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Abstract

A remarkable feature of QCD is that the mass scale κ which controls color con-

finement and light-quark hadron mass scales does not appear explicitly in the QCD

Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale

can appear in the equations of motion without affecting the conformal invariance

of the action if one adds a term to the Hamiltonian proportional to the dilatation

operator or the special conformal operator. If one applies the same procedure to

the light-front Hamiltonian, it leads uniquely to a confinement potential κ4ζ2 for

mesons, where ζ2 is the LF radial variable conjugate to the qq̄ invariant mass. The

same result, including spin terms, is obtained using light-front holography – the

duality between the front form and AdS5, the space of isometries of the conformal

group – if one modifies the action of AdS5 by the dilaton eκ
2z2 in the fifth dimen-

sion z. When one generalizes this procedure using superconformal algebra, the

resulting light-front eigensolutions predict a unified Regge spectroscopy of meson,

baryon, and tetraquarks, including remarkable supersymmetric relations between

the masses of mesons and baryons of the same parity. One also predicts observ-

ables such as hadron structure functions, transverse momentum distributions, and

the distribution amplitudes defined from the hadronic light-front wavefunctions.

The mass scale κ underlying confinement and hadron masses can be connected

to the parameter ΛMS in the QCD running coupling by matching the nonper-

turbative dynamics to the perturbative QCD regime. The result is an effective

coupling αs(Q
2) defined at all momenta. The matching of the high and low mo-

mentum transfer regimes determines a scale Q0 which sets the interface between

perturbative and nonperturbative hadron dynamics. The use of Q0 to resolve the

factorization scale uncertainty for structure functions and distribution amplitudes,

in combination with the principle of maximal conformality (PMC) for setting the
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renormalization scales, can greatly improve the precision of perturbative QCD

predictions for collider phenomenology. The absence of vacuum excitations of the

causal, frame-independent front-form vacuum has important consequences for the

cosmological constant. I also discuss evidence that the antishadowing of nuclear

structure functions is non-universal; i.e., flavor dependent, and why shadowing

and antishadowing phenomena may be incompatible with sum rules for nuclear

parton distribution functions.
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1 Introduction

Light-front wavefunctions provide a direct link between the QCD Lagrangian and

hadron structure. The LFWFs are the eigenstates of the Front-Form Hamiltonian P− =

i d
dτ

, the LF time τ = x+ = t+ z/c evolution operator. When one makes a measurement

of a hadron, such as in deep inelastic lepton-proton scattering `p → `′X, the hadron is

observed along a light-front (LF) – in analogy to a flash photograph – not at a fixed

time t. This is the underlying principle of the “front form” discussed by Dirac [1].

In the case of QCD, the eigenvalues of the LF invariant Hamiltonian HLF = P+P−−
~P 2
⊥, where P+ = P 0 + P z and ~P⊥ are kinematical, are the squares of the hadron masses

M2
H : HLF |ΨH >= M2

H |ΨH > [2]. The eigensolutions of HLF provide the n-particle

hadronic LF Fock state wavefunctions (LFWFs) ψHn (xi, ~k⊥i, λi) =< n|ΨH >, the projec-

tion on the free Fock basis. The LF Hamiltonian, can be derived directly from the QCD

Lagrangian. The constituents’ physical momenta are p+
i = xiP

+, and ~p⊥i = xi ~P⊥+~k⊥i,

and the λi label the spin projections Szi . The LFWFs are Poincare’ invariant: they

are independent of P+ and P⊥ and are thus independent of the motion of the observer.

The elastic and transition form factors of hadrons, weak-decay amplitudes and distri-

bution amplitudes are overlaps of LFWFs; structure functions, transverse momentum

distributions and other inclusive observables are constructed from the squares of the

LFWFs. The calculation of deeply virtual Compton scattering is given in ref. [3]. Since

the LFWFs are independent of the hadron’s momentum, there is no length contraction.

The absence of length contraction of a photographed object was first noted by Terrell [4]

and Penrose [5]. One measures the same structure function in an electron-ion collider

as in an electron-scattering experiment where the target hadron is at rest.

Light-front quantization thus provides a physical, frame-independent formalism for

hadron dynamics and structure. The LFWFs play the same role as the Schrodinger

wavefunctions which encode the structure of atoms in QED. One cannot compute form

factors of hadrons or other current matrixelements of hadrons from overlap of the usual

“instant” form wavefunctions since one must also include contributions where the photon

interacts with connected but acausal vacuum-induced currents. One can show that the

anomalous gravitomagnetic moment B(q2 = 0) vanishes identically for any LF Fock

state [6], in agreement with a theorem [7, 8] which follows from the equivalence theorem

of gravity. One can derive HLF directly from the QCD Lagrangian and avoid ghosts and

longitudinal gluonic degrees of freedom by choosing to work in the light-cone gauge

A+ = 0. The quark masses appear in the LF kinetic energy as
∑

i
m2

xi
. This can be
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derived from the Higgs theory quantized using LF dynamics. The confined quark field

ψq couples to the background Higgs field gΨq
< H > Ψq via its Yukawa scalar matrix

element coupling gq < H > ū(p)1u(p) = mq × mq
x

= m2

x
.

PQCD factorization theorems and the DGLAP [9, 10, 11] and ERBL [12, 13, 14, 15]

evolution equations can also be derived using the light-front Hamiltonian formalism [13].

In the case of an electron-ion collider, one can represent the cross section for e − p

colisions as a convolution of the hadron and virtual photon structure functions times

the subprocess cross-section in analogy to hadron-hadron colisions. This nonstandard

description of γ∗p → X reactions gives new insights into electroproduction physics –

physics not apparent in the usual infinite-momentum frame description, such as the

dynamics of heavy quark-pair production. Intrinsic heavy quarks at high x also play an

important role [16].

The LF Heisenberg equation can in principle be solved numerically by matrix di-

agonalization using the “Discretized Light-Cone Quantization” (DLCQ) [17] method.

Anti-periodic boundary conditions in x− render the k+ momenta discrete as well as

limiting the size of the Fock basis. In fact, one can easily solve 1 + 1 quantum field the-

ories such as QCD(1 + 1) [18] for any number of colors, flavors and quark masses using

DLCQ. Unlike lattice gauge theory, the nonpertubative DLCQ analysis is in Minkowski

space, is frame-independent, and is free of fermion-doubling problems. AdS/QCD,

based on the AdS5 representation of the conformal group in five dimensions, maps to

physical 3+1 space-time at fixed LF time; this correspondence, “light-front hologra-

phy” [19], is now providing a color-confining approximation to HQCD
LF for QCD(3+1).

This method gives a remarkable first approximation to hadron spectroscopy and hadronic

LFWFs. A new method for solving nonperturbative QCD “Basis Light-Front Quantiza-

tion” (BLFQ) [20], uses the eigensolutions of a color-confining approximation to QCD

(such as LF holography) as the basis functions, rather than the plane-wave basis used

in DLCQ, thus incorporating the full dynamics of QCD. LFWFs can also be determined

from the covariant Bethe-Salpeter wavefunction by integrating over k− [21]. A review

of the light-front formalism is given in Ref. [2].
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2 Color Confinement and Supersymmetry in Hadron

Physics from LF Holography

A fundamental problem in hadron physics is to obtain a color-confining first ap-

proximation to QCD which can predict both the hadron spectrum and the LFWFs

underlying hadron phenomenology. The QCD Lagrangian with zero quark mass has no

explicit mass scale; the classical theory is conformally invariant. A profound question

is then to understand how the proton mass and other hadronic mass scales – the mass

gap – can arise even when mq = 0. In fact, chiral QCD has no knowledge of units such

as MeV . However, a remarkable principle, first demonstrated by de Alfaro, Fubini and

Furlan (dAFF) [22] in 1 + 1 quantum mechanics, is that a mass scale can appear in a

Hamiltonian without affecting the conformal invariance of the action. The essential step

is to add to the conformal Hamiltonian H0 terms proportional to the dilation operator

D and the special conformal operator K. The coefficients introduce the mass scale κ,

and the result is H = H0 + V , where V a harmonic oscillator potential V (x) = κ2x2.

The action remains conformal when one changes to a new time variable. De Téramond,

Dosch, and I [23] have shown that a mass gap and a fundamental color confinement

scale appear when one extends the dAFF procedure to light-front Hamiltonian theory.

Remarkably, the resulting light-front potential has a unique form of a harmonic oscil-

lator κ4ζ2 in the light-front invariant impact variable ζ where ζ2 = b2
⊥x(1 − x). The

result is a single-variable frame-independent relativistic equation of motion for qq̄ bound

states, a “Light-Front Schrödinger Equation” [19], analogous to the nonrelativistic radial

Schrödinger equation in quantum mechanics. The same result, including spin terms, is

obtained using light-front holography – the duality between the front form and AdS5,

the space of isometries of the conformal group – if one modifies the action of AdS5 by

the dilaton eκ
2z2 in the fifth dimension z. The Light-Front Schrödinger Equation incor-

porates color confinement and other essential spectroscopic and dynamical features of

hadron physics, including a massless pion for zero quark mass and linear Regge trajec-

tories with the same slope in the radial quantum number n and internal orbital angu-

lar momentum L. When one generalizes this procedure using superconformal algebra,

the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson,

baryon, and tetraquarks, including remarkable supersymmetric relations between the

masses of mesons and baryons of the same parity.

An essential point is that the mass scale κ is not determined absolutely by QCD.

Only ratios of masses are determined, and the theory has dilation invariance under
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κ → Cκ, In a sense, chiral QCD has an “extended conformal invariance.” The result-

ing new time variable which retains the conformal invariance of the action, has finite

support, conforming to the fact that the LF time between the interactions with the

confined constituents is finite. The finite time difference ∆τ between the LF times τ of

the quark constituents of the proton could be measured using positronium proton scat-

tering [e+e−]p→ e+e−p′. This process, which measures double diffractive deeply virtual

Compton scattering for two spacelike photons, is illustrated in Fig. 1 One can also study

the dissociation of relativistic positronium atoms to an electron and positron with light

front momentum fractions x and 1− x and opposite transverse momenta in analogy to

the E791 measurements of the diffractive dissociation of the pion to two jets [43] The

LFWF of positronium in the relativistic domain is the central input. One can produce

a relativistic positronium beam using the collisions of laser photons with high energy

photons or by using Bethe-Heitler pair production below the e+e− threshold. The pro-

duction of parapositronium via the collision of photons is analogous to pion production

in two-photon collisions and Higgs production via gluon-gluon fusion.

3 Light-Front Holography

Five-dimensional AdS5 space provides a geometrical representation of the conformal

group. The identical color-confining light-front equation for mesons of arbitrary spin J

can be derived [26] from the holographic mapping of the “soft-wall model” modification

of AdS5 space for the specific dilaton profile e+κ2z2 , where one identifies the fifth dimen-

sion coordinate z with the light-front coordinate ζ. Remarkably , AdS5 is holographically

dual to 3 + 1 spacetime at fixed light-front time τ = t + z/c. The holographic dictio-

nary is summarized in Fig. 2 The combination of light-front dynamics, its holographic

mapping to AdS5 space, and the dAFF procedure provides new insight into the physics

underlying color confinement, the nonperturbative QCD coupling, and the QCD mass

scale. A comprehensive review is given in Ref. [27]. The qq̄ mesons and their valence LF

wavefunctions are the eigensolutions of the frame-independent relativistic bound state

LF Schrödinger equation. The mesonic qq̄ bound-state eigenvalues for massless quarks

are M2(n, L, S) = 4κ2(n + L + S/2). The equation predicts that the pion eigenstate

n = L = S = 0 is massless at zero quark mass. The Regge spectra of the pseudoscalar

S = 0 and vector S = 1 mesons are predicted correctly, with equal slope in the principal

quantum number n and the internal orbital angular momentum L. A comparison with

experiment is shown in Fig. 3.
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Figure 1: Doubly Virtual Compton scattering on a proton (or nucleus) can be mea-
sured for two spacelike photons q2

1, q
2
2 < 0 with minimal, tunable, skewness ξ using

positronium-proton scattering [e+e−]p→ e+e−p′. One can also measure double deep in-
elastic scattering and elastic positronium-proton scattering. An analogous process will
create the “true muonium” atom [µ−µ−] [24, 25].
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Figure 3: Comparison of the AdS/QCD prediction M2(n, L, S) = 4κ2(n+ L+ S/2) for
the orbital L and radial n excitations of the meson spectrum with experiment. The
pion is predicted to be massless for zero quark mass. The u, d, s quark masses can be
taken into account by perturbing in < m2

q/x >. The fitted value of κ = 0.59 MeV for
pseudoscalar mesons, and κ = 0.54 MeV for vector mesons.
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Figure 4: Prediction from AdS/QCD and Light-Front Holography for meson LFWFs

ψM(x,~k⊥) and the pion distribution amplitude.

The predicted hadronic LFWFs are functions of the LF kinetic energy ~k2
⊥/x(1−x) –

the conjugate of the LF radial variable ζ2 = b2
⊥x(1−x) – times a function of x(1−x); they

do not factorize as a function of ~k2
⊥ times a function of x. The resulting nonperturbative

pion distribution amplitude φπ(x) =
∫
d2~k⊥ψπ(x,~k⊥) = (4/

√
3π)fπ

√
x(1− x), see Fig.

4, which controls hard exclusive process, is consistent with the Belle data for the photon-

to-pion transition form factor [28]. The AdS/QCD light-front holographic eigenfunction

for the ρ meson LFWF ψρ(x,~k⊥) gives excellent predictions for the observed features of

diffractive ρ electroproduction γ∗p→ ρp′, as shown by Forshaw and Sandapen [29]

It is interesting to note that the contribution of the ‘H’ diagram to QQ̄ scattering

is IR divergent as the transverse separation between the Q and the Q̄ increases [30].

This is a signal that pQCD is inconsistent without color confinement. The sum of such

diagrams could sum to the confinement potential κ4ζ2 dictated by the dAFF principle

that the action remains conformally invariant despite the appearance of the mass scale

κ in the Hamiltonian. The κ4ζ2 confinement interaction between a q and q̄ will induce
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a κ4/s2 correction to Re+e− , replacing the 1/s2 signal usually attributed to a vacuum

gluon condensate.

.

4 Supersymmetric Hadron Physics

The conformal group has an elegant 2× 2 Pauli matrix representation called super-

conformal algebra, originally discovered by Haag, Lopuszanski, and Sohnius [31](1974)

The conformal Hamiltonian operator and the special conformal operators can be repre-

sented as anticommutators of Pauli matrices H = 1/2[Q,Q†] and K = 1/2[S, S†]. As

shown by Fubini and Rabinovici, [32], a nonconformal Hamiltonian with a mass scale

and universal confinement can then be obtained by shifting Q→ Q+ωK, the analog of

the dAFF procedure. In effect one has generalized supercharges of the superconformal

algebra [32]. The resulting superconformal algebra leads to effective QCD light-front

bound-state equations for both mesons and baryons [33, 34, 35]. The supercharges

connect the baryon and meson spectra and their Regge trajectories to each other in a

remarkable manner: each meson has internal angular momentum one unit higher than

its superpartner baryon LM = LB + 1. The resulting set of LF equations for confined

quarks are shown in Fig. 5(A). In effect the baryons are color-singlet bound-states of

color-triplet quarks and 3̄C [qq] diquarks which are themselves 3C × 3C clusters. Note

that the same slope controls the Regge trajectories of both mesons and baryons in both

the orbital angular momentum L and the principal quantum number n. Only one mass

parameter κ = ω2 appears; it sets the confinement and the hadron mass scale in the

chiral limit, as well as the length scale which underlies hadron structure. “Light-Front

Holography” not only predicts meson and baryon spectroscopy successfully, but also

hadron dynamics, including vector meson electroproduction, hadronic light-front wave-

functions, distribution amplitudes, form factors, and valence structure functions. The

LF Schrödinger Equations for baryons and mesons derived from superconformal alge-

bra are shown in Fig. 5. In effect the baryons on the proton (Delta) trajectory are

bound states of a quark with color 3C and scalar (vector) diquark with color 3̄C The

proton eigenstate labeled ψ+ (parallel quark and baryon spins) and ψ− (anti parallel

quark and baryon spins) have equal Fock state probability – a feature of “quark chiral-

ity invariance”. Predictions for the static properties of the nucleons are discussed in ref.

[36]

The comparison between the meson and baryon masses of the ρ/ω Regge trajectory
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with the spin-3/2 ∆ trajectory is shown in Fig. 5(B). Superconformal algebra predicts

that the bosonic meson and fermionic baryon masses are equal if one identifies each

meson with internal orbital angular momentum LM with its superpartner baryon with

LB = LM − 1; the meson and baryon superpartners then have the same parity, Since

2+LM = 3+LB, the meson and baryon superpartners are also the same. Superconformal

algebra also predicts that the LFWFs of the superpartners are identical, and thus the

corresponding elastic and transition form factors are equal. The predicted identity of

meson and baryon timelike form factors can be tested in e+e− → HH̄ ′ reactions.

As illustrated in fFg. 6, the hadronic eigensolutions of the superconformal alge-

bra are themselves 2 × 2 matrices connected internally by the supersymmetric algebra

operators. In addition to the meson and baryon eigenstates, one also predicts color

singlet tetraquark diquark-antidiquark bound states with the same mass as the baryon.

One can also generalize these results to heavy-light [qQ] mesons and [[qq]Q] baryons.

The mass parameter controlling the Regge slopes will be increased for heavy mQ; how-

ever, the supersymmetric connections between the heavy-light hadrons is predicted to

be maintained.

5 Ridge formation from flux-tube collisions

In the case of ep → e′X, one can consider the collisions of the confining QCD flux

tube appearing between the q and q̄ of the virtual photon with the flux tube between

the quark and diquark of the proton. Since the qq̄ plane is aligned with the scattered

electron’s plane, the resulting “ridge” of hadronic multiplicity produced from the γ∗p

collision will also tend to be aligned with the scattering plane of the scattered electron.

The virtual photon’s flux tube will also depend on the photon virtuality Q2, as well

as the flavor of the produced pair arising from γ∗ → qq̄. In the case of high energy

γ∗γ∗ collisions, one can control the produced hadron multiplicity and ridge geometry

using the scattered electrons’ planes or the scattered proton planes in ultra-peripheral

collisions at the LHC. The resulting dynamics [37] is a natural extension of the flux-tube

collision description of the ridges produced in p− p collisions [38].
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Superconformal Algebra

• quark-antiquark meson (LM = LB+1))

• quark-diquark baryon (LB)

• quark-diquark baryon (LB+1)

• diquark-antidiquark tetraquark (LT = LB)

• Universal Regge slopes

2X2 Hadronic Multiplets

� = 2
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-R†
�
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'$e ee
 B�, LB + 1
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'$e eu u
�T , LB

-R†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2 ⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2�

�m2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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masses strongly break the conformal symmetry [18].

The structure of the hadronic mass generation obtained from the supersymmetric

Hamiltonian GS, Eq. (17), provides a frame-independent decomposition of the quadratic

masses for all four members of the supersymmetric multiplet. In the massless quark limit:

M2
H/� =

contribution from 2-dim

light-front harmonic oscillator
z }| {
(2n + LH + 1)| {z }

kinetic

+ (2n + LH + 1)| {z }
potential

+

contribution from AdS and

superconformal algebra
z }| {
2(LH + s) + 2� . (25)

Here n is the radial excitation number and LH the LF angular momentum of the hadron

wave function; s is the total spin of the meson and the cluster respectively, � = �1 for the

meson and for the negative-chirality component of the baryon (the upper components

in the susy-doublet) and � = +1 for the positive-chirality component of baryon and

for the tetraquark (the lower components). The contributions to the hadron masses

squared from the light-front potential �2⇣2 and the light-front kinetic energy in the LF

Hamiltonian, are identical because of the virial theorem.

We emphasize that the supersymmetric features of hadron physics derived here from

superconformal quantum mechanics refers to the symmetry properties of the bound-

state wave functions of hadrons and not to quantum fields; there is therefore no need to

introduce new supersymmetric fields or particles such as squarks or gluinos.

We have argued that tetraquarks – which are degenerate with the baryons with the

same (leading) orbital angular momentum– are required to complete the supermulti-

plets predicted by the superconformal algebra. The tetraquarks are the bound states

of the same confined color-triplet diquarks and anti-diquarks which account for baryon

spectroscopy.

The light-front cluster decomposition [32, 33] for a bound state of N constituents

–as an “active” constituent interacting with the remaining cluster of N �1 constituents–

also has implications for the holographic description of form factors. As a result, the

form factor is written as the product of a two-body form factor multiplied by the form

factor of the N � 1 cluster evaluated at its characteristic scale. The form factor of the

N�1 cluster is then expressed recursively in terms of the form factor of the N�2 cluster,

and so forth, until the overall form factor is expressed as the N � 1 product of two-body

form factors evaluated at di↵erent characteristic scales. This cluster decomposition is

in complete agreement with the QCD twist assignment which leads to counting-rule

scaling laws [34, 35]. This solves a previous problem with the twist assignment for

15

+ <
X

i

m2
i

xi
>

�(mesons) = �1 �(baryons, tetraquarks) = +1

Figure 6: The eigenstates of superconformal algebra have a 2× 2 representation of mass
degenerate bosons and fermions: a meson with LM = LB + 1, a baryon doublet with
LB, LB + 1 components and a tetraquark with LT = LB. The breakdown of LF kinetic,
potential, spin, and quark mass contributions to each hadron is also shown. The virial
theorem predicts the equality of the LF kinetic and potential contributions.
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6 Calculations using LF-Time-Ordered Perturbation

Theory and Hadronization at the Amplitude Level

LF-time-ordered perturbation theory can be advantageous for perturbative QCD

calculations. An excellent example of LF-time-ordered perturbation theory is the com-

putation of multi-gluon scattering amplitudes by Cruz-Santiago and Stasto [39]. In

this method, the propagating particles are on their respective mass shells: kµk
µ = m2,

and intermediate states are off-shell in invariant mass; i.e., P− 6= ∑
k−i . Unlike in-

stant form, where one must sum n! frame-dependent amplitudes, only the τ -ordered

diagrams where each propagating particle has positive k+ = k0 +kz can contribute. The

number of nonzero amplitudes is also greatly reduced by noting that the total angular

momentum projection Jz =
∑n−1

i Lzi +
∑n

i S
z
i and the total P+ are conserved at each

vertex. In a renormalizable theory, the change in orbital angular momentum is limited

to ∆Lz = 0,±1 at each vertex [40]

A remarkable advantage of LF time-ordered perturbation theory (LFPth) is that the

calculation of a subgraph of any order in pQCD only needs to be done once; the result

can be stored in a “history” file. This is due to the fact that in LFPth the numerator

algebra is independent of the process; the denominator changes, but only by a simple

shift of the initial P−. Another simplification is that loop integrations are three dimen-

sional:
∫
d2~k⊥

∫ 1

0
dx. Unitarity and explicit renormalization can be implemented using

the “alternate denominator” method which defines the required subtraction countert-

erms [41].

The new insights into color confinement given by AdS/QCD suggest that one could

compute hadronization at amplitude level [42] using the confinement interaction and

the LFWFs predicted by AdS/QCD and Light-Front Holography. One can postulate

that the invariant mass of a color-singlet cluster M is the variable which separates

perturbative and nonperturbative dynamics. For example, consider e+e− annihilation

using LF τ - ordered perturbation theory. At an early stage in LF time the annihilation

will produce jets of quarks and gluons in an intermediate state that are off the P−

energy shell. If a color-singlet cluster of partons in a jet satisfies M2 < κ2, the cluster

constituents will be ruled by the κ4ζ2 color-confinement potential. At this stage, the

LFWF ψH converts the off-shell partons to the on-shell hadron. Quarks and gluons only

appear in intermediate states, but only hadrons can be produced. Thus the AdS/QCD

Light-Front Holographic model suggests how one can implement the transition between

perturbative and nonperturbative QCD. For a QED analog, see Refs. [24, 25].
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7 The Light-Front Vacuum

It is important to distinguish the LF vacuum from the conventional instant-form

vacuum. The eigenstates of the instant-form Hamiltonian describe a state defined at

a single instant of time t over all space, and they are thus acausal as well as frame-

dependent. The instant-form vacuum is defined as the lowest energy eigenstate of the

instant-form Hamiltonian. As discussed by Zee [45], the cosmological constant is of

order 10120 times larger than what is observed if one computes the effects of quantum

loops from QED. Similarly, QCD instantons and condensates in the instant-form vacuum

give a contribution of order 1042. The contribution of the Higgs VEV computed in the

instant form vacuum is 1054 times too large.

In contrast, the vacuum in LF Hamlitonian theory is defined as the eigenstate of HLF

with lowest invariant mass. It is defined at fixed LF time τ within the causal horizon, and

it is frame-independent; i.e., it is independent of the observer’s motion. Vacuum loop

diagrams from quantum field theory do not appear in the front-form vacuum since the

+ momenta are positive: k+
i = k0

i + kzi ≥ 0, and the sum of + momenta is conserved at

every vertex. The creation of particles cannot arise from the LF vacuum since
∑

i k
+i 6=

P+
vacuum = 0. Since propagation with negative k+ does not appear, the LF vacuum is

trivial up to possible k+ = 0 “zero” modes. The physics associated with quark and gluon

QCD vacuum condensates of the instant form are replaced by physical effects contained

within the hadronic LFWFs in the hadronic domain. This is referred to as “in-hadron”

condensates [47, 48, 46]. In the case of the Higgs theory, the traditional Higgs vacuum

expectation value (VEV) is replaced by a “zero mode”, analogous to a classical Stark or

Zeeman field [49]. The Higgs LF zero mode [49] has no energy-momentum density, so it

also gives zero contribution to the cosmological constant.

The universe is observed within the causal horizon, not at a single instant of time.

The causal, frame-independent light-front vacuum can thus provide a viable match to

the empty visible universe [46]. The huge contributions to the cosmological constant

thus do not appear if one notes that the causal, frame-independent light-front vacuum

has no quantum fluctuations – in dramatic contrast to to the acausal, frame-dependent

instant-form vacuum; the cosmological constant arising from quantum field theory thus

vanishes if one uses the front form. The observed nonzero value could could be a property

of gravity itself, such as the “emergent gravity” postulated by E. Verlinde [50]. It is also

possible that if one solves electroweak theory in a curved universe, the Higgs LF zero

mode would be replaced with a field of nonzero curvature which could give a nonzero
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contribution.

8 The QCD Coupling at all Scales

The QCD running coupling αs(Q
2) sets the strength of the interactions of quarks

and gluons as a function of the momentum transfer Q. The dependence of the coupling

Q2 is needed to describe hadronic interactions at both long and short distances. The

QCD running coupling can be defined [51] at all momentum scales from a perturbatively

calculable observable, such as the coupling αsg1(Q
2), which is defined from measurements

of the Bjorken sum rule. At high momentum transfer, such “effective charges” satisfy

asymptotic freedom, obey the usual pQCD renormalization group equations, and can be

related to each other without scale ambiguity by commensurate scale relations [52].

The dilaton e+κ2z2 soft-wall modification of the AdS5 metric, together with LF

holography, predicts the functional behavior of the running coupling in the small Q2 do-

main [53]: αsg1(Q
2) = πe−Q

2/4κ2 . Measurements of αsg1(Q
2) are remarkably consistent [54]

with this predicted Gaussian form; the best fit gives κ = 0.513± 0.007 GeV . See Fig. 7

Deur, de Teramond, and I [53, 55, 56] have also shown how the parameter κ, which

determines the mass scale of hadrons and Regge slopes in the zero quark mass limit,

can be connected to the mass scale Λs controlling the evolution of the perturbative

QCD coupling. The high momentum transfer dependence of the coupling αg1(Q2) is

predicted by pQCD. The matching of the high and low momentum transfer regimes

of αg1(Q2) – both its value and its slope – then determines a scale Q0 = 0.87 ± 0.08

GeV which sets the interface between perturbative and nonperturbative hadron dynam-

ics. This connection can be done for any choice of renormalization scheme, such as

the MS scheme, as seen in Fig. 7. The result of this perturbative/nonperturbative

matching is an effective QCD coupling defined at all momenta. The predicted value

of ΛMS = 0.339 ± 0.019 GeV from this analysis agrees well the measured value [57]

ΛMS = 0.332 ± 0.019 GeV. These results, combined with the AdS/QCD superconfor-

mal predictions for hadron spectroscopy, allow us to compute hadron masses in terms

of ΛMS: mp =
√

2κ = 3.21 ΛMS, mρ = κ = 2.2 ΛMS, and mp =
√

2mρ, meeting a

challenge proposed by Zee [58]. The value of Q0 can be used to set the factorization

scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of

distribution amplitudes. Deur, de Téramond, and I have also computed the dependence

of Q0 on the choice of the effective charge used to define the running coupling and the

renormalization scheme used to compute its behavior in the perturbative regime. The
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use of the scale Q0 to resolve the factorization scale uncertainty in structure functions

and fragmentation functions, in combination with the scheme-indepedent principle of

maximum sensitivity (PMC ) [59] for setting renormalization scales, can greatly improve

the precision of pQCD predictions for collider phenomenology.

9 Is the Momentum Sum Rule Valid for Nuclear

Structure Functions?

Sum rules for deep inelastic scattering are usually analyzed using the operator prod-

uct expansion of the forward virtual Compton amplitude, assuming it depends in the

limit Q2 →∞ on matrix elements of local operators such as the energy-momentum ten-

sor. The moments of structure functions and other distributions can then be evaluated

as overlaps of the target hadron’s light-front wavefunction, as in the Drell-Yan-West

formulae for hadronic form factors [60, 61, 62, 63]. The real phase of the resulting

DIS amplitude and its OPE matrix elements reflects the real phase of the stable target

hadron’s wavefunction.

The “handbag” approximation to deeply virtual Compton scattering also defines

the “static” contribution [64, 65] to the measured parton distribution functions (PDF),

transverse momentum distributions, etc. The resulting momentum, spin and other sum

rules reflect the properties of the hadron’s light-front wavefunction. However, final-state

interactions which occur after the lepton scatters on the quark, can give non-trivial

contributions to deep inelastic scattering processes at leading twist and thus survive

at high Q2 and high W 2 = (q + p)2. For example, the pseudo-T -odd Sivers effect [66]

is directly sensitive to the rescattering of the struck quark. Similarly, diffractive deep

inelastic scattering (DDIS) involves the exchange of a gluon after the quark has been

struck by the lepton [67]. In each case the corresponding DVCS amplitude is not given by

the handbag diagram since interactions between the two currents are essential. These

“lensing” corrections survive when both W 2 and Q2 are large since the vector gluon

couplings grow with energy. Part of the final state phase can be associated with a

Wilson line as an augmented LFWF [68] which does not affect the moments.

The Glauber propagation of the vector system V produced by the DDIS interaction

on the nuclear front face and its subsequent inelastic interaction with the nucleons in the

nuclear interior V +Nb → X occurs after the lepton interacts with the struck quark. The

corresponding DVCS amplitude is not given by the handbag diagram since interactions
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between the two currents are essential. Because of the rescattering dynamics, the DDIS

amplitude acquires a complex phase from Pomeron and Regge exchange; thus final-state

rescattering corrections lead to nontrivial “dynamical” contributions to the measured

PDFs; i.e., they are a consequence of the scattering process itself [69]. The I = 1

Reggeon contribution to DDIS on the front-face nucleon then leads to flavor-dependent

antishadowing [70, 71]. This could explain why the NuTeV charged current measurement

µA→ νX scattering does not appear to show antishadowing, in contrast to deep inelastic

electron-nucleus scattering as discussed in ref. [72].

Diffractive deep inelastic scattering is leading-twist. and it is an essential compo-

nent of the two-step amplitude which causes shadowing and antishadowing of the nuclear

PDF. It is important to analyze whether the momentum and other sum rules derived

from the OPE expansion in terms of local operators remain valid when these dynamical

rescattering corrections to the nuclear PDF are included. The OPE is derived assuming

that the LF time separation between the virtual photons in the forward virtual Compton

amplitude γ∗A→ γ∗A scales as 1/Q2. However, the propagation of the vector system V

produced by the DDIS interaction on the front face and its inelastic interaction with the

nucleons in the nuclear interior V + Nb → X are characterized by a non-vanishing LF

time interval in the nuclear rest frame. Note also that shadowing in deep inelastic lepton

scattering on a nucleus involves nucleons facing the incoming lepton beam. The geo-

metrical orientation of the shadowed nucleons is not a property the frame-independent

nuclear LFWFs used to evaluate the matrix elements of local currents. Thus leading-

twist shadowing and antishadowing appear to invalidate the sum rules for nuclear PDFs.

The same complications occur in the leading-twist analysis of deeply virtual Compton

scattering γ∗A → γ∗A on a nuclear target. Thus the leading-twist multi-nucleon pro-

cesses which produce shadowing and antishadowing in a nucleus are not accounted for

using the Q2 →∞ OPE analysis.

10 Summary

Light-Front Quantization provides a physical, frame-independent formalism for hadron

dynamics and structure. Observables such as structure functions, transverse momen-

tum distributions, and distribution amplitudes are defined from the hadronic light-front

wavefunctions. One obtains new insights into the hadronic spectrum, light-front wave-

functions, and the e−
Q2

4κ2 Gaussian functional form of the QCD running coupling in the

nonperturbative domain using light-front holography – the duality between the front
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form and AdS5, the space of isometries of the conformal group. In addition, super-

conformal algebra leads to remarkable supersymmetric relations between mesons and

baryons of the same parity. The mass scale κ underlying confinement and hadron masses

can be connected to the parameter ΛMS in the QCD running coupling by matching the

nonperturbative dynamics, as described by the effective conformal theory mapped to

the light-front and its embedding in AdS space, to the perturbative QCD regime. The

result is an effective coupling defined at all momenta. This matching of the high and

low momentum transfer regimes determines a scale Q0 which sets the interface between

perturbative and nonperturbative hadron dynamics. The use of Q0 to resolve the factor-

ization scale uncertainty for structure functions and distribution amplitudes, in combi-

nation with the principle of maximal conformality (PMC) for setting the renormalization

scales, can greatly improve the precision of perturbative QCD predictions for collider

phenomenology. The absence of vacuum excitations of the causal, frame-independent

front form vacuum has important consequences for the cosmological constant. I have

also discussed evidence that the antishadowing of nuclear structure functions is non-

universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena

may be incompatible with sum rules for nuclear parton distribution functions.
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