ + Λ−, where the gauge fixing (subsidiary) condition corresponds to:
Λ−Vphys = 0. In order to constrain the form of the photon correlator, one can use the fact that
the vacuum state is physical, from which it follows that:

〈0|Λ(x)Λ(y)|0〉 = 0 (3.8)

〈0|Λ(x)Aν(y)|0〉 = 〈0|
[
Λ−(x), Aν (y)

]
|0〉 = i∂x

νD
−
0 (x − y) (3.9)

Now that the equations of motion and ETCRs have been defined, one can establish the con-
straints that these relations impose on the structure of the free photon correlator and propagator.
Firstly, using the equation of motion ξΛ = ∂µAµ, equation 3.8 can be written in the form:

〈0|∂µAµ(x)∂
νAν(y)|0〉 = ∂µ

x∂
ν
y 〈0|Aµ(x)Aν (y)|0〉 = 0

By inserting in equation 2.6, and taking the inverse Fourier transform of this expression, this
then implies the equality:

θ(p0)p2
[
ρ1(p

2) + p2ρ2(p
2)
]
+

[
p2

(
L∑

l=0

ãl(∂
2)l

)
+ (p2)2

(
M∑

m=2

bm(∂2)m

)]
δ(p) = 0 (3.10)

Since the first distribution in the equality above is defined to have support outside p = 0 (in
the closed forward light cone) [5], whereas the second distribution has support at p = 0, the
equality requires that both distributions must vanish identically. It turns out that the vanishing
of the first term in equation 3.10 implies the relation:

ρ1(s) + sρ2(s) = Cδ(s) (3.11)

where C is an arbitrary constant. Moreover, by using the distributional properties of δ(p) (and
its derivatives), one can write:

p2

(
L∑

l=0

ãl(∂
2)l

)
δ(p) =

L∑

l=1

4l(l+ 1)ãl(∂
2)l−1δ(p) (3.12)

(p2)2

(
M∑

m=2

bm(∂2)m

)
δ(p) =

M∑

m=2

16m2(m− 1)(m+ 1)bm(∂2)m−2δ(p) (3.13)
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Setting N := min{L− 1,M− 2} and K := max{L− 1,M− 2}, the vanishing of the second term
then implies:

ãn = −4(n+ 1)(n+ 2)bn+1 1 ≤ n ≤ N + 1 (3.14)

ãn = 0, if M < L+ 1
bn+1 = 0, if L+ 1 < M

}
N + 2 ≤ n ≤ K + 1 (3.15)

The constraint in equation 3.8 therefore ensures that the coefficients of the polynomials P̃i, as
well as the spectral densities ρi, are no longer independent, but are in fact related to one another.

The next constraint on the free photon correlator and propagator arises from equation 3.9.
Again, by using the equation of motion ξΛ = ∂µAµ, this equation can be written:

∂µ
x 〈0|Aµ(x)Aν (y)|0〉 = ξ〈0|Λ(x)Aν (y)|0〉 = iξ∂x

νD
−
0 (x− y)

Inserting equation 2.6, and then taking the inverse Fourier transform of this expression, implies
the equality:

θ(p0)pν
[
ρ1(p

2) + p2ρ2(p
2) + 2πξδ(p2)

]
+

[
pν

(
L∑

l=0

ãl(∂
2)l

)
+ pνp

2

(
M∑

m=2

bm(∂2)m

)]
δ(p) = 0

Just as with equation 3.10, both of the terms in this expression must vanish separately. Using
the distributional identities:

pν

(
L∑

l=0

ãl(∂
2)l

)
δ(p) =

L∑

l=1

2l ãl∂ν(∂
2)l−1δ(p) (3.16)

pνp
2

(
M∑

m=2

bm(∂2)m

)
δ(p) =

M∑

m=2

8m(m− 1)(m+ 1)bm∂ν(∂
2)m−2δ(p) (3.17)

it turns out that the vanishing of the second term implies identical constraints to those in
equations 3.14 and 3.15. Furthermore, by considering the ν = 0 component of the first term,
and using the constraint in equation 3.11, one obtains:

θ(p0)p0
[
ρ1(p

2) + p2ρ2(p
2) + 2πξδ(p2)

]
= θ(p0)p0

[
(C + 2πξ)δ(p2)

]

= p0

[
(C + 2πξ)

δ(p0 − |p|)

2|p|

]
=

1

2
(C + 2πξ) = 0

and thus the constant in equation 3.11 is fixed to C = −2πξ. In summary, the correlators in
equations 3.8 and 3.9 imply the following conditions:

ãn = −4(n+ 1)(n+ 2)bn+1 1 ≤ n ≤ N + 1 (3.18)

ãn = 0, if M < L+ 1
bn+1 = 0, if L+ 1 < M

}
N + 2 ≤ n ≤ K + 1 (3.19)

ρ1(s) + sρ2(s) = −2πξδ(s) (3.20)

Although the constraints imposed by the relations in equations 3.8 and 3.9 imply that the co-
efficients of the polynomials P̃1 and P̃2 are related to one another (equations 3.18 and 3.19),
these coefficients can still in principle be any complex numbers. However, it will now be demon-
strated that further constraints on these parameters arise due to another important feature of

7



free electromagnetism – the field strength tensor Fµν is an observable. The precise definition
of operator observability is discussed in [3], but essentially because Fµν is gauge invariant this
is sufficient to imply it is an observable, and hence: FµνVphys ⊆ Vphys. Since by definition:
|Ψ〉 ∈ Vphys ⇒ 〈Ψ|Ψ〉 ≥ 0, the observability of Fµν and the fact that |0〉 ∈ Vphys therefore gives
rise to the following constraint:

〈0|F (f)†F (f)|0〉 ≥ 0 (3.21)

where: F (f) :=
∫
d4xFµν(x)f

µν (x), with fµν ∈ S(R1,3). Because Fµν = ∂µAν − ∂νAµ, one can
write:

〈0|Fµν(x)Fρσ(y)|0〉 = ∂x
µ∂

y
ρ 〈0|Aν(x)Aσ(y)|0〉 − ∂x

µ∂
y
σ〈0|Aν(x)Aρ(y)|0〉

− ∂x
ν∂

y
ρ 〈0|Aµ(x)Aσ(y)|0〉+ ∂x

ν ∂
y
σ〈0|Aµ(x)Aρ(y)|0〉 (3.22)

Moreover, due to equation 2.6 the vector correlator has the following form:

〈0|Aµ(x)Aν (y)|0〉 = gµν

(
−

i

2π

∫ ∞

0

ds ρ1(s)D
(−)(x− y; s) +

1

(2π)4
P̃1

(
−(x− y)2

))

︸ ︷︷ ︸
:=F (x−y)

+ ∂x
µ∂

y
ν

(
−

i

2π

∫ ∞

0

ds ρ2(s)D
(−)(x− y; s) +

1

(2π)4
P̃2

(
−(x− y)2

))

︸ ︷︷ ︸
:=G(x−y)

(3.23)

which upon substitution into equation 3.22 gives:

〈0|Fµν(x)Fρσ(y)|0〉 =
(
gνσ∂

x
µ∂

y
ρ − gνρ∂

x
µ∂

y
σ − gµσ∂

x
ν ∂

y
ρ + gµρ∂

x
ν ∂

y
σ

)
F (x− y) (3.24)

So the G(x − y) component of the vector correlator does not contribute to the field strength
correlator. Since F (f)† = F (f̄), equation 3.24 can then be used to write the observability
condition in equation 3.21 as follows:

〈0|F (f)†F (f)|0〉 =

∫
d4xd4y 〈0|Fµν(x)Fρσ(y)|0〉 f̄

µν(x)fρσ(y)

=

∫
d4xd4y F (x− y)h̄ρ(x)hρ(y) ≥ 0 (3.25)

where hρ := ∂µf
µ
ρ−∂µf

µ
ρ ∈ S(R1,3). Since hρ is an arbitrary test function, equation 3.25 implies

that F (x−y) must be a positive-definite distribution. An important feature of positive-definitive

distributions is that their Fourier transform F̂ (p) is a non-negative distribution, and this in

turn defines a measure [5]. Since F̂ (p) =
∫∞

0
ds ρ1(s)θ(p

0)δ(p2 − s) + P̃1(∂
2)δ(p), in particular

this means that P̃1(∂
2)δ(p) cannot contain terms involving derivatives of δ(p), because these

distributions do not define measures [7], and thus one must have: ãk = 0 ∀k ≥ 1. Taken together
with the relations in equations 3.18 and 3.19, this therefore implies the following constraint on
the polynomial coefficients:

ãk = bk+1 = 0, ∀k ≥ 1 (3.26)

Due to the definitions of the polynomial terms in equation 2.6, an immediately corollary of this
constraint is that: P̃2 = 0, and P̃1 = ã0. In other words, the polynomial terms only contribute
to the free photon correlator or propagator if ã0 is non-vanishing.
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In principle the coefficient ã0 could be non-vanishing, but it turns out that F̂ (p) defining a
measure guarantees that this is not the case. To see this, consider the following (cluster)
correlator:

〈0|F̃ (x̃)F̃ (ỹ)|0〉 :=

∫
d4xd4y 〈0|Fµν(x)Fρσ(y)|0〉 f̄

µν(x− x̃)fρσ(y − ỹ)

Taking the Fourier transform of this expression, and applying equation 3.24, gives:

F
[
〈0|F̃ (x̃)F̃ (ỹ)|0〉

]
= F

[∫
d4xd4y F (x− y)h̄ρ(x − x̃)hρ(y − ỹ)

]
= ˆ̄hρ(−p)ĥρ(p)F̂ (p)

Since F̂ (p) defines a measure it follows that F
[
〈0|F̃ (x̃)F̃ (ỹ)|0〉

]
must also define a measure [8].

Moreover, due to equation 3.26, this measure has the contribution ã0
ˆ̄hρ(0)ĥρ(0)δ(p) at the point

p = 0. However, one of the Pseudo-Wightman axioms [5] states that since the Fourier transform

of 〈0|F̃ (x̃)F̃ (ỹ)|0〉 defines a (complex) measure, it must be the case that the contribution of this

measure at the point p = 0 is equal to (2π)4〈0|F̃ (x̃)|0〉〈0|F̃ (ỹ)|0〉δ(p). Therefore, one must have
the following equality:

ã0
ˆ̄hρ(0)ĥρ(0) = (2π)4〈0|F̃ (x̃)|0〉〈0|F̃ (ỹ)|0〉

= (2π)4
∫

d4xd4y 〈0|Fµν(x)|0〉〈0|Fρσ(y)|0〉f̄
µν(x− x̃)fρσ(y − ỹ)

But 〈0|Fµν(x)|0〉 = 〈0|Fρσ(y)|0〉 = 0 because one cannot have a non-Lorentz invariant conden-
sate, and so it must be that: ã0 = 0. Combining this constraint with equation 3.26 implies:

P̃1 = P̃2 = 0 (3.27)

Another constraint on the form of the vector correlator, and in particular the spectral densities
ρi, arises from the equal-time commutation relation:

[
Aµ(x), Ȧν(y)

]
x0=y0

= −i [gµν − (1 − ξ)g0µg0ν ] δ(x− y) (3.28)

which itself is derived from the equations of motion and equations 3.3, 3.4 and 3.5. Setting
µ = i, ν = j one has that:

[
∂0
y〈0|Ai(x)Aj(y)|0〉 − ∂0

y〈0|Aj(y)Ai(x)|0〉
]
x0=y0

= −igijδ(x− y)

Inserting in the general expression for the correlator in equation 2.6, one obtains the following
sum rules:

∫ ∞

0

ds ρ1(s) = −2π,

∫ ∞

0

ds ρ2(s) = 0 (3.29)

One should note here that even if the polynomial terms P̃i were non-vanishing, they would
cancel in the commutator and hence not affect the constraints in equation 3.29. Similarly, in
the case where µ = ν = 0, this instead implies the sum rules:

∫ ∞

0

ds [ρ1(s) + sρ2(s)] = −2πξ,

∫ ∞

0

ds ρ2(s) = 0 (3.30)
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So both the constraints imply that the integral of the spectral density ρ2 vanishes, whereas
equation 3.29 constrains the integral of ρ1, and equation 3.30 constrains the the integral of the
combination ρ1 + sρ2.

A final constraint on the form of the free photon correlator arises because the equation of motion
can be written: ∂νFνµ + ∂µΛ = ∂2Aµ + (1− ξ)∂µΛ = 0, which means that:

∂2〈0|Aµ(x)Aν (y)|0〉 = (ξ − 1)∂x
µ〈0|Λ(x)Aν(y)|0〉 = i(ξ − 1)∂x

µ∂
x
νD

−
0 (x− y)

By inserting the general expression for the correlator in equation 2.6, as well as the constraint
P̃1 = P̃2 = 0, and taking the inverse Fourier transform, this equality implies:

θ(p0)
[
gµνp

2ρ1(p
2) + pµpνp

2ρ2(p
2) + 2π(ξ − 1)pµpνδ(p

2)
]
= 0

Substituting in the condition on the spectral densities in equation 3.20 into this relation, one
obtains:

θ(p0)
[
(gµνp

2 − pµpν)ρ1(p
2)− 2πpµpνδ(p

2)
]
= 0

which upon contraction with gµν implies:

θ(p0)
[
3p2ρ1(p

2)− 2πp2δ(p2)
]
= 3θ(p0)p2ρ1(p

2) = 0

and hence: ρ1(p
2) = Dδ(p2) for some arbitrary constant D. By applying the sum rule for ρ1 in

equation 3.29 it immediately follows that D = −2π. Since ρ1(p
2) = −2πδ(p2), this means that

ρ2 satisfies the equation:

p2ρ2(p
2) = 2π(1− ξ)δ(p2) (3.31)

The general solution to this equation has the form: ρ2(p
2) = Eδ(p2) − 2π(1 − ξ)δ′(p2), where

E is an arbitrary constant. It follows from the sum for ρ2 in equation 3.29 that E = 0 and
thus one can finally conclude that the spectral densities for the free photon correlator have the
following exact form:

ρ1(s) = −2πδ(s), ρ2(s) = −2π(1− ξ)δ′(s) (3.32)

Given these spectral densities, and the fact that P̃1 = P̃2 = 0, the momentum space free photon
correlator can therefore be written:

D̂µν(p) = 2πθ(p0)
[
−gµνδ(p

2) + pµpν(ξ − 1)δ′(p2)
]

(3.33)

Moreover, since the constraints from equation 3.28 imply that the integral of ρ2 vanishes, it
follows from equation 2.10 that the free photon propagator has the form:

D̂F
µν(p) = i

∫ ∞

0

ds

2π

[gµνρ1(s) + pµpνρ2(s)]

p2 − s+ iǫ
(3.34)

which upon substitution of the expressions for ρ1 and ρ2 in equation 3.32 gives:

D̂F
µν(p) = −

[
gµν − (1− ξ)

pµpν

p2 + iǫ

]
i

p2 + iǫ

= −

(
gµν −

pµpν

p2 + iǫ

)

︸ ︷︷ ︸
:=Tµν

i

p2 + iǫ
− iξ

pµpν

(p2 + iǫ)2︸ ︷︷ ︸
:=Lµν

(3.35)

where Tµν and Lµν are referred to as the transverse and longitudinal projectors respectively.
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3.2 The photon propagator in QED

In QED one requires the fields to be renormalised in order to make sense of the equations
of motion. Once this renormalisation has been performed, the equations of motion in locally
quantised QED have the following form:

∂νF (r)
νµ + ∂µΛ

(r) = j(r)µ , ξrΛ
(r) = ∂µA(r)

µ (3.36)

where the index r indicates that the corresponding quantity is renormalised, and j
(r)
µ is the

(conserved) fermion interaction current. In particular, one has that A
(r)
µ = Z

− 1

2

3 A
(0)
µ , where

Z3 is the photon field renormalisation constant and A
(0)
µ is the unrenormalised bare field. For

simplicity, throughout the rest of this paper the label r will be dropped, and every quantity
should be implicitly assumed to be renormalised. To quantise QED one imposes the following
ETCRs:

[Λ(x),Λ(y)]x0=y0
= 0 (3.37)

[Λ(x), Aν(y)]x0=y0
= ig0νδ(x− y) (3.38)

[F0i(x), Aν (y)]x0=y0
= igiνZ

−1
3 δ(x− y) (3.39)

[Aµ(x), Aν(y)]x0=y0

= 0 (3.40)

An important feature here is that even though the equation of motion includes the non-vanishing
current jµ, Λ still satisfies the free massless wave equation by virtue of the current conservation
condition ∂µjµ = 0. Among other things, this implies that the renormalisation constant Z3

must be finite [4], and therefore the correlators involving the auxiliary field Λ are the same as
those in the free case (equations 3.8 and 3.9):

〈0|Λ(x)Λ(y)|0〉 = 0 (3.41)

〈0|Λ(x)Aν(y)|0〉 = i∂x
νD

−
0 (x − y) (3.42)

Moreover, because Fµν is gauge invariant, it follows that Fµν is also an observable in QED. Since
the structural relations for vector correlators and propagators derived in section 2 are equally
applicable to both free and interacting theories, the constraints implied by the observability of
Fµν and equations 3.41 and 3.42 are identical to those in the free photon case:

P̃1 = P̃2 = 0 (3.43)

ρ1(s) + sρ2(s) = −2πξδ(s) (3.44)
∫ ∞

0

ds ρ1(s) = −2πZ−1
3 ,

∫ ∞

0

ds [ρ1(s) + sρ2(s)] = −2πξ,

∫ ∞

0

ds ρ2(s) = 0 (3.45)

Using the above constraints, it follows analogously to section 3.1 that the momentum space
photon correlator has the structure:

D̂µν(p) =

∫ ∞

0

ds θ(p0)δ(p2 − s) [gµνρ1(s) + pµpνρ2(s)] (3.46)

and hence the photon propagator can be written:

D̂F
µν(p) = i

∫ ∞

0

ds

2π

[gµνρ1(s) + pµpνρ2(s)]

p2 − s+ iǫ
(3.47)

An important feature of the spectral densities in QED, as opposed to the free case, is that
despite being related to one another via equation 3.44, the explicit form of the spectral densities
is not determined. This lack of knowledge arises because of the non-trivial non-perturbative
structure of the theory.
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3.3 The gluon propagator in QCD

In BRST quantised QCD, the equations of motion have the following form:

(DνFνµ)
a + ∂µΛ

a = gjaµ − igfabc∂µC
bCc, ∂µAa

µ = ξΛa (3.48)

∂ν(DνC)a = 0, (Dν∂νC)a = 0 (3.49)

where Ca and Ca are the ghost and anti-ghost fields, and all of the fields depend on the non-
abelian adjoint index a. The ETCRs of particular relevance are:

[
Λa(x),Λb(y)

]
x0=y0

= 0 (3.50)
[
Λa(x), Ab

ν (y)
]
x0=y0

= iδabg0νδ(x − y) (3.51)
[
F a
0i(x), A

b
ν (y)

]
x0=y0

= iδabgiνZ
−1
3 δ(x− y) (3.52)

[
Aa

µ(x), A
b
ν (y)

]
x0=y0

= 0 (3.53)

where now Z3 is the gluon field renormalisation constant. Although these ETCRs have a similar
form to those in QED and the free case, there is a very important difference in QCD – the
auxiliary field Λa does not satisfy a free wave equation. This means that unlike in QED and
free electromagnetism, the ETCRs involving the auxiliary field cannot be used to determine the
value of the commutators at unequal times. In particular, one cannot assume that equation 3.7
holds. Nevertheless, one can use the BRST symmetry of the QCD equations of motion to prove
that the auxiliary field correlator 〈0|Λa(x)Λb(y)|0〉 does in fact vanish, just like in sections 3.1
and 3.2. The key to this derivation is that the BRST variation of any product of fields O
vanishes:

〈0|δBO|0〉 = 〈0| [iQB,O]± |0〉 = 0

This automatically follows from the fact that QB|0〉 = 0 since |0〉 ∈ Vphys. By taking O =
∂µA

µ,a(x)Cb(y) one has:

0 = 〈0|δB
(
∂µA

µ,a(x)Cb(y)
)
|0〉 = 〈0|δB (∂µA

µ,a(x))Cb(y)|0〉+ 〈0|∂µA
µ,a(x)δB

(
Cb(y)

)
|0〉

= 〈0|∂µδB (Aµ,a(x))Cb(y)|0〉+ 〈0|∂µA
µ,a(x)δB

(
Cb(y)

)
|0〉

= 〈0| ∂µ(D
µC(x))a︸ ︷︷ ︸
=0

Cb(y)|0〉+ 〈0|∂µA
µ,a(x)(−iΛb(y))|0〉

= −i〈0|∂µA
µ,a(x)Λb(y)|0〉

Using the equation of motion: ∂µAa
µ = ξΛa this then leads immediately to: 〈0|Λa(x)Λb(y)|0〉 =

0. Just as in the case of QED, one can apply the same analysis as for free photon correlator
and propagator in section 3.1, and this leads to the analogous constraints:

ãabn = −4(n+ 1)(n+ 2)babn+1 1 ≤ n ≤ N + 1 (3.54)

ãabn = 0, if M < L+ 1
babn+1 = 0, if L+ 1 < M

}
N + 2 ≤ n ≤ K + 1 (3.55)

ρab1 (s) + sρab2 (s) = Cabδ(s) (3.56)

where now the spectral densities and coefficients of the polynomials P̃ ab
1 and P̃ ab

2 must depend
explicitly on the adjoint indices a and b, and one assumes that the colour symmetry is unbroken,
and thus: ρabi = δabρi. Although one does not have an expression like equation 3.7 to determine
the value of Cab, as in the free case and QED, the ETCRs still give rise to the following sum
rules:
∫ ∞

0

ds ρab1 (s) = −2πδabZ−1
3 ,

∫ ∞

0

ds
[
ρab1 (s) + sρab2 (s)

]
= −2πξδab,

∫ ∞

0

ds ρab2 (s) = 0 (3.57)
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the second of which implies that Cab = −2πξδab, and hence:

ρab1 (s) + sρab2 (s) = −2πξδabδ(s) (3.58)

An important difference between QCD and QED (or the free case), is that F a
µν is no longer an

observable. This means that although one can decompose the gluon correlator in an analogous
manner to equation 3.23:

〈0|Aa
µ(x)A

b
ν(y)|0〉 = gµνF

ab(x− y) + ∂x
µ∂

y
νG

ab(x− y) (3.59)

one is not guaranteed that the Fourier transform of F ab(x − y) defines a measure. Since this

property is essential for demonstrating that the coefficients of the polynomials P̃ ab
i vanish, as

discussed in section 3.1, it is therefore possible that these coefficients are related (via equa-
tions 3.54 and 3.55) but non-zero. In other words, the fact that F ab(x− y) does not necessarily

define a measure implies that the polynomials P̃ ab
i can be non-vanishing, and hence the propa-

gator is permitted to contain terms involving derivatives of δ(p).

Due to the various constraints in equations 3.54, 3.55 and 3.57, it follows that the gluon propa-
gator can be written in the following general form:

D̂abF
µν (p) = i

∫ ∞

0

ds

2π

[
gµνρ

ab
1 (s) + pµpνρ

ab
2 (s)

]

p2 − s+ iǫ
+

N+1∑

n=0

[
cabn gµν(∂

2)n + dabn ∂µ∂ν(∂
2)n−1

]
δ(p)

(3.60)

where the (complex) coefficients cn and dn are defined by:

cabn =

{
−2(n+ 1)(2n+ 3)babn+1, 1 ≤ n ≤ N + 1
ãab0 , n = 0

(3.61)

dabn =

{
4n(n+ 1)babn+1, 1 ≤ n ≤ N + 1
0, n = 0

(3.62)

By contrast to the photon propagator, the gluon propagator is only specified up toN+2 arbitrary
complex coefficients. In this case the dynamical constraints are not sufficient to determine
whether these coefficients are vanishing or not, and this ultimately stems from the fact F a

µν

is no longer an observable in QCD. This therefore opens up the possibility that the gluon
propagator can contain singular terms involving derivatives of δ(p). It is interesting to note that
the appearance of such terms is intimately linked to confinement [8], and so the failure of F a

µν to
define an observable is certainly suggestive that the non-abelian nature of the gauge symmetry
plays an important role in ensuring that confinement occurs in non-perturbative QCD.

4 The transverse-longitudinal decomposition of the pho-

ton and gluon propagators

In the literature, the structure of the photon and gluon propagators are often derived using the
following Slavnov-Taylor identity2:

pµpνD̂ab F
µν (p) = −iξδab (4.1)

2In the case of QED this relation is referred to as the Ward-Takahashi identity, and the adjoint indices a, b are
dropped (i.e. δab = 1) because the gauge group is abelian.
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It is often claimed [9, 10] that equation 4.1 implies that the photon and gluon propagators have
the following general transverse-longitudinal structure:

D̂abF
µν (p) = TµνD

ab(p2)− iξδabLµν =

(
gµν −

pµpν

p2 + iǫ

)
Dab(p2)− iξδab

pµpν

(p2 + iǫ)2
(4.2)

where Dab(p2) is Lorentz invariant. In the case of the free photon propagator (equation 3.35)
this structure is indeed present. However, for QED and QCD it will be argued in the proceeding
section that the propagators cannot in general be written in this form.

The constraints imposed by the equations of motion and the ETCRs in QED and QCD imply
that the photon and gluon propagators have the form of equations 3.47 and 3.60 respectively.
As well as defining the general structure, the constraints on the photon and gluon propagators
also imply that the spectral densities are related to one another (via equations 3.44 and 3.58).
Therefore, one can attempt to write the photon and gluon propagators exclusively in terms of
either ρab1 or ρab2 . In terms of ρab2 , the photon and gluon propagators have the form:

D̂µν(p) = i

∫ ∞

0

ds

2π
(−sgµν + pµpν)

ρ2(s)

p2 − s+ iǫ
−

igµνξ

p2 + iǫ
(4.3)

D̂abF
µν (p) = i

∫ ∞

0

ds

2π
(−sgµν + pµpν)

ρab2 (s)

p2 − s+ iǫ
−

igµνξδ
ab

p2 + iǫ

+

N+1∑

n=0

[
cabn gµν(∂

2)n + dabn ∂µ∂ν(∂
2)n−1

]
δ(p) (4.4)

Contracting both of these representations with pµpν , one obtains:

pµpνD̂µν(p) = ip2
∫ ∞

0

ds

2π
ρ2(s)− iξ = −iξ

pµpνD̂abF
µν (p) = ip2

∫ ∞

0

ds

2π
ρab2 (s)− iξδab

+ pµpν
N+1∑

n=0

[
cabn gµν(∂

2)n + dabn ∂µ∂ν(∂
2)n−1

]
δ(p)

︸ ︷︷ ︸
=0

= −iξδab

where the last equality holds in both cases due to the ρab2 integral constraint in equations 3.45
and 3.57 respectively. This demonstrates that both the photon and gluon propagators do in-
deed satisfy equation 4.1. Nevertheless, it is clear that both the propagator representations in
equations 4.3 and 4.4 do not have the form of equation 4.2. The only other possibility to express
these propagators in this form is to write them exclusively in terms of the spectral density ρab1 .
Since ρab2 and ρab1 are related by equations 3.44 and 3.58, this problem boils down to solving the
(distributional) equation:

sρab2 (s) = −2πξδabδ(s)− ρab1 (s) (4.5)

It turns out that this equation always possesses solutions [11]. In particular, one can write:

∫
ds ρab2 (s)f(s) := (ρab2 , f) = Cabf(0)− 2πξδabf ′(0) + (ρab1 , f1)

where Cab is an arbitrary constant and f ∈ S. This solution uses the fact that any Schwartz
function f can be written in the form: f(s) = f(0)f0(s)+ sf1(s), where f0(0) = 1 [5]. However,
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in order to write ρab2 explicitly in terms of ρab1 (i.e. independently of the test function f) the last
term must be rewritable in terms of the full function f , and not just f1. For the free photon
case this is indeed possible because ρ1(s) = −2πδ(s), and since sδ′(s) = −δ(s), it follows that:

(ρ1, f1) = −2π(δ, f1) = 2π(sδ′, f1) = 2π(δ′, sf1) = 2π(δ′, f − f(0)f0)

= 2π(δ′, f)− 2πf(0)(δ′, f0)

which together with equation 4.5 and the constraints in equation 3.30 imply that ρ2(s) =
−2π(1− ξ)δ′(s). However, for the photon or gluon propagators the form of the spectral density
ρab1 is a priori unknown, and so one cannot express ρab2 , and hence the full propagator, explicitly
in terms of ρab1 . This means that a transverse-longitudinal representation as in equation 4.2
exists for the free photon propagator (equation 3.35) but is not in general achievable for either

the photon or gluon propagators. Therefore, the statement that the structure of D̂abF
µν (p) has

the form of equation 4.2 due to the Slavnov-Taylor identity is evidently false. The fact that the
representation of the photon and gluon propagators in equations 4.3 and 4.4 does not possess
this form, and yet satisfies this identity, proves this point.

In the literature, the analysis of the photon and gluon propagators is performed using a variety of
different non-perturbative techniques, including the Schwinger-Dyson equations [12, 13, 14, 15],
and lattice QFT [16, 17, 18]. However, before these analyses are employed it is often first
argued that these propagators have the general structure of equation 4.2. Once a certain gauge
is selected, these techniques are then applied in order to probe the behaviour of Dab(p2). But
since the representation in equation 4.2 is not in general achievable for either the photon or
gluon propagators, this undermines the consistency of this approach. In particular, this means
that it is not justified to analyse Dab(p2) based on the assumption that the photon and gluon
propagators have the form TµνD

ab(p2) in the Landau gauge (ξ = 0). Despite the failure of
equation 4.2 to hold in general, the representations in equations 4.3 and 4.4 are guaranteed to
hold, and this is independent of the form of the spectral densities ρ1 and ρ2. This means that in
order to analyse the non-perturbative structure of the photon and gluon propagators one must
either use the representations in equations 3.47 and 3.60 which involve both spectral densities,
or use the representations in equations 4.3 and 4.4 which depend on ρ2.

5 Conclusions

Understanding the structure of the photon and gluon propagators is essential for probing the non-
perturbative dynamics of QED and QCD. Axiomatic approaches to QFT provide a framework
from which one can characterise the general properties of Lorentz covariant propagators, and
the constraints imposed on them as a result of the dynamical properties of the fields in the
propagators. In this paper we discuss the constraints on the photon and gluon fields, and
determine the specific effect that they have on the non-perturbative structure of the photon and
gluon propagators. By virtue of the abelian gauge symmetry of QED, it transpires that the
photon propagator can be completely characterised by one of two different interrelated spectral
densities ρ1 and ρ2. Moreover, in QCD the non-abelian gauge symmetry also permits additional
singular terms involving derivatives of δ(p) to appear in the gluon propagator. The possibility of
such terms is particularly interesting in the context of QCD, since their appearance is suggestive
of confinement. Due to the distributional behaviour of the spectral densities of the photon and
gluon propagators, it turns out that the lack of knowledge of these objects actually prevents one
from decomposing these propagators into transverse and longitudinal components, as in the free
case. Nevertheless, despite the obstruction to this decomposition both the photon and gluon
propagator representations still satisfy the Slavnov-Taylor identity.
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