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Abstract

Superstring compactification on a manifold of Spin(7) holonomy gives rise to a 2d worldsheet

conformal field theory with an extended supersymmetry algebra. The N = 1 superconformal

algebra is extended by additional generators of spins 2 and 5/2, and instead of just superconformal

symmetry one has a c = 12 realization of the symmetry group SW(3/2, 2). In this paper, we

compute the characters of this supergroup, and decompose the elliptic genus of a general Spin(7)

compactification in terms of these characters. We find suggestive relations to various sporadic

groups, which are made more precise in a companion paper.
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1 Introduction

Berger’s classification of holonomy groups [1] allows for only a few possibilities yielding supersym-

metric vacua of the superstring. Beyond the low-dimensional avatars of the sequence of spaces of

SU(n) or Sp(n) holonomy (comprising Calabi-Yau threefolds and fourfolds and low-dimensional

hyperKähler manifolds), there are two exceptional holonomy groups that are relevant: G2 and

Spin(7). Compact examples of such spaces, of possible interest for string compactification, were

first constructed by Joyce – for Spin(7) holonomy good discussions appear in [2, 3]. Our goal in

this paper is to compute the elliptic genera of Spin(7) manifolds, and to make some observations

about interesting connections between geometry, number theory, and group theory at which they

hint. A more precise version of these connections is derived in the companion paper [4].

Our study will proceed as follows. In §2, we derive on macroscopic grounds (using simple

arguments about the allowed space of modular functions) the elliptic genus of a Spin(7) manifold

X. This yields a one-parameter family of modular functions under the congruence subgroup Γθ;

the single parameter is determined by the Euler character χ(X).

We then wish to decompose the elliptic genus into a sum of irreducible characters of the world-

sheet superconformal field theory. It has been known since the work of Shatashvili and Vafa [5]

that the N = 1 superconformal algebra is extended in this case by the addition of new generators of

spins 2 and 5/2. This yields a c = 12 realization of the SW(3/2, 2) algebra. While many properties

of the representations were studied in [6], the full set of characters have not yet been determined

(although a conjecture for the massive characters, which we will confirm, appears in [7]). In §3 we

discuss the derivation of the characters of the algebra.

In §4, we decompose the elliptic genus into irreducible characters. We find a suggestive con-

nection with representation theory of various sporadic simple groups. It is difficult, however, to

make this connection precise beyond the level of numerology for reasons we discuss in §5. A precise

connection between a chiral conformal field theory with the same superconformal symmetry group

and these groups appears in [4].

Indeed, a good part of our motivation for undertaking this study was the 2010 observation of

Eguchi, Ooguri, and Tachikawa (EOT) regarding K3 models [8]. K3 sigma models enjoy N = (4, 4)

superconformal symmetry. EOT observed that in the decomposition of the elliptic genus of K3 in

terms of N = 4 characters, the coefficients could be expressed as sums of dimensions of irreducible
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representations of M24, the largest Mathieu group. Explicitly, the characters of the N = 4 algebra

are

chh= 1
4
,l=0(τ, z) = − iy

1
2 θ1(τ, z)

η(τ)3

∞∑

n=−∞

(−1)nq
1
2
n(n+1)yn

1− y qn
(1.1)

chh=n+ 1
4
,l= 1

2
(τ, z) = qn−

1
8
θ1(τ, z)2

η(τ)3
(1.2)

in terms of which the K3 elliptic genus may be written

ZK3
elliptic(τ, z) = 8

[(
θ2(τ, z)

θ2(τ, 0)

)2

+

(
θ3(τ, z)

θ3(τ, 0)

)2

+

(
θ4(τ, z)

θ4(τ, 0)

)2
]

(1.3)

= 24 chh= 1
4
,l=0(τ, z) +

∞∑

n=0

An chh=n+ 1
4
,l= 1

2
(τ, z) . (1.4)

The observation of EOT, applied to the first few coefficients, is:

A0 = −2 = −1− 1 ,

A1 = 90 = 45 + 45 ,

A2 = 462 = 231 + 231 ,

A3 = 1540 = 770 + 770 ,

A4 = 4554 = 2277 + 2277 ,

. . . (1.5)

The decompositions and twining genera were put on firm footing in [9–12]. It was proven

in [13] that all the An for n ≥ 1 are sums of irreducible representations of M24 with only positive

coefficients. However, a natural construction of the full M24 group acting on a module, such as

one associated to K3 sigma models, is unknown. Mukai [14] showed that the groups of symplectic

automorphisms of any K3—that is, automorphisms that act trivially on the holomorphic 2-form—

fall into certain subgroups of M23 and hence are insufficient to explain the appearance of M24.

Moreover, [15] showed that no K3 sigma model admits the full M24 as a symmetry and some sigma

models possess symmetries that lie outside M24, yet in Co1. Further aspects of this moonshine and

its precise relation to K3, as well as various extensions, have been explored in [16–29]. For a recent
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review, see [30].

While the precise nature of the relation of M24 to K3 σ-models remains unclear, it is clearly

worthwhile to look for similar connections in other classes of supersymmetric string compactifi-

cations. Especially relevant to our work are various precise versions of mock modular moonshine

associated with the superconformal field theory on the chiral E8 lattice [20] (building on the earlier

work in [31]; see also the recent related work [32]). Our study of Spin(7) manifolds here suggested

an extension of the latter approach, and indeed using the same characters we find here, a pre-

cise moonshine conjecture relating M24, a certain c = 12 conformal field theory with SW(3/2, 2)

symmetry, and various mock modular forms appears in the closely related companion work [4].

Readers primarily interested in the main results of the paper can skip directly to §4.

2 Elliptic Genus for Spin(7) manifolds

Let us begin by calculating the elliptic genera for manifolds of Spin(7) holonomy. We will derive

the answer using general arguments based on modularity and pole structure, and then check our

result using orbifold techniques to directly compute the answer in some of the examples constructed

by Joyce [2, 3].

2.1 Genera(lities)

The elliptic genus can be defined for any compact even-dimensional spin manifold1 [33]. Let’s first

consider the NS,+ elliptic genus, defined as

ZNS,+(τ) = TrNS,R(−1)FRqL0−c/24q̄L̄0−c/24. (2.1)

Note that this trace acts as a Witten index on the right-movers, so the q̄ dependence drops out

leaving us with a holomorphic object.

It will also be convenient to define elliptic genera with different boundary conditions and inser-

1The genus as defined here vanishes for odd-dimensional manifolds.
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tions in the trace:

χ = TrR,R(−1)F qL0−c/24q̄L̄0−c/24

ZR,+(τ) = TrR,R(−1)FRqL0−c/24q̄L̄0−c/24

ZNS,−(τ) = TrNS,R(−1)F qL0−c/24q̄L̄0−c/24 (2.2)

where (−1)F is the fermion sign operator. χ is the Witten index, and the rest of the genera are

functions of τ , which are invariant under a level 2 congruence subgroup of SL(2,Z) that preserves

the appropriate spin structure on the torus.

By considering elements of SL(2,Z) that exchange spin structures, we can relate ZR,+, ZNS,−,

and ZNS,+ to each other. In particular

ZR,+(τ) = ZNS,−(−1/τ)

ZR,+(τ) = −ZNS,+(−1/τ + 1). (2.3)

The congruence subgroup that preserves the spin structure of ZNS,+(τ) (antiperiodic fermions

in space and time) is given by

Γθ =
{
γ ∈ SL(2,Z)

∣∣∣ γ ≡
(

1 0

0 1

)
or
(

0 1

1 0

)
mod 2

}
, (2.4)

which is the subgroup generated by τ → τ + 2 and τ → −1/τ . The fundamental domain of Γθ has

genus 0, and the corresponding normalized (i.e. with constant removed) Hauptmodul is

K(τ) =
∆(τ)2

∆(2τ)∆(τ/2)
− 24

= q−1/2 + 276q1/2 + 2048q +O(q)3/2, (2.5)

where ∆(τ) = η(τ)24 and q = exp(2πiτ). In particular, any function invariant under Γθ that is

meromorphic on the upper half-plane and at ∞ can be written as a rational function of K(τ). By

looking at the pole structure of a function we can specify the rational coefficients of K(τ).

Just as in [34], the function ZNS,+ is convergent for 0 < |q| < 1 due to the Tr qL0 so there are

only potential poles at τ = i∞ and τ = 1. The NS ground state energy of − d
16 gives ZNS,+(τ) a
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pole of order d
16 at τ = i∞, where d is the real dimension of the manifold. For Spin(7) manifolds,

d = 8 and the pole will be of order 1
2 . At τ = 1, the other cusp, the function is regular because the

Ramond sector genus ZR,+ is regular at the high-temperature cusp (since its ground states have

zero energy). Transforming to ZNS,+ using (2.3) we see

lim
τ→i∞

ZR,+(τ) = −ZNS,+(1).

Thus we can write the elliptic genus as

ZNS,+(τ) = c0 + c1K(τ) (2.6)

for constants c0 and c1. From (2.3), we can get the R+ elliptic genus as well.

2.2 Specialization to Spin(7)

The only remaining freedom is to fix the two coefficients in (2.6). To do this, we now turn to

geometric properties of the elliptic genus. (Alternatively, one could try to match the results to

explicit computations in two models, particularly if one knows which topological quantities the

constants depend on.)

Witten emphasized the geometric interpretation of the elliptic genus as a character-valued index

of a (twisted) Dirac operator on loop space LM , for any spin manifold M with tangent bundle2

TM [35]. Construct the following symmetric and antisymmetric products of bundles:

R(TM ) =
⊗

l∈Z
l>0

Sql(TM )⊗
⊗

l∈Z+ 1
2

l>0

∧

ql

(TM ) (2.7)

where we have defined
∧
t TM =

∑dimM
i=0

∧i TM t
i and StTM =

∑∞
i=0 S

iTM t
i. Then the NS-R elliptic

genus for the even-dimensional manifold M with dimM = d can be written as

ZNS,+ = q−d/16
〈
Â(M) chR(TM ),M

〉
. (2.8)

The inner product is often rewritten as an integral over M . Here, Â(M) is the Â-class of the

2One could of course consider more general vector bundles on the manifold, but we will not do this here.
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manifold. If M has total Pontryagin class p(TM ) =
∏
i(1 + ui) then we may write Â(M) =

∏
i

√
ui/2

sinh(
√
ui)/2

, where we have used the splitting principle. In what follows, we will frequently use

the relation between Pontryagin and Chern classes: pi(TM ) = (−1)ic2i(TC).

The Fourier development of the elliptic genus is given by

ZNS,+ = q−d/16
∑

l

index(Rl)q
l/2 (2.9)

where Rl is the representation of R(TM ) multiplying the lth power of q in (2.7). For Spin(7)

manifolds we want to match this to equation (2.6); to fix two undetermined constants, we need to

determine two of the Rl. We will choose the simplest cases, R0 = 1 and R1 = TM , and compute

their indices below.

A comment before we get started: the Â-genus, which is the evaluation of the above Â-class

Â(M) on the fundamental class3 of the manifold, is itself the index of the Dirac operator4. Joyce

proved that for simply-connected Spin(7) manifolds, this quantity is simply equal to 1 [2]. This

fact follows from the formula for the Â-genus, 24Â = −1 + b1− b2 + b3 + b4+− 2b4−, and a constraint

on the Betti numbers of Spin(7) manifolds: b3 + b+4 − b2 − 2b−4 − 1 = 24. Note that the formula

for the Â-genus can be rewritten in terms of Pontryagin classes as 5760Â = 7p2
1 − 4p2. In the

previous formula and below we will suppress the argument of the Pontryagin classes and so write

pi to denote pi(TM ). We will also abuse notation by using the same expression before and after

integrating over M.

First we look at the q−1/2 coefficient. We have index(R0) =
∫
M Â(M) ch(1). For an 8-manifold,

we can expand Â(M) = 1 − p2
24 +

7p21−4p2
5760 . Integrating over M and using Joyce’s result that the

Â-genus equals 1 we just get a coefficient of 1. (In the Calabi-Yau case we would get Â = 2 because

such manifolds preserve more supersymmetry.) In other words, we have just counted the dimension

of the space of harmonic spinors.

We also want to find the q0 coefficient, which is given by index(T ) =
∫
M Â(M) ch(T ). For any

complex bundle V on an 8-manifold we can expand the Chern character as ch(V ) = dim(V) +

c1(V ) + 1
2(c1(V )2 − c2(V )) + 1

3!(c1(V )3 − 3c2(V )c1(V ) + 3c3(V )) + 1
4!(c1(V )4 − 4c2(V )c1(V )2 +

3In plain language, this is an instruction to take the form of top degree in the expansion of Â(M) and integrate
over M.

4In the Kähler case, this is equivalent to the index of ∂̄ acting on (0, q) forms, which becomes the holomorphic
Euler characteristic χ0 =

∑
q(−1)qH0,q(M,Z).
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4c3(V )c1(V )+2c2(V )2−4c4(V )). For us, ch(T ) denotes the Chern character of the complexification

of the tangent bundle, TC = T ⊕ iT , though below we will suppress this argument as well. Setting

c1 = 0, multiplying by Â(M), and integrating we are left with

index(T ) = dim(T )
7p2

1 − 4p2

5760
+
p1c2

24
+

1

4!
(2c2

2 − 4c4) (2.10)

where we can set the first term to dim(T ) because it is multiplied by the Â-genus, which is just 1.

It is convenient to use the relation 4p2 − p2
1 = 8χ (see the remark below the proof of 7.3 in [36]).

Employing the relationship between Chern and Pontryagin classes above, c4 = χ = p2 and−c2 = p1,

the relation from [36] becomes c2
2 = −4χ.

Then we have

index(T ) = dim(T )− c2
2

24
+

1

4!
(2c2

2 − 4χ) = −χ
6

+
c2

2

24
+ dim(T ) = −χ

3
+ 8. (2.11)

In the last line we have used dim(T ) = dimC(TC) = dimR(T ). Our final result, then, is that for a

Spin(7) manifold M , one has

ZNS,+(M) = K(τ) +
(

8− χ

3

)
= q−1/2 +

(
8− χ

3

)
+ 276q1/2 + 2048q + . . . (2.12)

In the rest of the paper, we will decompose (2.12) in terms of characters of SW(3/2, 2), and observe

some interesting structure in the coefficients. We discuss the relevant numerology in §4.

2.3 Some explicit computations

We now compute a few examples of Spin(7) elliptic genera directly, using orbifold techniques. We

will see that they obey the general formula (2.12). In [3], Joyce constructs several examples of

manifolds with Spin(7) holonomy. We will focus on his toroidal orbifolds of the form T 8/Z4
2. Our

computations follow the techniques used in [37]. For our conventions regarding theta functions, see

Appendix A.

Joyce gives three examples of T 8/Z4
2 orbifolds with Spin(7) holonomy. Label the torus coordi-

nates by (x1, . . . , x8). The orbifolds are as follows.
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1. The first example Joyce gives has the following orbifold action:

α : (x1, . . . , x8) 7→ (−x1,−x2,−x3,−x4, x5, x6, x7, x8)

β : (x1, . . . , x8) 7→ (x1, x2, x3, x4,−x5,−x6,−x7,−x8)

γ : (x1, . . . , x8) 7→ (1
2 − x1,

1
2 − x2, x3, x4,

1
2 − x5,

1
2 − x6, x7, x8)

δ : (x1, . . . , x8) 7→ (−x1, x2,
1
2 − x3, x4,−x5, x6,

1
2 − x7, x8). (2.13)

We need to sum over the untwisted sector and all fifteen twisted sectors, each of which must

be projected onto Z4
2-invariant states by inserting the product

(
1+α

2

) (1+β
2

)(
1+γ

2

) (
1+δ

2

)
into

the trace. In total we will need to sum over 256 separate boundary conditions. Fortunately,

most of the sectors’ contributions to the elliptic genus will vanish.

Any sector with both an untwisted space and an untwisted time boundary condition along any

of the eight coordinates will have a right-moving fermion zero-mode and thus its contribution

will vanish. Similarly, any sector with both a twisted space and a twisted time boundary

condition along any of the eight coordinates will have a left-moving fermion zero-mode and

its contribution also vanishes. Finally, any insertions in the trace that permute fixed points

will not contribute.

The surviving twists are

ZNS,+ = 16

(
1

αβ

+ αβ

1

+ β
α

+ α

β

)
(2.14)

where the 16 includes both the right-moving Ramond ground states, and the fixed point

contributions.

Calculating the contributions of each twisted sector to the elliptic genus is an exercise in

free field theory. For example, the 1

αβ

contribution involves a spatial twist for all eight

bosons and fermions, and no time twist, making the bosons antiperiodic in space, and the

fermions periodic in space (recall we have NS boundary conditions). We insert nothing in the

trace. Finally we have to take into account the ground state energy of q
1
2 and ground state
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degeneracy. The contribution to the elliptic genus is

1

αβ

= 4q
1
2

∞∏

n=1

(
1 + qn

1− qn−
1
2

)8

=
θ2(τ, 0)4

θ4(τ, 0)4
. (2.15)

The sum over all sectors is

ZNS,+ = 16

(
θ2(τ, 0)4

θ4(τ, 0)4
+
θ4(τ, 0)4

θ2(τ, 0)4
− 2

)

=
1
√
q
− 40 + 276

√
q + 2048q + 11202q3/2 + . . .

= K(τ)− 40. (2.16)

If we do a similar computation for the R+ elliptic genus, we get

ZR,+ = 16

(
θ3(τ, 0)4

θ4(τ, 0)4
+
θ4(τ, 0)4

θ3(τ, 0)4
+ 2

)

= 64 + 4096q + 98304q2 + 1228800q3 + . . . (2.17)

Joyce gives a resolution of this orbifold to a smooth manifold with Euler character χ = 144,

which matches (2.12) [2, 3].

2. The second example is a T 8/Z4
2 with the Z2’s acting as

α : (x1, . . . , x8) 7→ (−x1,−x2,−x3,−x4, x5, x6, x7, x8)

β : (x1, . . . , x8) 7→ (x1, x2, x3, x4,−x5,−x6,−x7,−x8)

γ : (x1, . . . , x8) 7→ (1
2 − x1,

1
2 − x2, x3, x4,−x5,−x6, x7, x8)

δ : (x1, . . . , x8) 7→ (−x1, x2,−x3, x4,
1
2 − x5, x6,

1
2 − x7, x8). (2.18)

The contributing twists to the elliptic genus in this example are the same as in the previous,
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so we again get

ZNS,+ = 16

(
θ2(τ, 0)4

θ4(τ, 0)4
+
θ4(τ, 0)4

θ2(τ, 0)4
− 2

)

=
1
√
q
− 40 + 276

√
q + 2048q + 11202q3/2 + . . . (2.19)

and similarly

ZR,+ = 16

(
θ3(τ, 0)4

θ4(τ, 0)4
+
θ4(τ, 0)4

θ3(τ, 0)4
+ 2

)

= 64 + 4096q + 98304q2 + 1228800q3 + . . . (2.20)

Joyce gives several inequivalent resolutions of this orbifold, but all of them have Euler char-

acter χ = 144.

3. Joyce provides a final example with Z2 group actions

α : (x1, . . . , x8) 7→ (−x1,−x2,−x3,−x4, x5, x6, x7, x8)

β : (x1, . . . , x8) 7→ (x1, x2, x3, x4,−x5,−x6,−x7,−x8)

γ : (x1, . . . , x8) 7→ (−x1,−x2, x3, x4,−x5,−x6, x7, x8)

δ : (x1, . . . , x8) 7→ (1
2 − x1, x2,

1
2 − x3, x4,

1
2 − x5, x6,

1
2 − x7, x8). (2.21)

Unlike in the previous two examples, this orbifold has three Z2 actions that do not involve

coordinate shifts whereas the previous examples had only two. Thus we get more sectors

contributing to the elliptic genus. The contributing twists are

ZNS,+ = 16

(
1

αβ

+ αβ

1

+ β
α

+ α

β

+ βγ
αγ

+ αγ

βγ

+ γ

αβγ

+ αβγ

γ

)

= 16

(
θ2(τ, 0)4

θ4(τ, 0)4
+
θ4(τ, 0)4

θ2(τ, 0)4
− 6

)

=
1
√
q
− 104 + 276

√
q + 2048q + 11202q3/2 + . . . (2.22)
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The same analysis in the R+ elliptic genus gives

ZR,+ = 16

(
θ3(τ, 0)4

θ4(τ, 0)4
+
θ4(τ, 0)4

θ3(τ, 0)4
+ 6

)

= 128 + 4096q + 98304q2 + 1228800q3 + . . . (2.23)

Joyce gives several inequivalent resolutions of this orbifold, and it has Euler character χ =

336 − 48k − 48l + 12kl, with k, l = 0, 1, . . . 8. The orbifold with these choices of phases (as

opposed to possible other choices of discrete torsion) matches onto the results Joyce finds for

resolutions with k = l = 0 or k = l = 8.

4. We can take the same toroidal orbifold as above and put in some choice of discrete torsion:

in each twisted sector Hilbert space Hh, introduce a phase ε(g, h), as done in [38]. In fact,

at each fixed point, we can introduce a different choice of torsion, εf (g, h), as done in [39].

However, there are consistency conditions that must be satisfied. In particular, in order for

the action to be a representation of Z4
2, we require

εf (g, h)εf (g′, h) = εf (gg′, h). (2.24)

Moreover, modular invariance requires

g

h

(τ + 1) = gh

h

(τ)

g

h

(−1/τ) = h−1

g
(τ). (2.25)

Note that for Z4
2, (2.24) and (2.25) imply εf (g, 1) = εf (1, g) = 1 for all g, and that all the

phases εf (g, h) are ±1 since εf (g, h)2 = εf (1, h) = 1.
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We can rewrite the first line of (2.22) in full generality as

ZNS,+ = 16

(
1

αβ

+ αβ

1

)
+
∑

f

(
εf (β, α)β

α

)
+
∑

f

(
εf (α, β)α

β

)

+
∑

f

(
εf (βγ, αγ)βγ

αγ

)
+
∑

f

(
εf (αγ, βγ)αγ

βγ

)

+
∑

f

(
εf (γ, αβγ)γ

αβγ

)
+
∑

f

(
εf (αβγ, γ)αβγ

γ

)
. (2.26)

Using (2.25) repeatedly, we can rewrite every term in (2.26) terms of the αβ-twisted sector:

εf (g, αβ) for some g. Then we need to make a consistent choice of torsion for each of the

fixed points in the αβ-twisted sector in order to solve for the elliptic genus. The choice

εf (α, αβ) = −1

εf (γ, αβ) = −1 (2.27)

for all 128 fixed points f is a consistent choice which gives

ZNS,+ = 16

(
θ2(τ, 0)4

θ4(τ, 0)4
+
θ2(τ, 0)4

θ4(τ, 0)4
+ 2

)

=
1
√
q

+ 24 + 276
√
q + 2048q + 11202q3/2 + . . . (2.28)

which corresponds to a manifold with χ = −48. Joyce’s resolutions with k = 0, l = 8 or

k = 8, l = 0 give such a χ.

The same choice of torsion in the R+ elliptic genus gives

ZR,+ = 16

(
θ3(τ, 0)4

θ4(τ, 0)4
+
θ4(τ, 0)4

θ3(τ, 0)4
− 2

)

= 4096q + 98304q2 + 1228800q3 + . . . (2.29)

It might be interesting to match possible choices of torsion in this class of models with all

possible geometric resolutions; similar results in the context of manifolds of G2 holonomy

were obtained in [39].
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3 Towards Characters of the “Spin(7) Algebra”

In this section, we review the structure of the chiral algebra for a sigma-model with target a manifold

of Spin(7) holonomy. The algebra was first studied in the context of Spin(7) compactifications in [5].

We discuss our conventions and present explicit details in Appendix B.

The reduced holonomy of a Spin(7) manifold M implies the existence of a nowhere-vanishing

self-dual 4-form, Ω. Ω can be written in closed form in terms of a local vielbein
∑8

i=1 ei ⊗ ei

(see equations 2.1 − 2.3 of [5]), where the ei are in the fundamental of O(8). We may choose an

embedding Spin(7) ⊂ O(8) such that the 8-dimensional spinor representation of O(8) decomposes

as 7⊕ 1. Then viewing the 8-dimensional vector representation of O(8) as a spinor of Spin(7), the

fourfold antisymmetric product of this spinor includes the singlet Ω. Moreover, a Spin(7) manifold

is characterized by three independent Betti numbers that we can express as b2, b3, b
±
4 subject to the

constraint b3 + b+4 − b2 − 2b−4 − 1 = 24. The dimension of the Spin(7) moduli space is b−4 + 1.

In order to find a geometry-inspired construction of the algebra, we start with the N = 1

superconformal algebra (SCA) and extend it by new generators. In the case of a Calabi-Yau sigma

model, one must add a U(1) current and impose closure of the algebra. In the case of a Spin(7)

manifold, something more exotic happens. The analog of the U(1) = U(n)/SU(n) is in this case

a sector isomorphic to SO(8)/Spin(7). Computing the central charge of this coset, 4− 7/2 = 1/2,

we can see that the result is the Ising model. Thus, the Ising sector will also produce an analogue

of the spectral flow isomorphism enjoyed by Calabi-Yau sigma models.

As worked out in detail by Shatashvili and Vafa using a free-field representation, the algebra is

generated by the operators:

Ln, Gn, Xn,Mn (3.1)

where Ln, Gn are the usual Virasoro generators and their superpartners. Xn are the Fourier modes

of a new spin-2 operator produced by replacing the ei in Ω with target space fermions. Checking

the OPEs and enforcing closure of the algebra results in a spin-5/2 superpartner for Xn that we

call Mn. Note that Gn,Mn are fermionic and will both be half-integrally graded in the NS-sector.

One can check that Xn is related to an Ising model stress-energy tensor TI by TI = X/8; see

Appendix B for the full algebra.

Finally, we note in passing that even in the absence of a U(1) current there is a version of

“spectral flow” enabling one to transform between the NS and R sectors. Consider the R-sector
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ground states, which have h = c/24 = 1/2. Label each state by |hR, hI〉 where hI is the eigenvalue

of TI and hR is the eigenvalue of TR such that T = TR + TI . For a unitary theory we have only

three classes of such states, because there are only three admissible weights in the Ising sector:

0, 1
16 ,

1
2 . Therefore, one of these ground states has weight in the Ising sector only: htot = hI = 1/2.

Shatashvili and Vafa utilize the fusion rules for this operator, which is isomorphic to the Ising

energy operator ε, to map Ramond ground states to certain NS sector highest weight states and

show it generates the spectral flow-like isomorphism. We will use this isomorphism to map our

NS-sector characters to the R-sector and thus obtain the complete set of characters.

3.1 Unitary Highest Weight States

Next, we would like to study the representation theory of this algebra and locate the unitary highest

weight states in the NS sector, in order to compute their characters. Here, we will briefly sketch

some results of Gepner and Noyvert [6], who first extensively studied the representation theory

of the algebra and computed the Kac determinant5. The Kac determinant is a useful first step

in finding the irreducible representations of the algebra and for many algebras, like the Virasoro

algebra, it is also sufficient.

We will see, however, that the Kac determinant fails to provide complete information about the

structure of the maximal proper submodule generated by null states in several important ways.

Gepner and Noyvert evaluated the Kac determinant for the SW(3/2, 2) highest weight modules

using the Coulomb gas formalism. Highest weight vectors are written as |h, x〉 and satisfy

X0|h, x〉 = x|h, x〉

L0|h, x〉 = h|h, x〉

On|h, x〉 = 0,∀n > 0. (3.2)

The Kac determinant of such a module has a closed-form expression

detMNS
N (h, a) =

∏

1≤mn≤2N

(fm,n)PNS(N−mn/2)
∏

1≤jk≤N
(gj,k)

P lNS(N−jk)
∏

1≤l≤2N

(dl)
P̄NS(N−l/2). (3.3)

5The operators in [5] and [6] are related by: X(z) = 8A(z), M(z) =
√
23
3
U(z) + 1

6
∂G(z).
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The f, g, and h curves are given by6

fm,n =
1

192

(
4 + 24x− (5m− 3n)2

)
(3.4)

gj,k =
1

8

(
49− 120h+ 24x− (10j + 3k)2

)
(3.5)

dl =
9

64
− 3h

4
+ h2 − 53l2

288
+

5hl2

12
+

25l4

576
− l2x

6
. (3.6)

The generating functions PNS describe the number of states in the free-field theory. The free

field representation is comprised of two bosons and their superpartners, so we have

∑

n

PNS(n)qn =
∞∏

k=1

(
1 + qk−1/2

1− qk

)2

= P(τ)

∑

n

P̄ lNS(n)qn =
1

(1 + ql/2)

∞∏

k=1

(
1 + qk−1/2

1− qk

)2

= P̄ l(τ). (3.7)

P̄ l(τ) comes when we have a fermionic level-l operator that annihilates the highest-weight

state: O−l|h〉 = 0. This is probably most familiar from the N = 2 algebra, which is discussed in

more detail in Appendix B of [40]. There exists a null vector at level-1/2 which is annihilated by

G−1/2. Therefore, at each level we must remove basis elements containing G−1/2 and divide out

the corresponding factor, (1 + x1/2), from the partition function.

Something similar happens for the Spin(7) algebra. For example,
(

5
2G−1/2 + 1

2M−1/2

)
|0, 0〉 is a

singular highest weight state annihilated by 1
2G−1/2 −M−1/2. Similarly,

(
1
2G−1/2 −M−1/2

)
|12 ,

1
2〉

is a singular highest weight state annihilated by 7
2G−1/2 −M−1/2. Both of these singular states

produce Verma modules generated by P̄1(τ) = P(τ)

1+x
1
2
.

In order to find the unitary representations, we need the vanishing curves of the f, g, and d

curves. The first few curves are plotted in Figure 1 in terms of the h and x, the L0 and X0

eigenvalues of the highest weight space respectively. Gepner and Noyvert specified which of the

modules are unitary and the results are also in the figure.

Gepner and Noyvert write down two continuous series of unitary highest weight representations

that we call massive representations and three discrete representations that we call massless repre-

6We correct a small typo on p. 15, Eq. (7.10) of [6]. The second line of the expression for gNS
j,k should read

1
18

(
(3 + c)(1− j) + 9 1−k

2

) (
(3 + c)(1 + j) + 9 1+k

2

)
.
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d1

d 3

f1,1 ,f2,4

f1,3 ,f2,2

f1,5 ,f5,5

1

2 4

x

1

2

1

h

Figure 1: The vanishing curves of the f , d, and g curves in the Kac determinant in terms of the
eigenvalues of the highest weight state, taken from [6]. The black dots indicate the location of
massless unitary modules and the two vertical black lines are continua of massive unitary modules.
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sentations [6] . The massive representations are labeled by highest weight states |h, 0〉 with h > 0

and |h, 1
2〉 with h > 1

2 . The massless characters are labeled by highest weight states |0, 0〉 (the

vacuum), |12 ,
1
2〉, and |1, 4〉.

3.2 The Content of our Characters

In this section we construct (conjectural) characters for the massive and massless unitary highest

weight representations of the Spin(7) algebra in the NS sector.

3.2.1 Massive Characters

In the case of the massive characters, it is sufficient to look for solutions of the Kac determinant

to find the location of singular vectors, then to treat these singular vectors as new highest weight

states and look for new singular vectors, and so on. The character of the unitary representation is

then found by subtracting out all singular vectors via inclusion/exclusion7.

As an example, consider a Verma module generated by the highest weight state |h〉. Suppose

this state has two singular descendants, |n1〉, |n2〉, whose contributions we wish to subtract from

the character. If we denote the modules generated by a highest weight vector λ by M(λ) then the

expression for the character becomes chM(h) − chM(n1) − chM(n2). However, if |n1〉 and |n2〉

share a singular descendant, |n3〉, then in subtracting M(n1,2) we have doubly subtracted M(n3)

and therefore must add a term to our character to compensate:

χ = chM(h)− chM(n1)− chM(n2) + chM(n3).

Let’s first compute the character for |h, 0〉 for some h > 0. The other massive character will be

treated identically; all that differs is finding the particular quantum numbers.

The first thing to note is that the only vanishing curve “intersecting” the two massive states is

the fm,n curve in Figure 1. While it is possible in general for the descendant singular vectors to

admit descendants of their own that satisfy the gj,k or dl equations (and this will happen in the

massless case), it does not happen here.

7We do not expect exotica like subsingular vectors to appear in the massive characters, which have, for example
only a single Kac determinant vanishing curve, much like the conventional Virasoro case. This expectation is borne
out by explicit numerical checks and the complementary computations of [7]. For a more precise explanation of the
unusual features of W-algebra representation theory see, e.g., [41, 42].
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The characters will in general have the form

χh,0 = qh−
1
2P(τ)(1− fsingular), (3.8)

where P(τ) is defined in (3.7) and fsingular is the contribution of all the singular vectors.

We plug x = 0, h > 0 into fm,n and search for solutions that satisfy m,n ∈ Z,m+ n ∈ 2Z. We

find two sets of solutions:

n1,k = (3k + 2), m1,k = (5k + 4), k = 0, 1, . . .

n2,k = (3k + 1), m2,k = (5k + 1), k = 0, 1, . . . (3.9)

Because these new singular vectors are all by themselves highest weight, they generate their own

Verma module from which we can find new singular vectors, by finding solutions to fm,n = 0 and

plugging in h +
ni,kmi,k

2 , i = 1, 2. For example, using as our highest weight vector the singular

vector at level 1
2 from the first set of solutions (i = 2 and k = 0) we find:

n1,j = (3j + 2), m1,j = (5j + 6), j = 0, 1, . . .

n2,j = (3j + 4), m2,j = (5j + 4), j = 0, 1, . . . (3.10)

After iterating this procedure, we exhaust the singular vectors and organize the result in the

embedding diagram in Figure 2. Nodes in this diagram are singular vectors with the indicated set

of quantum numbers under L0 and X0. Arrows indicate descendants; there is an arrow from some

singular vector v to w if w is in the submodule generated by v.

The embedding structure is necessary to determine how to subtract all singular vectors, to

prevent overcounting. The answer for χh,0 is:

χh,0 = qh−
1
2P(τ)

(
1−

∞∑

k=0

q
(3k+1)(5k+1)

2 −
∞∑

k=0

q
(3k+2)(5k+4)

2 +
∞∑

k=0

q
(3k+2)(5k+6)+1

2 +
∞∑

k=0

q
(3k+4)(5k+4)+1

2

)
.

(3.11)
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After repeating the same procedure for the other massive tower, we find:

χh, 1
2

= qh−
1
2P(τ)

(
1−

∞∑

k=0

q
(3k+1)(5k+3)

2 −
∞∑

k=0

q
(3k+2)(5k+2)

2 +

∞∑

k=0

q
(3k+1)(5k+7)+4

2 +

∞∑

k=0

q
(3k+5)(5k+3)+4

2

)
.

(3.12)

whose embedding diagram is shown in Figure 3.

(h, 0)

(
h+ 1

2 ,
5
2

)
(h+ 4, 20)

(
h+ 13

2 , 65
2

) (
h+ 17

2 , 85
2

)

(h+ 12, 60)
(
h+ 45, 225

2

)

(h+ 28, 140) (h+ 32, 160)
...

...

Figure 2: The embedding diagram that determines the character χh,0.

These answers agree with those derived in [7], who employed a coset construction of the algebra.

3.2.2 Massless Characters

We now turn to the three discrete massless unitary highest weight representations. For these com-

putations, the Kac determinant proves to be insufficient to obtain the correct character formulae.

To assist us, we employ numeric methods that compute the characters to finite order by explicitly

constructing the algebra. The Mathematica code and the details of the algorithm are reported

in [43].

The Kac determinant can fail to provide complete information about the characters in the

following four ways [44,45]:

1. The Kac determinant may propose states that evaluate to zero.
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(h, 1
2 )

(
h+ 3

2 , 8
) (

h+ 2, 21
2

)

(
h+ 19

2 , 48
) (

h+ 11
2 , 28

)

(
h+ 35

2 , 88
) (

h+ 16, 161
2

)

(
h+ 34, 341

2

) (
h+ 26, 261

2

)

...
...

Figure 3: The embedding diagram that determines the character χh, 1
2
.

2. The Kac determinant may fail to identify the complete embedding structure among Verma

modules by failing to find arrows in the embedding diagram.

3. The Kac determinant will not provide information about multiplicity of states with identical

eigenvalues.

4. If there exist null states that are descendants of a unitary highest weight state that are neither

highest weight themselves (singular) nor descendants of singular vectors, the Kac determinant

will fail to find them. These states may become singular in the quotient module constructed

by modding out the original highest weight module by all singular vectors, and are sometimes

called subsingular vectors8.

The fourth item is frequently assumed not to occur in computations of characters (and in many of

the most physically interesting algebras, it does not). Unhappily, these states seem to appear in

two of our three massless characters and are generally quite complicated. We present an explicit

subsingular vector in Appendix C. Though we believe we have found all such vectors, it would be

desirable to have a proof of this and, more generally, a systematic analytical way for finding all

8This is closely related to the mathematical notion of a primitive vector, a vector v along with a submodule U of
the entire module V such that v 6∈ U , but v+U is singular in V/U . A subsingular vector is a primitive vector where
U is the space generated by singular vectors in V .
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subsingular vectors, including those at very high levels inaccessible to numerics9.

The first three subtleties may be dealt with systematically by explicitly constructing the of-

fending states. This has been done to great effect in, for example, [44,45]. We proceed numerically

in a similar spirit, supplementing this approach with more standard computations from the Kac

determinant as described above. In the course of these computations, we find the following BPS-like

relations are satisfied by the characters:

χ̃0,0 + χ̃ 1
2
, 1
2

= q−nχn,0

χ̃ 1
2
, 1
2

+ χ̃1,4 = q−nχn+ 1
2
, 1
2

(3.13)

where χ̃h,x denotes the massless characters with internal Ising weight x
8 . We will derive these

equations in §3.4, but for now let us motivate them heuristically. Very roughly, one can see this at

the level of the Kac determinant and embedding diagrams by noticing the following. The massive

towers only possess singular vectors generating full Verma modules via P(τ), coming from fm,n

solutions while the massless towers possess additional dl solutions which generate “truncated”

modules (i.e. modules with partition function P̄ l(τ)). However, two dl Verma modules can sum up

to a contribution equivalent to a single fm,n Verma module. One can track this elaborate series of

splittings in the embedding diagrams of all the characters and convince oneself that, at least up to

a certain order in q, these relations are satisfied. The analogue of this in the N = 2 case is that the

short Verma module comes from BPS states satisfying G−1/2|state〉 = 0 which then have truncated

modules as described earlier. However, as is commonly known, one long multiplet can split into

two short multiplets at the h→ q/2 threshold.

Below, we present the embedding diagrams (to finite level) obtained by explicitly constructing

null states and, in the case of all singular vectors, determining their parentage (i.e. from which

highest weight vector they descended). These appear in Figure 4, 5, and 6.

Figure 5 and 6 use additional formalism from the massive case. Given a module V , the diagram

is separated into two subdiagrams. The subdiagram on the right is the space U of singular vectors

as in the massless case. The circle on the left represents a subsingular vector in V , that is, a

singular vector in V/U . The tower on the left is the diagram for the Verma module W generated

by a highest weight vector with the same quantum numbers as the subsingular vector. The ×s

9We are grateful to Daniel Bump and Valentin Buciumas for preliminary discussions on this point.
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on the left are the singular vectors in W that are in the kernel of the induced homomorphism

W → U/V .

We conjecture closed form expressions for the character formulae by extrapolating the structure

of the diagrams to higher level, imposing satisfaction of (3.13) and, when possible, finding singular

vector locations of the Kac determinant in closed form. Our confidence in our character formulae

is bolstered by the agreement of our massive characters with those in [7].

We conjecture the massless characters χ̃h,x to be:

χ̃0,0 = q−
1
2P(τ)

(
1−

∞∑

k=0

(
q

15
2
k2+4k+ 1

2 +
q

15
2
k2+2k+ 1

2

1 + q
6k+1

2

− q
15
2
k2+7k+2

1 + q
6k+3

2

− q
15
2
k2+14k+ 13

2 +
q

15
2
k2+14k+ 11

2

1 + q
6k+3

2

− q
15
2
k2+19k+11

1 + q
6k+5

2

))

χ̃ 1
2
, 1
2

= P(τ)

(
1−

∞∑

k=0

(
q

15
2
k2+7k+ 3

2 − q
15
2
k2+16k+8

1 + q
6k+5

2

+
q

15
2
k2+5k+ 1

2

1 + q
6k+1

2

− q
15
2
k2+17k+ 19

2 +
q

15
2
k2+11k+ 7

2

1 + q
6k+3

2

− q
15
2
k2+10k+3

1 + q
6k+3

2

))

χ̃1,4 = q
1
2P(τ)

(
1−

∞∑

k=0

(
q

15
2
k2+10k+ 5

2 − q
15
2
k2+20k+ 25

2 +
q

15
2
k2+8k+ 1

2

1 + q
6k+1

2

− q
15
2
k2+13k+4

1 + q
6k+3

2

+
q

15
2
k2+8k+ 3

2

1 + q
6k+3

2

− q
15
2
k2+13k+5

1 + q
6k+5

2

))
. (3.14)

3.3 What Kind of Mockery is This?

We would like to understand the modular properties of our conjectural NS-sector characters, and

we will do so by relating them to standard modular and mock modular forms of a single variable.

In §3.3.1 we will discuss the mock modular properties of the massless characters, and in §3.3.2 we

will show how the massive characters transform as a two-component vector-valued modular form

under Γθ
10.

10Some of the following (mock) modular identities are also discussed in [4], in which the characters are labeled by
their Ising weights a, rather than x = 8a. We will label quantities by x throughout.
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(1, 4)

(
3
2 ,

21
2

) (
5
2 ,

21
2

)
(
7
2 ,

33
2

)

(5, 28) (6, 28)

(
27
2 , 133

2

)

(17, 88) (18, 88)

(21, 104)

(
51
2 , 261

2

) (
53
2 , 261

2

)

d1 d3

d3 d5

d9

d11

d7 d9

d7

d9

d9 d11
...

...
...

Figure 4: The embedding diagram for the massless character χ̃1,4. Blue arrows represent d-curve
descendants. The triangles are written in the notation of Dörrzapf [46]: each triangle and the three
dots represent a two-dimensional space of singular vectors with the same quantum numbers. The
three dots each represent a singular vector that generates the one-dimensional intersection of the
singular space with the descendants of the source of the arrow. These dots are pairwise linearly
independent.
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3.3.1 Massless characters

First we define some useful functions,

θm,r(τ, z) =
∑

k=r (mod 2m)

q
k2

4m y2mk (3.15)

and

f (m)
u (τ, z) =

∑

k∈Z

qmk
2
y2mk

1− yqke−2πiu
. (3.16)

Note that f
(m)
u has the so-called elliptic transformation property for 2m ∈ Z:

f (m)
u (τ, z) = f (m)

u (τ, z + 1) = qmy2mf (m)
u (τ, z + τ),

and θm,r(τ, z) = θm,−r(τ,−z). We will also make use of a single variable version of this function

θm,r(τ) = θm,r(τ, 0), (3.17)

which is what we mean whenever z is suppressed, satisfying θm,r(τ) = θm,−r(τ) = θm,r+2m(τ), and

θ̃m,r(τ) = θm,r(τ) + θm,r−m(τ) (3.18)

satisfying θ̃m,r = θ̃m,−r = θ̃m,r+m. In [47] it was shown that one can define a (non-holomorphic)

completion of f
(m)
u (τ, z)

f̂ (m)
u (τ, τ , z) = f (m)

u (τ, z)− 1

2

∑

r mod 2m

Rm,r(τ, u)θm,r(τ, z) (3.19)

which transforms as a Jacobi form of weight 1 and index m. Here we have defined

Rm,r(τ, u) =
∑

k=r mod 2m

(
sgn

(
k +

1

2

)
− E

((
k + 2m

=u
=τ

)√
=τ
m

))
q−

k2

4m e−2πiku (3.20)

where

E(z) = sgn(z)

(
1−

∫ ∞

z2
dt t−

1
2 e−πt

)
. (3.21)
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We can rewrite the massless characters in terms of specializations of the function (3.16) to

particular values of y and u, as

χ̃0,0 =
q−

3
8 η(τ)2

η
(
τ
2

)2
η(2τ)2

(
f

(5)

− 7τ
10

+ 1
2

(
6τ,−τ

5

)
+ q

13
2 f

(5)

− 7τ
10

+ 1
2

(
6τ,

14τ

5

)
− q

1
2 f

(5)

− 7τ
10

+ 1
2

(
6τ,

4τ

5

)

− q4f
(5)

− 7τ
10

+ 1
2

(
6τ,−11τ

5

))
, (3.22)

χ̃ 1
2
, 1
2

=
q

1
8 η(τ)2

η
(
τ
2

)2
η(2τ)2

(
f

(5)

− τ
10

+ 1
2

(
6τ,

2τ

5

)
+ q

11
2 f

(5)

− τ
10

+ 1
2

(
6τ,−13τ

5

)
− f (5)

7τ
10

+ 1
2

(
6τ,−4τ

5

)

− q
7
2 f

(5)
7τ
10

+ 1
2

(
6τ,

11τ

5

))
, (3.23)

χ̃1,4 =
η(τ)2

η
(
τ
2

)2
η(2τ)2

(
q

5
8

(
f

(5)
τ
2

+ 1
2

(6τ, τ)− f (5)
τ
2

+ 1
2

(6τ,−τ)

)
+q

25
8

(
f

(5)
τ
2

+ 1
2

(6τ,−2τ)− f (5)
τ
2

+ 1
2

(6τ, 2τ)

))
.

(3.24)

Here we have used that

P(τ) =
η(τ)2

η( τ2 )2η(2τ)2
.

Note that P(τ) transforms as a weight −1 modular form under the subgroup Γθ. Each of these

characters is composed of holomorphic two-component vector-valued mock modular forms which can

be completed into non-holomorphic (two-component, vector-valued) modular forms via equation

(3.19) with some specialization of u and y. For example, for the case of χ̃1,4, defining

µNS = q
5
8

(
f

(5)
τ
2

+ 1
2

(6τ, τ)− f (5)
τ
2

+ 1
2

(6τ,−τ)

)
+ q

25
8

(
f

(5)
τ
2

+ 1
2

(6τ,−2τ)− f (5)
τ
2

+ 1
2

(6τ, 2τ)

)
, (3.25)

we see that we can define a completion, µ̂NS(τ, τ),

µ̂NS(τ, τ) = µNS(τ)− 1

2

1√
60i

∫ i∞

−τ
dτ ′ (τ ′ + τ)−

1
2

¯
θNS(τ) ·

¯
S(τ ′) (3.26)
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which transforms as a weight 1 modular form under Γθ,
11 where we have defined

¯
θNS(τ) =


 ΘNS

1/2(τ)

ΘNS
0 (τ)


 ,

ΘNS
0 (τ) ≡ θ̃30,2(τ)− θ̃30,8(τ) =

∑
k∈Z ε

NS
0 (k)q

k2

120 (3.27)

ΘNS
1/2(τ) ≡ θ̃30,4(τ)− θ̃30,14(τ) =

∑
k∈Z ε

NS
1/2(k)q

k2

120 , (3.28)

with

εNS0 (x) =





1 k = 2, 28 (mod 60)

−1 k = −8,−22 (mod 60)

0 otherwise

εNS1/2(k) =





1 k = 4, 26 (mod 60)

−1 k = −14,−16 (mod 60)

0 otherwise

,

¯
S(τ) =


 S1

S7


 ,

and finally,

Sα(τ) =
∑

k∈Z
kεRα (k)q

k2

120 , α = 1, 7 (3.29)

satisfying

εR1 (x) =





1 k = 1, 29 (mod 60)

−1 k = −11,−19 (mod 60)

0 otherwise

εR7 (k) =





1 k = −7,−23 (mod 60)

−1 k = 17, 13 (mod 60)

0 otherwise

.

Though seemingly unwieldy, these definitions prove useful when deriving transformations under the

11We thank Miranda Cheng for finding an error in an earlier version of this section.
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modular group. Including the factor of P(τ), the character χ̃1,4 = P(τ)µNS as a whole transforms

as a weight 0 mock modular form under Γθ.

3.3.2 Massive characters

Now we’d like to discuss the modular properties of the massive characters. After some mathematical

manipulation, the characters for the massive states in the NS sector given in equations (3.11) and

(3.12) can then be written as

χh,0 = qh−
49
120

η(τ)2

η( τ2 )2η(2τ)2

(
θ̃30,2(τ)− θ̃30,8(τ)

)
≡ qh−

49
120P(τ)ΘNS

0 (3.30)

and

χh, 1
2

= qh−
61
120

η(τ)2

η( τ2 )2η(2τ)2

(
θ̃30,4(τ)− θ̃30,14(τ)

)
≡ qh−

61
120P(τ)ΘNS

1/2 . (3.31)

We will show that the theta functions appearing in these characters transform as a two-component

vector under Γθ.

First consider how θm,r(τ) for a fixed m and r transforms under T : τ 7→ τ+1 and S : τ 7→ −1/τ .

We have

θm,r(τ + 1) = e

(
r2

4m

)
θm,r(τ) (3.32)

for the T transformation where we use the shorthand e(x) = e2πix. For the S transformation, we

have

θm,r

(
−1

τ

)
=

∑

k∈Z
e
− 2πi

τ

(
mk2+rk+ r2

4m

)

= e

(
− r2

4mτ

)∑

k∈Z

∫ ∞

−∞
dx e2πixke−

2πi
τ

(mx2+rx)

=

√
−iτ
2m

∑

k∈Z
e

2πiτk2

4m e

(
− rk

2m

)
(3.33)

where in the second line we have used the Poisson transformation formula, and in the third we used

∫ ∞

−∞
dx e2πixye−tx

2
=
e−πy

2/t

√
t

. (3.34)
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Now let’s try to write equation (3.33) in terms of theta functions of the same m but different r.

Note that
∑

k∈Z
e

2πiτk2

4m e

(
− rk

2m

)
=

m∑

r′=−m+1

∑

k∈Z
e

2πiτ
(
mk2+r′k+ r′2

4m

)
e

(
− rr

′

2m

)
, (3.35)

so finally12

θm,r

(
−1

τ

)
=

√
−iτ
2m

m∑

r′=−m+1

e

(
− rr

′

2m

)
θm,r′(τ). (3.36)

Using formulas (3.32) and (3.36), the vector
¯
θNS(τ) defined in the previous section transforms in

the following way under the generators of Γθ, T
2 and S:

¯
θNS(τ + 2) = ρ(T 2) ·

¯
θNS(τ),

¯
θNS

(
−1

τ

)
=
√
τρ(S) ·

¯
θNS(τ) (3.37)

where

ρ(T 2) =


 e

(
32
120

)
0

0 e
(

8
120

)




and

ρ(S) = e

(
−1

8

)
 −

√
2

5+
√

5

√
2

5−
√

5√
2

5−
√

5

√
2

5+
√

5


 .

3.4 Characters in the Ramond sector

In the Ramond sector, the massive states have two components (see [6]) and are labeled by 8 times

the Ising dimensions (x1, x2) = (8a1, 8a2), and total dimension h. The isomorphism between NS

and Ramond sector states is given explictly by in Table 1, where states are labeled by |8a, h〉 and

the isomorphism identifies the states in each row. Recall that this “spectral flow” isomorphism is

generated by the internal Ising sector. Specifically, the Ramond ground state with its total weight

equal to its Ising weight, 1
2 , is isomorphic to the Ising energy operator [ε] and fusion of this operator

with other states generates a flow to the NS-sector. Crucially, fusion of this operator with itself

gives the identity. For convenience, we reproduce the Ising fusion rules in terms of the dimension

12This S-transformation formula is often repackaged in the literature by defining S(θ)

rr′ ≡
1√
2m
e
iπrr′
m so that

θm,r
(
− 1
τ

)
=
√
−iτS(θ)θm(τ, z). Similarly, one often defines T θrr′ ≡ e

πir2

2m δr,r′ so θm(τ + 1, z) = T (θ)θm(τ, z).
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1
16 operator σ, the identity 0, and the dimension 1

2 operator ε:

[ε] [ε] = [0]

[ε] [σ] = [σ]

[σ] [σ] = [0] + [ε] . (3.38)

NS R

|0, 0〉 ⇐⇒
∣∣4, 1

2

〉
∣∣1

2 ,
1
2

〉
⇐⇒

∣∣1
2 ,

1
2

〉

|4, 1〉 ⇐⇒
∣∣0, 1

2

〉

|0, x〉 ⇐⇒
∣∣(1

2 , 4
)
, 1

2 + x
〉

∣∣1
2 ,

1
2 + x

〉
⇐⇒

∣∣(0, 1
2

)
, 1

2 + x
〉

Table 1: The unitary irreducible highest weight representations of the Spin(7) algebra. States in
the same row are isomorphic. Recall that we are labeling the states by their eigenvalues |x0, h〉 =
|8a0, h〉.

Following the same steps as described above for the derivation of the characters in the NS sector,

we use the Ramond sector Kac determinant derived in [6] to conjecture the following characters in

the Ramond sector:

χR(0, 1
2),h+ 1

2

= 2qh−
1

120
η(2τ)2

η(τ)4

(
θ̃30,1(τ)− θ̃30,11(τ)

)
≡ 2qh−

1
120
η(2τ)2

η(τ)4
ΘR

(0,1/2) (3.39)

and

χR( 1
2
,4),h+ 1

2

= 2qh−
49
120
η(2τ)2

η(τ)4

(
θ̃30,7(τ)− θ̃30,17(τ)

)
≡ 2qh−

49
120
η(2τ)2

η(τ)4
ΘR

(1/2,4). (3.40)

We can rewrite ΘR(τ) for convenience as

ΘR
(0,1/2)(τ) =

∑
k∈Z ε

R
1 (k)q

k2

120 (3.41)

ΘR
(1/2,4)(τ) =

∑
k∈Z ε

R
7 (k)q

k2

120 , (3.42)

with εR1,7(k) as in 3.3.1.

Spectral flow relates χR
(0, 1

2),h
⇐⇒ χNS1

2
,h

and χR
( 1
2
,4),h

⇐⇒ χNS0,h . Let us pause here to derive
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this correspondence, as it will be a prerequisite to confirming (3.13). In the massive sector, as in the

massless sector, we must identify the primary state that does not change the external (non-Ising)

dimension of a state with which it fuses, and which produces the identity upon fusion with itself.

This is perhaps clearer when writing out the external dimensions of each component, which then

sum with each Ising dimension to equal the total h. The unique candidate is then |(1
2 , 4), 1

2 + x〉

which is necessarily mapped to |0, x〉 in the NS-sector. Note that the vector of external dimensions

for this state is ( 7
16 + x, x), so the second component of the state has the properties we require.

Similarly, fusion of this state with the other massive state, |(0, 1
2), 1

2 + x〉 produces |12 ,
1
2 + x〉 in the

NS-sector.

The important massless character will be
∣∣0, 1

2

〉
which we denote as χ̃R0 . This is given by

χ̃R0 = 2
η(2τ)2

η(τ)4

(
f

(5)
τ
2

+ 1
2

(
6τ,

τ

2

)
− f (5)

τ
2

+ 1
2

(
6τ,−τ

2

)
+ q5f

(5)
τ
2

+ 1
2

(
6τ,−5τ

2

)
− q5f

(5)
τ
2

+ 1
2

(
6τ,

5τ

2

))
.

(3.43)

Spectral flow relates this character to χ̃1,4 . The Ramond sector BPS relations

χ̃R0 + χ̃R1
2

= q−nχR(0, 1
2), 12+n

(3.44)

and

χ̃R1
2

+ χ̃R4 = q−nχR( 1
2
,4), 12+n

. (3.45)

can give us the remaining two massless characters. In this sector, the BPS relations are essentially

forced upon us as we approach the threshold weight, since we demand that the unitary massive

state decomposes into (unitary) representations of the internal Ising subalgebra. If we then apply

the spectral flow operator (i.e. Ising fusion rules) to the resulting Ramond ground states on the

left-hand side of (3.44) and write the result at the level of characters, we precisely reproduce the

left-hand side of (3.13) in the NS sector. Thus, since we have demonstrated that Ising fusion maps

both the left and right hand sides of (3.13) to those of (3.44), and moreover that the relations (3.44)

are correct, we may feel reassured that employing (3.13) and (3.44) in deriving our characters is

justified.

One can do a similar analysis to that of the previous section to understand the modular prop-
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erties of our conjectural Ramond sector characters. In the case of χ̃R0 , defining

µR = f
(5)
τ
2

+ 1
2

(
6τ,

τ

2

)
− f (5)

τ
2

+ 1
2

(
6τ,−τ

2

)
+ q5f

(5)
τ
2

+ 1
2

(
6τ,−5τ

2

)
− q5f

(5)
τ
2

+ 1
2

(
6τ,

5τ

2

)
, (3.46)

this can be completed to a non-holomorphic weight 1 modular form which transforms under Γ0(2),

µ̂R(τ, τ) = µR(τ)− 1

2

1√
60i

∫ i∞

−τ
dτ ′ (τ ′ + τ)−

1
2

¯
θR(τ) ·

¯
S(τ ′) (3.47)

where now

¯
θR(τ) =


 ΘR

(0,1/2)

ΘR
(1/2,4)


 ,

and
¯
S(τ) is the same as in the previous section. The factor η(2τ)2

η(τ)4
is a weight −1 modular form

under Γ0(2), and thus χ̃R0 as a whole transforms as a weight 0 mock modular form under Γ0(2).

ZR,+ is a trace with periodic boundary conditions on the fermions on the space-like cycle of the

torus and antiperiodic boundary conditions on the time-like cycle. It is straightforward to check

that Γ0(2) is the congruence subgroup of SL(2,Z) that preserves this spin structure. In particular,

the spin structure is invariant under τ 7→ τ + 1 but not τ 7→ − 1
τ .

It’s easy to see that under T the ΘR transform as

ΘR
(0,1/2)(τ + 1) = e

(
1

120

)
ΘR

(0,1/2)(τ), and ΘR
(1/2,4)(τ + 1) = e

(
49

120

)
ΘR

(1/2,4)(τ). (3.48)

The second generator of Γ0(2) can be written as ST−2ST−1.

We can write the two generators of Γ0(2) as matrices which act on this vector in the following

way (stripping off the overall factor of τ by convention):

ρ(T ) =


 e

(
1

120

)
0

0 e
(

49
120

)


 (3.49)

and

ρ(S̃) = i




e
(
− 15

120

)√
2

(5−
√

5)
e
(
− 39

120

)√
2

(5+
√

5)

e
(

9
120

)√
2

(5+
√

5)
e
(

45
120

)√
2

(5−
√

5)


 (3.50)

where S̃ = ST−2ST−1.
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4 Decomposition of the elliptic genus into characters

In this section we explicitly decompose the elliptic genera into our Spin(7) characters. We stress

that although our closed-form expressions for the characters are conjectural, the decompositions

are performed to finite order in q, where our numerics explicitly confirm the character formulae.

Recall our BPS equations, (3.13). We will use these relations to write the decomposition of the

elliptic genus in a suggestive way, completely analogous to the decompositions presented in [20].

Recall the NS-sector elliptic genus for a Spin(7) manifold X is given by the trace:

ZNS,+(τ) = TrNS,R(−1)FRqL0− c
24 qL0− c

24 . (4.1)

As discussed in §2, up to a constant term determined by the Euler character of X (which vanishes

if χ(X) = 24), this has the q-expansion

ZNS,+ =
1
√
q

+ 276
√
q + 2048q + 11202q3/2 + . . . (4.2)

In what follows we simply set the constant term to zero. We discuss the possible meanings of

the decompositions in this section in the conclusion; and in the companion [4] we describe some

precise realizations of super-modules with vanishing constant which realize the various symmetries

we discuss below.

Firstly, we note that these coefficients decompose nicely into dimensions of irreducible rep-

resentations of Co1. For example, 276 is itself a dimension of an irrep of Co1. Additionally,

2048 = 1+276+1771, 11202 = 1+276+299+1771+8855, etc. In fact the decomposition into

N = 1 super-Virasoro characters would suggest a relation to the Conway module described in [31]

and recently reviewed in [20].

Instead, we would like to decompose into Spin(7) characters. The most general decomposition

into Ramond sector characters of the Spin(7) algebra has the form

ZR,+ = A0χ̃
R
0 +A 1

2
χ̃R1

2

+A4χ̃
R
4 +

∞∑

n=1

Bnχ
R
(0, 1

2), 12+n
+

∞∑

n=1

Cnχ
R
( 1
2
,4), 12+n

(4.3)

where now A0, A 1
2
, A4, Bn, and Cn are all (positive integer) constants. The NS,+ elliptic genus

has a similar expansion in terms of the NS characters, with coefficients a0, a1/2, a4, bn, cn. The



4 DECOMPOSITION OF THE ELLIPTIC GENUS INTO CHARACTERS 37

isomorphism between Ramond and NS sectors give us the following relations between expansion

coefficients: a0 = A4, a 1
2

= A 1
2
, a4 = A0, bn = Cn, and cn = Bn.

Now we have enough information to fix all of the constants in the decomposition. Using that

a0 = A4 = 1 and a 1
2

= A 1
2

= 0, at O(1) in the decomposition of ZR,+ we get that A0 = a4 = 23.

With this coefficient fixed, the entire decomposition is now fixed.

Once these coefficients are fixed, we get the following for the first few massive coefficients,

b1 = 253, b2 = 7359, b3 = 95128, . . . (4.4)

and

c1 = 1771, c2 = 35650, c3 = 374141, . . . (4.5)

Using the above relations, we can repackage the decomposition in the following form, which is

entirely analogous to the N = 2 and N = 4 decompositions studied in [20]. First define

f1(τ) = q−
1

120 (−1 + c1q + c2q
2 + c3q

3 + . . .)

= q−
1

120 (−1 + 1771q + 35650q2 + 374141q3 + . . .) (4.6)

and

f7(τ) = q−
49
120 (1 + b1q + b2q

2 + b3q
3 + . . .),

= q−
49
120 (1 + 253q + 7359q2 + 95128q3 + . . .). (4.7)

Then we can rewrite

ZR,+ = 2
η(2τ)2

η(τ)4

(
24µR + f1(τ)ΘR

(0,1/2)(τ) + f7(τ)ΘR
(1/2,4)(τ)

)
(4.8)

or, in the NS sector,

ZNS,+ =
η(τ)2

η
(
τ
2

)2
η(2τ)2

(
24µNS + f1(τ)ΘNS

1/2(τ) + f7(τ)ΘNS
0 (τ)

)
, (4.9)
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where f1(τ) and f7(τ) are as defined above, and µNS and µR are as defined in the previous section.

Using the transformation properties of these functions derived in the previous section, we can

predict how the functions f1(τ) and f7(τ) transform under SL(2,Z).

In particular, the modular group SL(2,Z) is generated by the matrices T =
(

1 1

0 1

)
, and

S =
(

0 1

−1 0

)
. The multiplier system ρ of

¯
f on the entirety of SL(2,Z) is generated by

ρ(T ) =


 e

(
− 1

120

)
0

0 e
(
− 49

120

)


 ρ(S) = e(1

8)


 −

√
2

5+
√

5

√
2

5−
√

5√
2

5−
√

5

√
2

5+
√

5


 . (4.10)

Mock modularity and Rademacher summability have been proposed as a hallmark of moonshine [48].

Using standard techniques for computing vector-valued Rademacher sums [49], it can be seen that

the weight-1
2 Rademacher sum generated by the polar part (q−

1
120 , q−

49
120 ) and above multiplier

system over SL(2,Z) gives
¯
f exactly. The Rademacher summability of the

¯
f serves as a weak

independent verification of the decomposition.

It will strike the attentive reader in the post-EOT era that the integer coefficients appearing

in the q-series (4.6) and (4.7) are related in a simple way to irreducible representations of sporadic

simple groups. For instance, in f7, one can decompose into dimensions of irreps of M24 as

253 = 253, 7359 = 23⊕ 252⊕ 770⊕ 770⊕ 5544

95128 = 253⊕ 990⊕ 990⊕ 2× 1265⊕ 1771⊕ 2024⊕ 2277⊕ 3312

⊕2× 3520⊕ 2× 5313⊕ 5544⊕ 5796⊕ 5× 10395, . . .

while in f1, one sees

1771 = 1771, 35650 = 252⊕ 253⊕ 1771⊕ 2× 3520⊕ 5544⊕ 2× 10395, . . .

The coefficients grow quickly enough that one needs some confidence in the actual existence of an

M24 symmetry, and a systematic means of determining compositions, to go further. In a companion

paper [4], we describe how in a precise chiral CFT with the same chiral algebra and giving rise to

the same (chiral) partition function, we can realize an M24 symmetry with explicit decompositions

(and checks of twining for all M24 conjugacy classes) at all orders. This verifies (in a specific
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example) that the numerology above hides deeper meaning in some specific instance.

Similar decompositions into representations of the sporadic groups Co2 and Co3 exist and will

be elaborated upon in [4].

5 Conclusions

In this paper, we studied the elliptic genera of manifolds of exceptional holonomy Spin(7). These

constitute one of the few classes of possible supersymmetric compactification manifolds for super-

strings.

In order to look for hidden connections between the geometry of these spaces and number theory

and representation theory, following the example of [8], it is natural to decompose the elliptic genus

into characters of the relevant chiral algebra (SW(3/2, 2) at c = 12), and try to find representation-

theoretic interpretations for the coefficients. While we find suggestive results in §4, we note that a

precise relationship of any particular Spin(7) manifold with the group M24 (or the groups Co2 and

Co3, which also appear to play a special role in the q-expansions of the functions f1(τ), f7(τ)) is

not indicated by our results. For a given explicit manifold X, for generic χ(X) there would be an

unwanted constant term in the elliptic genus. For those spaces which have χ(X) = 24 and vanishing

constant term, one would expect the space to at most admit discrete symmetries whose twinings

could agree with M24 for a handful of conjugacy classes (of the same orders). Even in the case of

the K3 conformal field theory, where (obviously) a unique candidate topology exists realizing the

suggestive elliptic genus, a precise statement of Mathieu moonshine has been elusive.

However, there is a simple explicit chiral conformal field theory with the same chiral algebra

we studied here, which manifestly realizes the M24 moonshine hinted at in §4. That is the subject

of the companion paper [4]. One could hope that this chiral CFT is a sort of “Platonic model,”

indicating the largest symmetries that might be realized at (perhaps non-geometric) points in the

moduli space of Spin(7) compactifications. Broadly similar remarks apply to the constructions

based on the N = 2, 4 superconformal algebras in the recent paper [20], and compactifications on

Calabi-Yau 4-folds or 8-dimensional hyperKähler spaces.
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A Jacobi Theta Functions and the Dedekind Eta Function

The Jacobi theta functions are a collection of weight 1
2 , index 1 Jacobi forms. Write q = exp(2πiτ)

and y = exp(2πiz). Then the Jacobi theta functions can be written as

θ1(τ, z) = −iq
1
8 y

1
2

∞∏

n=1

(1− qn)(1− yqn)(1− y−1qn−1) = i
∞∑

n=−∞
(−1)nq

(n− 1
2 )2

2 yn−
1
2

θ2(τ, z) = q
1
8 y

1
2

∞∏

n=1

(1− qn)(1 + yqn)(1 + y−1qn−1) =

∞∑

n=−∞
q

(n− 1
2 )2

2 yn−
1
2

θ3(τ, z) =
∞∏

n=1

(1− qn)(1 + yqn−
1
2 )(1 + y−1qn−

1
2 ) =

∞∑

n=−∞
q
n2

2 yn

θ4(τ, z) =
∞∏

n=1

(1− qn)(1− yqn−
1
2 )(1− y−1qn−

1
2 ) =

∞∑

n=−∞
(−1)nq

n2

2 yn. (A.1)

The Dedekind Eta function is a modular function of weight 1
2 which is defined to be

η(τ) = q
1
24

∞∏

n=1

(1− qn) = q
1
24

∞∑

n=−∞
(−1)nq

3n2−n
2 . (A.2)

B SW(3/2, 2) Algebra

Here we set our notation for the algebra SW(3/2, 2) at c = 12 and write down the commutation

relations. The SW(3/2, 2) algebra has a basis that consists of operators Ln, Xn, for n ∈ Z and

Mm, Gm for m ∈ Z+ 1
2 . We define L and X to be bosonic operators, and M and G to be fermionic.
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The normal-ordered product is given by

:XY :n =
∑

k≤−∆X

XkYn−k + (−1)F
∑

k>−∆X

Yn−kXk. (B.1)

where (−1)F is −1 if both X and Y are fermionic and 1 otherwise. The ∆s are the conformal

weights of the operators. Recall that ∆L = ∆X = 2, ∆G = 3
2 and ∆M = 5

2 .

We are interested in constructing unitary irreducible highest weight representations, which are

generated by the action of the algebra on a highest weight state |h, x〉, where h and x are the

eigenvalues of L0 and X0 respectively.

We can construct a Hermitian conjugate on this space. The operators in the algebra are also

given Hermitian conjugates: L†n = L−n, X†n = X−n, and G†n = G−n. The M operator possesses a

non-standard conjugate: M †n = −M−n − 1
2G−n.

The commutation relations of the algebra are given below13:

[Ln, Lm] = (n−m)Ln+m + (n3 − n)δm+n

[Xn, Xm] = 8
3(n3 − n)δn+m + 8(n−m)Xn+m

[Ln, Xm] = 1
3(n3 − n)δn+m + (n−m)Xn+m

[Gn, Xm] = 1
2

(
n+ 1

2

)
Gn+m +Mn+m

[Xn,Mm] =
(

15
4 (n+ 1)

(
m+ 3

2

)
− 5

4

(
n+m+ 3

2

) (
n+m+ 5

2

))
Gn+m

−
(
−8 (n+ 1) + 11

2

(
n+m+ 5

2

))
Mn+m − 6:GX:n+m

[Ln, Gm] =
(

1
2n−m

)
Gn+m

[Ln,Mm] = 1
4n(n+ 1)Gn+m +

(
3
2n−m

)
Mn+m

{Gn,Mm} = 2
3

(
n2 − 1

4

) (
n− 3

2

)
δn+m −

(
n+ 1

2

)
Ln+m + (3n−m)Xn+m

{Mn,Mm} = −8
3

(
n2 − 9

4

) (
n2 − 1

4

)
δn+m +

(
15
2

(
m+ 3

2

) (
n+ 3

2

)

− 5
2 (n+m+ 2) (n+m+ 3)

)
Ln+m +

(
16
(
m+ 3

2

) (
n+ 3

2

)

− 5
2 (n+m+ 2) (n+m+ 3)

)
Xn+m − 12:LX:n+m + 6:GM :n+m

{Gn, Gm} = (4n2 − 1)δn+m + 2Ln+m. (B.2)

13We correct some small typos on p. 35 of [5].
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C Subsingular vectors

For the sake of completeness and to assist in replicating our results, we provide a construction of a

subsingular vector from the module generated by |12 ,
1
2〉. The Verma module possess a subsingular

vector with L0 eigenvalue of 4 and X0 eigenvalue of 20. Up to addition of an element from the

subspace generated by singular vectors, the subsingular vector is at

(
G−7/2 + 7

3G−5/2X−1 − 2
3M−5/2X−1 + 2X−3G−1/2 + 10

9 X−2G−3/2 + 8
9X−2M−3/2

+ 1
3G−3/2(X−1)2 + 5

3X−2X−1G−1/2 + 1
6X−2X−1M−1/2 + 23

21L−1(X−1)2M−1/2

− 11
192(X−1)3G−1/2 − 33

224(X−1)3M−1/2

)
|12 ,

1
2〉.

The |h = 0, x = 0〉 Verma module possess a subsingular vector with L0 eigenvalue of 11/2 and

X0 eigenvalue of 65/2, but the subsingular vector is too complex to usefully write down.
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