
All-Optical Materials Design of Chiral Edge Modes in
Transition-Metal Dichalcogenides

Martin Claassen,1,2∗ Chunjing Jia2, Brian Moritz2, Thomas P. Devereaux2

1Department of Applied Physics, Stanford University, CA 94305, USA
2Stanford Institute for Materials and Energy Sciences, SLAC & Stanford University, CA 94025, USA

∗To whom correspondence should be addressed; E-mail: mclaassen@stanford.edu.

Manipulating materials properties far from equilibrium recently garnered

significant attention, with experimental emphasis on transient melting, en-

hancement, or induction of electronic order [1, 2, 3, 4]. A more tantalizing

aspect of the matter-light interaction regards the possibility to access dy-

namical steady states with distinct non-equilibrium phase transitions to affect

electronic transport [5, 6, 7, 8, 9]. Here, we show that the interplay of crystal

symmetry and optical pumping of monolayer transition-metal dichalcogenides

(TMDCs) provides a novel avenue to engineer topologically-protected chiral

edge modes. In stark contrast to graphene [10, 11] and previously-discussed

toy models [8, 13, 14], the underlying generic mechanism relies on the intrin-

sic three-band nature of TMDCs near the band edges. Photo-induced band

inversions scale linearly in applied pump field and exhibit a transition from

one to two chiral edge modes upon sweeping from red to blue detuning. We

develop a strategy to understand non-equilibrium Floquet-Bloch bands and

topological transitions directly from ab initio calculations, and illustrate for
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the example of WS2 that control of chiral edge modes can be dictated solely

from symmetry principles and is not qualitatively sensitive to microscopic

materials details.

Viewed näıvely as semiconducting analogs of graphene, trigonal-prismatic monolayers

of MoS2, MoSe2, WS2 and WSe2 possess sizeable intrinsic band gaps due to broken inver-

sion symmetry [13], that can be expected to sustain intense sub-gap pump pulses while

limiting absorption. Prior theoretical studies established that the band edges at K and

K′ are dominated by transition-metal d-orbitals, which split into three groups with irre-

ducible representations (IRs) A′{d3z2−r2}, E ′, Ē ′{dx2−y2 ± id2xy} and E ′′, Ē ′′{dxz ± idyz}

of the C3h point group [15, 16]. Generalizing graphene, these valleys are well-captured

in equilibrium by a degenerate Kramers’ pair of massive Dirac fermions, giving rise to

valley-Hall [13] and spin-Hall [17, 18] effects.

Out of equilibrium, dynamical breaking of time-reversal symmetry was demonstrated

to lift the valley degeneracy for WS2 and WSe2 via off-resonant optical pumping with

circularly-polarized light [8, 9]. In this case, the selection rules for a massive Dirac fermion

entail that the handedness of pump polarization selectively addresses either the K or K′

valley, imparting an AC Stark shift on only one of the valleys. Analogously, the photo-

excitation can selectively populate valleys, enabling spin and valley valley currents using

circular or linear polarization [19, 20, 21].

Conceptually simple, irradiation with a sufficiently broad pump pulse dresses the origi-

nal electronic bands by multiples of the photon frequency, with electric dipole coupling re-

sulting in an effective steady-state band structure; Floquet-Bloch theory then corresponds

precisely to the classical limit of strong pump fields that are indistinguishable before and

after photon absorption or emission. One paradigmatic model of such “Floquet-Bloch

bands” is graphene [10, 11, 12], where circularly-polarized light can break time-reversal
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symmetry to dynamically lift the Dirac point degeneracies. While Floquet-Bloch states

were indeed observed recently via micro-wave pumping Dirac cones on the surface of topo-

logical insulators [6, 7], an extension to proper topological phase transitions is still well

beyond experimental reach due to the tremendous required intensity A to open a sizeable

gap ∆ ∼ A2/Ω [10] for above-bandwidth pump frequencies.

Even more tantalizingly, it was predicted that effective TMDC toy models of “graphene

with a gap” admit in theory an optically-induced quantum Hall effect with a single chiral

mode localized at the sample edge. A high-frequency pump Ω → ∞ well above the

bandwidth can in principle close and invert the equilibrium band gap at a single valley

[14], however requiring tremendous pump intensities as the relative gap shift scales as

∼ evDA
2/Ω3 with vD the Dirac velocity. Alternatively, it was proposed that a resonant

pump beam can hybridize the massive Dirac fermion valence and conduction bands and

thereby generate a single chiral edge mode [8] at lower pump strength. However, we show

instead that such a simple description of TMDCs fails to hold for optical pumping; here,

the added complexity of a microscopic materials description opens up a novel avenue to

photo-induce chiral edge modes in a realistic experimental setting.

Central to this paper, dipole transitions to higher-lying bands as determined directly

from ab initio calculations and underlying symmetry considerations are crucial for a de-

scription of photo-induced topological band inversions in TMDCs. To understand the

breakdown of “graphene with a gap”, consider a monolayer ribbon irradiated by circularly-

polarized light, for collinear sample and polarization planes [Fig. 1(a)]. In graphene, the

low-energy E ′′ bands are separated from A′′ bands by more than 10eV at K,K′ [22], hence

optical frequencies can be treated safely within the canonical low-energy Dirac model of

π orbitals. In contrast, the band structures of prototypical TMDC monolayers [Fig. 1(b)]

possess a E ′ band only ∼ 2eV above the conduction band (CB) [Fig. 1(b)], and E ′′
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bands in the same vicinity [23, 24, 25, 26]. Circularly-polarized light at close-to-bandgap

pump frequencies therefore couples the A′ CB to both the E ′ valence band (CB) and the

Ē ′ higher-energy conduction band (XB), while leaving the E ′′ bands decoupled in the

absence of multipole transitions.

Consider first slightly red-detuned pumping below the band edge [Fig. 2(a)]. Here,

a ring of states from the higher-energy XB is brought into resonance with the CB, while

simultaneously limiting absorption and heating by avoiding resonant coupling between the

VB and CB. At the band edge, C3h dipole selection rules [Fig. 2(e)] dictate that absorption

of a photon couples transitions A′ → Ē ′ → E ′ → A′. At K′, the bare CB |m = 0;A′, CB〉

couples to the XB dressed by a single emitted photon |m = −1;E ′, XB〉 as well as the

VB dressed by a single absorbed photon
∣∣m = +1; Ē ′, V B

〉
. Both transitions, though

off-resonant, are energetically favorable, leading to a significant Stark shift at K′ [Fig.

2(b)]. Conversely, at K the IRs of VB and XB are reversed. Here, the conduction band

couples to the VB dressed by a single emitted photon |m = −1;E ′, V B〉 as well as the XB

dressed by a single absorbed photon
∣∣m = +1; Ē ′, XB

〉
. Both transitions are energetically

unfavorable, leading to a negligible shift of the band edge. Slightly away from K and K′,

electric dipole coupling lifts the ring of degeneracy between the CB and XB and opens

a photo-induced hybridization gap at both valleys [Fig. 2(b)], which scales linearly with

weak pump fields. Crucially, the resulting Floquet-Bloch bands exhibit a topological

‘band inversion’ with the orbital character flipped close to the valley minimum at both

valleys [Fig. 2(b)].

To discern whether the band inversions can be non-trivial, we devise effective Floquet

“low-energy” models of the hybridization gaps. We start from the generic description

Ĥ0 = p̂2/2m0 + V (r) of a semiconductor in the absence of spin-orbit coupling and ex-

citonic effects, where V (r) is the crystal potential. In equilibrium, starting from an ab
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initio Bloch eigenbasis at a single high-symmetry point, the dispersion and orbital con-

tent follow from canonical k.p theory by perturbing in momentum deviation k under

replacement p̂ → p̂ + ~k [27]. In the presence of a time-periodic field A(t), a straight-

forward generalization uses a Floquet eigenbasis of the generic non-equilibrium problem

Ĥ0(t) = 1
2m0

[p̂ + eA(t)]2 + V (r). This basis can be obtained from density-functional

theory calculations via knowledge of the equilibrium band energies and dipole transition

matrix elements. Note that this Floquet k.p theory is non-perturbative in the applied

pump field and naturally accounts for multi-photon coupling to higher-energy CBs, XBs

and deeper VBs, as well as local inter-orbital dipole transitions. An effective low-energy

description of the photo-induced gaps can now be devised in Floquet basis in analogy to

the equilibrium problem, by considering a perturbation in crystal momentum p̂→ p̂+~k

and downfolding onto effective two-band Floquet models using canonical Löwdin pertur-

bation theory.

Central to the robustness of this proposal, the form of these effective models is de-

termined solely from symmetry and is universal to trigonal-prismatic TMDC monolay-

ers. To see this, first consider K: Here, the Floquet eigenbasis [Fig. 2(b)] |Ψ1〉 (|Ψ2〉)

admixes |m = 0;A′, CB〉 with |m = −1;E ′, V B〉,
∣∣m = +1; Ē ′, XB

〉
(
∣∣m = −1; Ē ′, XB

〉
with |m = −2;A′, CB〉, |m = 0;E ′, V B〉), linear in field A0. Constrained by crystal sym-

metry, we find that the effective Floquet physics at K is generically determined by a p-d

Dirac model [Supplementary Material]:

ĤK(k) = ε0(k) +

[
M
2
−B|k|2 vpk− − vdk2

+

vpk+ − vdk2
− −M

2
+B|k|2

]
(1)

Here, vp, vd are linear functions in field strength, and an additional purely dispersive term

ε0(k) = ∆0 + ∆2|k|2 breaks particle-hole symmetry. While the parameters depend on the

details of the Bloch states near the Dirac points, overall topological considerations can be
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gleaned simply from Eq. 1. In the absence of vd, Eq. (1) describes a conventional massive

Dirac fermion, with M (B) the Dirac (inverse band) mass, and vp the Dirac velocity.

The orbital character exhibits a p-wave winding around K and mirrors the quantum

anomalous Hall effect in HgyMn1−yTe quantum wells [29]. Switching on vd imparts a

trigonal distortion by reducing the continuous rotational symmetry around K to C3, and

introduces instead a ‘d-wave’ winding in the limit of
√
B/M vd � vp.

At K′ interchanged IRs E ′, Ē ′ entail a strongly-admixed Floquet eigenbasis as well

as a significant Stark shift. However selection rules forbid a coupling between |Ψ1〉 , |Ψ2〉

linear in k – instead, one finds that the two bands couple to quadratic order in ∼ A0k+k−,

via intermediate states m = 0;E ′ XB or m = −1;A′ CB. The effective Hamiltonian for

K′ in this case generically reads

ĤK′(k) = ε′0(k) +

[
M ′

2
−B′|k|2 v′|k|2
v′|k|2 −M ′

2
+B′|k|2

]
(2)

with v′ a rotationally-symmetric band mixing term.

At K (K′), the band ordering is inverted when M/B > 0 (M ′/B′ > 0). If the

orbital character of Floquet-Bloch bands in the remaining Brillouin zone is sufficiently

benign, we can draw conclusions on the global topology by understanding separately

the band inversions at K and K′. Rewriting Eqs. (1), (2) in terms of Pauli matrices

Ĥ = ε0(k) + σ · d(k), the local Berry curvature follows from the winding F(k) = 1
2
d̂(k) ·

(∂kxd̂(k)×∂ky d̂(k)) with d̂(k) = d(k)/|d(k)|. One can see by inspection that the absence

of σ̂y in Eq. (2) enforces F(k) = 0 ; therefore, the photo-induced band inversion around

K′ is necessarily trivial. Conversely, the band inversion at K is topological and triggers a

change in the Chern number C, which can be evaluated via appropriate compactification

of k-space R2 to a non-contractible manifold [Supplementary Material].

Consider first the limit of a massive Dirac model with vd = 0. In this case, the Chern
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number changes from C = 0 for B/M < 0 to C = ±1 for B/M > 0, inducing a single

chiral edge mode at the sample boundary that spans the photo-induced hybridization gap.

Then, switching on vd introduces a trigonal distortion of the Floquet-Bloch bands around

K up to a critical strength v2
d = B/Mv2

p, at which the Floquet-Bloch bands close the gap

at three points away from K, related by C3. Correspondingly, this topological transition

changes C by 3, to C = ∓2, entailing not one but two chiral edge modes at the sample

boundary.

While the relevant Floquet basis is predominantly built from only the m = 0 CB

and m = −1 XB for a red-detuned pump, the p-wave coupling vp between the two

is necessarily mediated via the VB, highlighting the necessity of a minimal three-band

description. The d-wave term vd instead results from direct coupling between CB and

XB.Strong optical absorption in TMDC monolayers indicates a large dipole transition

matrix element between VB and CB, suggesting that a red-detuned pump will generically

reach only the C = 1 phase.

Conversely, consider the opposite regime of a sufficiently blue-detuned pump [Fig.

2(c)]. Here, a ring of VB states is brought into resonance with the CB near K,K′ while

pushing the photon-dressed XB into the equilibrium band gap. Electric dipole coupling

again opens photo-induced hybridization gaps, both at the bottom of the CB and top of

the VB [Fig. 2(d)], and the symmetry analysis mirrors the discussion of the red-detuned

case above, leading to equivalent effective Hamiltonians at K,K′ (1), (2). However, linear

in k coupling between the m = 0 CB and the m = +1 VB is now necessarily mediated

via the XB (or other Ē ′ bands separated further in energy), whereas the d-wave term vd

follows directly from dipole coupling between VB and CB and thus dominates over vp.

One can thus generically expect a frequency-tunable Floquet Chern insulator in monolayer

TMDCs, upon tuning the pump from red to blue detuning.
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To illustrate the above predictions, we now consider WS2 as a prototypical TMDC

monolayer. First, we perform ab initio DFT calculations to derive an effective minimal

tight-binding model of three A′, E ′, Ē ′ Wannier orbitals localized on the transition metal

[Fig. 1(b,c)]. The resulting Floquet spectrum on a ribbon is depicted in Fig. 3. In

equilibrium [Fig. 3(a)], WS2 already hosts a pair of trivial edge states in analogy to

zigzag edges of graphene, with right (left) propagating modes at the K (K′) point that

span the band gap. A weak, red-detuned pump field opens a hybridization gap at the

bottom of the CB, spanned by a single chiral mode at K [Fig. 3(b)], localized at the

sample edge. The photo-induced gap scales linearly with weak A, but closes and reopens

at a critical pump strength, transitioning again to a trivial phase without chiral modes.

Conversely, for a blue-detuned pump [Fig. 3(c)] a second chiral edge mode appears,

spanning the hybridization gaps both at the bottom of the CB and the top of the VB.

The appearances of edge modes in ribbon spectra are in excellent agreement with effec-

tive model parameters [Eqs. (1), (2)] derived from the Wannier tight-binding description.

Fig. 4(c) depicts M/B and the ratio of p−/d−wave couplings that determine the Chern

number [Fig. 4(b)], in perfect correspondence with a rigorous calculation of the Floquet

Chern number [28] in the Wannier tight-binding model [Fig. 4(d), see supplement]. For

weak fields, deep within both the red- and blue-detuned regimes, the sign of the Dirac

M and band B mass are equal in the topologically-nontrivial phase. Increasing A closes

and reopens the Floquet gap at K, flips the sign of M and uninverts the bands to reach a

trivial phase with C = 0. When C 6= 0, the Chern number follows from trigonal distortion

and changes from C = 1 for red detuning to C = 2 for blue detuning.

Having checked the validity of Floquet k.p theory in the tight-binding model, we now

turn to the full ab initio problem: To quantify the effects of multi-photon resonances,

as well as local inter-orbital dipole transitions not captured in a tight-binding model, we
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consider an ab initio 185-band description of band energies and dipole transition matrix

elements at K and K′ and calculate the model parameters of eqns. (2), (1), taking

into account up to four-photon processes. The bands closest to the equilibrium gap are

depicted in Fig. 4(e). The resulting k.p classification is depicted in Fig. 4(f). Crucially,

while the resonance lines distort due to effects not accounted for in the tight-binding

model, the frequency-dependent switch from C = 1 to C = 2 as well as the reclosing of

the hybridization gap and transition back to a trivial regime for increasing pump strength

remains qualitatively the same. This suggests that the mechanism of photo-induced chiral

edge modes described in this work is largely robust at weak fields to the microscopic details

of the material.

The guiding theme of this work has been to build a bridge between the rapidly develop-

ing field of monolayer transition-metal dichalcogenides and topological phase transitions

out of equilibrium, to provide a route towards achieving the latter in an experimentally-

attainable setting. We have shown that the three-band nature of the valleys in proto-

typical WS2 leads to a new mechanism to ‘switch’ on or off one or two chiral edges with

near band-gap optical irradiation. The resulting photo-induced gap in the single-particle

spectrum scales linearly with pump strength, suggesting substantial energy scales already

at low fields, while simultaneously ensuring minimal heating with sufficient detuning from

the band edge. Our theoretical analysis of the out-of-equilibrium valley band inversions

connects directly with equilibrium ab initio calculations, whereas the ensuing topology

of Floquet-Bloch bands relies purely on generic symmetry arguments, suggesting that

the predictions are robust to microscopic detail and should be observable in a range of

monolayer TMDC materials. Finally, our first-principles and theoretical analysis provides

a promising strategy to predict and design topological states out of equilibrium in other

semiconductor materials.
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Methods

ab initio Calculations ab initio calculations were performed in the framework of

the Perdew-Burke-Ernzerhof (PBE) type generalized gradient approximation (GGA) of

density functional theory (DFT) using the full-potential linearized augmented plane wave

method implemented in Wien2k [30]. We consider a single monolayer of WS2 with a

30rA vacuum space perpendicular to the layer along the z-direction. The in-plane lattice

constant and the S position have been relaxed by optimization of the total energy and total

force, respectively. For electronic structure calculations, we utilized a 15×15×1 k-space

grid. Momentum matrix element calculations were performed using the OPTIC package

implemented in Wien2k, with a 60×60×1 k-space grid. Maximally-localized Wannier

functions (MLWFs) for the five W 5d orbitals were obtained using wien2wannier [31] and

Wannier90 [32] with initial projections set to the spherical harmonics Y2m (m = -2, -1, 0,

1, 2). Due to the symmetry of the hexagonal lattice, the calculated Hamiltonian in the

new Wannier basis naturally decouples into the two standard subspaces { dx2−y2 ± i d2xy,

d3z2−r2 } and { dxz ± idyz }.

Floquet theory of the single-particle spectrum on a ribbon Floquet theory cap-

tures the effective steady states that arise from a time-dependent (quasi-)periodic mod-

ulation. Consider a Hamiltonian Ĥ(t) = Ĥ(t + 2π
Ω

) with a periodic time dependence

with frequency Ω. Then, solutions of the time-dependent Schrödinger equation for Ĥ(t)

can be written as Φ(t) = eiεt
∑

m ume
imΩt, where ε is the Floquet quasi-energy, and um

are Fourier coefficients of the time-periodic part of the wave function. Substitution of

Φ(t) into Schrödinger’s equation recasts the time-dependent problem as an effective time-

independent Floquet problem: the Floquet states can be found by finding eigenstates of
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the Floquet Hamiltonian

ĤF =
∑
mm′

[
Ĥm−m′ +mΩδm−m′

]
|m〉〈m′| , (3)

where Ĥm−m′ = Ω
2π

∫ 2π/Ω

0
Ĥ(t)ei(m−m

′)Ωt are the Fourier expansion coefficients of Ĥ(t). If

the original Hamiltonian has a static eigenbasis |α〉, then the eigenstates of ĤF can be

written as |λ〉 =
∑

m u
(λ)
mα |α〉 ⊗ |m〉, with the original time-dependent eigenstates of Ĥ(t)

becoming |λ(t)〉 = eiελt
∑

m u
(λ)
mα eimΩt |α〉. The next step is to connect back to observables

of the original fermion operators. In the main text, we consider the spectral function

A(ω, x) = −2Im

{
Ω

2π

∑
αα′

∫ 2π/Ω

0

dT

∫ ∞
−∞

dτeiωτGR
αα′

(
x, T +

τ

2
;x, T − τ

2

)}
(4)

where GR
αα′(x, t;x′, t′) = −iθ(t− t′)

〈{
Ψα(x, t), Ψ†α′(x′, t′)

}〉
is the retarded Green’s func-

tion. Rewriting the fermion operators Ψα(x, t) in Floquet basis, one finally arrives at the

Floquet spectral function

A(ω, x) ∼
∑
mλα

∣∣u(λ)
mxα

∣∣2 Γ

(ω − ελ +mΩ)2 + Γ2
(5)

where Γ is a phenomenological broadening of the spectrum.

Floquet k.p Theory and Effective Hamiltonians at K,K′ Here, we describe in

detail the derivation of the effective Hamiltonians (1) and (2) at K and K′ that capture

the Floquet-Bloch band inversions for red and blue detunings. We take into account the

full ab initio problem including spin-orbit coupling (SOC). For brevity, and consistent

with the main text, we employ C3h single group IRs A′, E ′, Ē ′, and ignore weak spin-

flip terms such that the effect of SOC enters as a Zeeman-like shift on spin ↑z, ↓z bands.

However, as discussed in the supplementary information, the crystal double group dictates

that the discussion below remains the same under inclusion of spin-flip scattering, and
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the full SOC problem can be readily recovered merely by replacing the single-group by

the appropriate double IRs [Supplementary Information].

At K (and equivalently at K′), a Floquet-Bloch eigenbasis follows from a solution of

the the time-dependent Hamiltonian

Ĥ0(t) =
1

2m0

[p̂ + K + eA(t)]2 + V (r) +
~

4m2
0c

2
0

[p̂ + eA(t)] · σ̂ ×∇V (r) (6)

where A(t) = A0[cos(Ωt), sin(Ωt)]> is the circularly-polarized pump field. Consider a

single spin manifold (see supplementary info for the double group identifications in the

full SOC problem): in Floquet language, finding the steady-state eigenbasis at K,K′

amounts to determining the eigenstates of the time-independent Floquet Hamiltonian:

Ĥ0F =
∑
mnα

(
εnα +mΩ +

e2A2
0

2m0

)
|m;nα〉〈m;nα|

+ A0

∑
mnn′

(
gA

′E′

nn′ |m+ 1;n,A′〉〈m;n′, E ′|

+ gĒ
′A′

nn′

∣∣m+ 1;n, Ē ′
〉〈
m;n′, A′

∣∣
+ gE

′Ē′

nn′

∣∣m+ 1;n,E ′
〉〈
m;n′, Ē ′

∣∣+ h.c.
)

(7)

Here, m is the Floquet index; n, α index the nth band in the C3h IRs α = A′, E ′, Ē ′, and

gαα
′

nn′ are the allowed dipole transitions matrix elements of π̂ = p̂ + K + ~
4m2

0c
2
0
σ̂ ×∇V (r)

that can be obtained from ab initio calculations.

Having determined the new eigenbasis that admixes different Floquet side bands and

IRs of C3h, deviations in momentum away from K can be treated as a perturbation:

Ĥ ′ =
∑
mnα

A0

2
k− |m+ 1;n, α〉〈m;n, α|+ h.c.

+ k+

∑
mnn′

(
gA

′E′

nn′ |m;n,A′〉〈m;n′, E ′|

+ gĒ
′A′

nn′

∣∣m;n, Ē ′
〉〈
m;n′, A′

∣∣
+ gE

′Ē′

nn′

∣∣m;n,E ′
〉〈
m;n′, Ē ′

∣∣+ h.c.
)

(8)
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where k± = kx ± iky. An effective two-band Hamiltonian description of high-symmetry

points now follows from canonical Löwdin partitioning of Ĥ ′ in the eigenbasis of Ĥ0F , as

described in the main text.

Importantly, the inclusion of full spin-orbit coupling does not qualitatively alter these

conclusions. First, spin-flip terms only weakly admix E ′′ bands of opposite spin [35,36];

however, the full crystal double group C̄3h again decomposes into two spin-orbital manifold

with equivalent selection rules and effective physics [Supplementary Material]. Second,

the valley Zeeman shift simply leads to a shift of the relevant resonance energies. Similarly,

while monolayer TMDCs have been shown to give rise to large excitonic binding energies

[33,34], in the context of our work their role is confined to shifting the relevant resonance

energies, given appropriate tuning of the pump frequency.
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E' ("dx²-y² ± id2xy")

A' ("dz²")

(a)

(c)

(b)
WS2

MoS2 MoSe2

Figure 1: (a) Setup: a circularly-polarized pump beam irradiates a monolayer transition-
metal dichalcogenide ribbon. (b) Band structure and orbital content for MoS2 and MoSe2,
as well as WS2 with spin-orbit coupling, determined from ab initio DFT calculations and
downfolding onto localized Wannier orbitals. (c) Isosurfaces highlight that the effective
Wannier orbitals for WS2, while localized on W, take into account orbital content extend-
ing to the S atoms as well as neighboring W atoms.
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(e) single group selection rules at K,K'

(b)

(d)

Figure 2: Photon-dressed ab initio Floquet bands of Kramer’s pair K, K′, for red (a,b) and
blue (c,d) detuning. A red-detuned (blue-detuned) pump generically brings into resonance
a ring of states of the E ′ higher-energy band (Ē ′ valence band) with the A′ conduction
band, while leaving the valence band (higher-energy band) off-resonant. Electric dipole
coupling mixes the equilibrium orbital characters at K,K′ while lifting degeneracies be-
tween the conduction band and photon-dressed copies of the other bands (b,d). The
ensuing photo-induced hybridization gap leads to topologically non-trivial band inversion
at a single valley. (e) The corresponding C3h single group selection rules at K,K′ for
circular polarization [see supplementary material for a double group generalization].
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Photo-Induced Hybridization Gap in Conduction Band

Hybridization Gap in Conduction Band Valence Band

(d)

Figure 3: Single-particle spectra for a WS2 ribbon irradiated with circularly-polarized
light. (a) In equilibrium, the ribbon hosts two trivial edge states localized at opposing
edges. (b) A red-detuned pump field induces a hybridization gap at the bottom of the
conduction band, which scales linearly in A until closing again at a critical pump strength.
(c) A blue detuned pump couples the equilibrium valence and conduction bands, inducing
gaps both at the bottom of the conduction and top of the valence band, each hosting two
chiral edge modes. (d) Hybridization gaps at the opposite valley K′ lead merely to a
trivial band inversion, depicted here for the top of the valence band for blue detuning.

21



Figure 4: (a) The relevant resonances when moving from red to blue detuning. (c)
Effective k.p parameterization of the band inversion at K starting from the three-orbital
Wannier tight-binding model. The sign of M/B a2

0 is negative in the inverted regime,
whereas the system transitions from one (red-detuned) to two (blue-detuned) chiral edge
modes when

∣∣(vd/vp)2 M
B

∣∣ > 1, as depicted schematically in (b). The effective k.p model
accounts for the Floquet state adiabatically derived from the original conduction band, as
well as the Floquet state deriving from the valence band dressed by one absorbed photon,
for red detuning, or from the higher-energy E ′ band dressed by one emitted photon, for
blue detuning. This entails the sharp transition when sweeping the pump frequency across
the two-photon resonance between VB and XB (a). Within the shaded areas, all three
bands come into resonance. (d) A corresponding numerical calculation of the global Chern
number of the tight-binding model mirrors the k.p analysis. To correctly account for the
effects of multi-photon processes involving deep core levels or higher-energy bands, we
start from a first-principles description of 185 bands at K (e) and recompute the effective
Floquet two-band model and phase diagram of Fig. 2 in ab initio Floquet k.p theory. The
resulting phase diagram (f) remains qualitatively the same, suggesting that the photo-
induction of one or two chiral edge modes for appropriate tuning of the pump laser is
robust to multi-photon processes at weak pump fields.
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Supplementary Material

Symmetry Analysis and the Role of Spin-Orbit Coupling

In the absence of spin-orbit coupling (SOC), the relevant bands near K,K′ can be clas-

sified according to the single-group irreducible representations (IRs) of the point group

C3h, denoted A′, E ′, Ē ′, E ′′, Ē ′′ [15, 16]. The corresponding character table and relevant

invariants are depicted in Tbl. 2. As discussed in the main text, reflection symmetry σh

guarantees that bands A′, E ′, Ē ′ remain decoupled from E ′′, Ē ′ across the entire Brillouin

zone [13, 23, 24, 25, 26], and the analysis can therefore be constrained to three relevant

bands A′, E ′, Ē ′ only. In 2H monolayer TMDCs, the conduction band transforms as A′

and is dominantly composed of the transition metal d3z2−r2 orbital, whereas the valence

and relevant higher-energy band transform as E ′, Ē ′ with a dominant contribution of

dx2−y2 ± id2xy orbitals. Furthermore, spin z is a good quantum number.

In equilibrium, the band structure can be expanded in k around K,K′ by starting

from Hamiltonian

Ĥ = Ĥ0 + ĤSOC + Ĥk (S1)

where

Ĥ0 =
1

2m0

p̂2 + V (r) (S2)

ĤSOC =
~

4m2
0c

2
0

p̂ · σ̂ ×∇V (r) (S3)

Ĥk =
~2k2

2m0

+
~

2m0

k ·
[
p̂ +

~
4m2

0c
2
0

σ̂ ×∇V (r)

]
(S4)

Here, σ̂ are the Pauli matrices, and V (r) is the crystal potential.

The role of SOC can now be understood in two complementary ways, by either con-

sidering the eigenstates of Ĥ0 as IRs of the C3h single group and treating SOC as a
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perturbation, or by starting from the true Bloch eigenstates of Ĥ0 + ĤSOC at K,K′,

as IRs of the C̄3h double group. In the former case, the eigenstates of Ĥ0 are spin-z

eigenstates with a given single-group IR, namely |A′[d3z2−r2 ], σ〉, |E ′[dx2−y2 + id2xy], σ〉

and
∣∣Ē ′[dx2−y2 − id2xy], σ

〉
with σ =↑z, ↓z. To understand the effect of SOC, it is useful

to decompose ĤSOC , Ĥ
′
k:

Ĥz
SOC = σ̂z [p̂x∂y − p̂y∂x]V (r) (S5)

Ĥ↑↓SOC = 2iσ̂− [p̂z∂+V (r)− p̂+∂zV (r)] + h.c. (S6)

Ĥz
k =

~2k2

2m0

+
~

2m0

[
k+ ·

(
p̂− iσ̂z

~
4m2

0c
2
0

∂−V (r)

)
+ h.c.

]
(S7)

Ĥ↑↓k =
~

2m0

k+ ·
(

p̂ + iσ̂−
~

4m2
0c

2
0

∂zV (r)

)
+ h.c. (S8)

Here, Ĥz
SOC transforms as A′ and acts as a mere Zeeman shift, whereas the spin-flip con-

tribution Ĥ↑↓SOC transforms as E ′′, Ē ′′ and hence couples states with opposite parity under

σh. The latter entails a mixing between conduction band state |A′, σ〉 and
∣∣E ′′(Ē ′′),−σ〉

as well as between the higher-energy conduction band
∣∣Ē ′, ↑〉 and |E ′′, ↓〉 while leaving the

opposite spin
∣∣Ē ′, ↓〉 unmixed. However, this mixing of ↑z, ↓z states is suppressed as the

energy difference between the A′, E ′ and E ′′ bands is larger than the spin-orbit coupling.

The SOC at K,K′ can therefore be well-captured as an effective Zeeman shift [24, 26, 17]

while approximately leaving spin as a good quantum number [35, 36]. Away from K,K′,

Ĥz
k transforms as E ′, Ē ′ and imparts an additional momentum-dependent Zeeman shift.

Conversely, Ĥ↑↓k transforms as A′′, which does not couple the A′ states of the original

conduction band while weakly mixing the E ′, E ′′ bands.

Consider now the double group, with its character table given in Tbl. 2. Spin-flip

mixing with the E ′′, Ē ′′ bands necessarily reduces the number of band IRs from 5 IRs ×2

spin orientations, to 6 double-group IRs. These again decompose into into two manifolds

denoted ⇑,⇓ that remain decoupled over the entire Brillouin zone. The identification
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of band states with single group and double group IRs is given in Tbl. 2(b). Note

that the states listed are not an eigenbasis of Ĥ0 + ĤSOC : instead, the true eigenba-

sis will be a superposition of states of equal double-group IR, governed by the strength

of SOC. At K,K′, one can immediately deduce that the eigenbasis entails mixing of

|d3z2−r2 , σ〉 and |dxz+σ·iyz,−σ〉, of |dx2−y2+2ixy + id2xy, ↑〉 and |dxz−iyz, ↓〉, and of|dxz+iyz, ↑〉

and |dx2−y2 − id2ixy, ↓〉, while leaving states |dx2−y2 − id2xy, ↑〉 and |dx2−y2 + id2xy, ↓〉 un-

mixed and as proper eigenstates of Ĥ0 + ĤSOC .

Here, the k.p perturbation transforms as Γ2,Γ3 and couples the three ⇑ IRs Γ7,Γ10,Γ11

(⇓ IRs Γ8,Γ9,Γ12) in an equivalent manner as in the single-group case of A′, E ′, Ē ′ without

spin-orbit coupling, or with SOC but without spin-flip terms. Consequently, the selection

rules of electric dipole transitions for circular polarization are exactly equivalent, as shown

in Tbl. 2(c). For this reason, we chose to simply adopt the single-group notation and

label the spin manifolds as ↑z, ↓z, while keeping in mind that SOC is indeed significant for

certain TMDCs and enters through a one-to-one correspondence with the double group

IRs and spin manifolds ⇑,⇓.

Topological Classification and Pseudospin Textures

The main text classifies photo-induced topological phase transitions via local effective

Floquet k.p Hamiltonians at K,K′. The key idea is to understand the global topology

via a local classification of band inversions at K,K′, which relies on a-priori knowledge

that 1) the Floquet spectrum is gapped globally and 2) the Berry curvature behaves

benign at other high-symmetry points in the Brillouin zone. Armed with this knowledge, a

complementary view of local band inversions follows from considering so-called pseudospin

textures around K and K′. Starting from the local Floquet k.p Hamiltonians ĤK(k) and

ĤK′(k) of equations 3 and 4 of the main text, we can recast these in terms of pseudospin
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Pauli matrices σ:

Ĥν=K,K′(k) = ε0(k) + ε(k) d̂ν(k) · σ (S9)

Here, ε0(k) ± ε(k) is the dispersion of ĤK(k) or ĤK′(k), and d̂ν(k) is the pseudospin

vector, with |d̂ν(k)| = 0. Here, ν = K,K′. The pseudospin vector equivalently follows

from taking the expectation value 〈σ〉 of the Floquet-Bloch states around K,K′.

As discussed in the main text, the band inversion at K′ is trivial, and the pseudospin

obeys dyK(k) = 0. Conversely, at K, the pseudospin becomes

d̂K(k) =
1

N(k)

[
v1kx + v3(k2

x − k2
y), v1ky − 2v3kxky, M −B|k|2

]>
(S10)

with a normalization N(k) to ensure that |d̂K(k)| = 1.

At K, the effective Hamiltonian S9 can be viewed as a d-wave generalization of the

conventional massive Dirac Hamiltonian, with an additional band mass term in analogy

to the k.p model at Γ for HgTe/CdTe quantum wells. Figure S1 depicts the pseudospin

textures upon increasing v3/v1 to enhance trigonal distortion. v1 6= 0, v3 = 0 recovers the

conventional massive Dirac fermion with a quadratic band mass term; here, the pseudospin

has a p-wave winding around K′ and the Chern number becomes C = 1. In the opposite

limit v1 = 0, v3 6= 0, the pseudospin acquires a d-wave winding around K. Here, since

the band mass term is quadratic only, the winding in dx(k), dy(k) persists in principle to

k → ∞. Given the knowledge that the band structure is gapped globally and that the

band inversion should be confined to high-symmetry points, this behavior is an artifact

of the lower-order k.p expansion.

More rigorously, quantization of the integral C = 1
2π

∫
R2 dkF(k) necessitates a com-

pactification of k-space R2 to a non-contractible manifold. This can be motivated as

follows: Since the Floquet k.p theory can be expected to faithfully represent the physics

only in the close vicinity around K, momenta k far away from K should not affect C.
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This can be enforced rigorously by adding to Ĥ an infinitesimal rotationally-symmetric

regularizer −ηB′σ̂z|k|4 with η → 0, leading to:

d̂
(reg)
K′ (k) =

1

N(k)

[
v1kx + v3(k2

x − k2
y), v1ky − 2v3kxky, M −B|k|2(1 + η|k|2)

]>
(S11)

It follows that the unit vector d̂
(reg)
K′ (|k| → ∞) = −sgn(B)êz does not depend on the

polar angle θ of k, and R2 can be compactified to a sphere S2 by identifying ∞ with

the north pole without loss of information. The choice σ̂z of the regularizer is motivated

by noting that |B| � |v3| for any choice of pump field entails that d̂(|k| → ∞) ∼

−sgn(B)êz + v3
|B| [cos(2θ)êx − sin(2θ)êy] already approximately points in the z-direction.

The band inversion can be seen clearly by looking at the behavior of dz(k) close to

K, which switches sign when going from k = 0 to k → ∞. The intermediate regime

of p-d-wave winding leads to a distorted pseudospin texture when looking at the close

vicinity of K, whereas a d-wave (or p-wave) texture is retained at large k to arrive at a

C = 2 or C = 1 phase.

Strong Pumping and Inversion of the Equilibrium Band Gap

Discussions on photo-induced chiral edge states have focused so far solely on dynamically-

generated gaps within the equilibrium conduction and valence bands, since a sizeable

energy scale ∼ 1.5eV in WS2 protects the equilibrium band gap from closing for weak

pump fields. This picture changes conceivably when approaching the regime of Wannier-

Stark physics at significantly higher pump strength. In the high-frequency limit, broken

time-reversal symmetry then bestows an optical Stark shift of equal and opposite magni-

tude on K and K′, that bridges the equilibrium band gap at a critical field strength A.

The gap closes and reopens at K′ to eliminate one branch of the trivial equilibrium edge

states, leaving a single chiral edge state to bridge the Floquet-Bloch band gap at K, as

depicted in Fig. 2(a). Upon even further increase of A, the gap finally closes and reopens
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at Γ, returning to a trivial regime without chiral edge modes. Näıvely, the flattening

of the bands upon crossover to Wannier-Stark ladders at increasing pump strengths A

or decreasing frequencies Ω suggests that one should not expect to continue attributing

special significance to the original high-symmetry points in this regime. Nevertheless, the

system can undergo a series of gap closings confined to K,K′,Γ upon further decrease

of Ω. The associated topological transitions change the Floquet Chern number by ±1,

leading to a mosaic of photo-induced topological phases at high pump intensities. In ad-

dition, gap closures occur near the second conduction-band minimum Q in WS2. As this

is not a high-symmetry point, C3 rotation symmetry dictates that the gap must instead

close simultaneously at three distinct points in the Brillouin zone, changing the Chern

number by ±3. We verified the corresponding phase diagram in Fig. 2(b) by numerically

evaluating the Floquet Chern number.

Table S1: Single group C3h

(a) C3h single group character table, with Ω = exp(2πi/3).

E C+
3 C−3 σh S+

3 S−3 invariants
A′ 1 1 1 1 1 1 x2 + y2, z2

E ′ 1 Ω Ω̄ 1 Ω Ω̄ x− iy, (x+ iy)2

Ē ′ 1 Ω̄ Ω 1 Ω̄ Ω x+ iy, (x− iy)2

A′′ 1 1 1 -1 -1 -1 z
E ′′ 1 Ω Ω̄ -1 -Ω -Ω̄ (x− iy)z
Ē ′′ 1 Ω̄ Ω -1 -Ω̄ -Ω (x+ iy)z

(b) Selection rules for electric dipole transitions, for circular polar-
ization

A′ E ′ Ē ′

A′ 	 �
E ′ � 	
Ē ′ 	 �
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dx(k) dy(k) dz(k) ε(k) dx(k) dy(k) dz(k) ε(k)

p

d

p-d

p

d

p-d

at K'

(a) (b)

(c)

Figure S1: Floquet-Bloch pseudospin textures at K and K′. (a) At K the pseudospin
texture interpolates between p-wave (v1 6= 0, v3 = 0) and d-wave (v1 = 0, v3 6= 0) winding
upon increase of trigonal distortion. Given a-priori knowledge that the band structure
remains gapped globally, a topological invariant can be assigned by introducing a regu-
larizer η that ensures that the pseudospin points into the z direction for k →∞ and the
k-space manifold can thus be compatified to a sphere. Trigonal distortion is seen clearly
when zooming into the vicinity of the K point, as depicted in (b). Here, little information
can be gleaned from the intermediate p-d wave texture, however globally a d-wave winding
appears as seen in (a). At K′, the pseudospin is trivial, with the y-component always
zero, depicted in (c).
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Table S2: Double group C̄3h

(a) C̄3h double group character table, with complex characters Ω = exp(2πi/3).

E C+
3 C−3 σh S+

3 S−3 Ē C̄+
3 C̄−3 σ̄h S̄+

3 S̄−3 invariants
Γ1 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

Γ2 1 Ω Ω̄ 1 Ω Ω̄ 1 Ω Ω̄ 1 Ω Ω̄ x− iy, (x+ iy)2

Γ3 1 Ω̄ Ω 1 Ω̄ Ω 1 Ω̄ Ω 1 Ω̄ Ω x+ iy, (x− iy)2

Γ4 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 z
Γ5 1 Ω Ω̄ −1 −Ω −Ω̄ 1 Ω Ω̄ −1 −Ω −Ω̄ (x− iy)z
Γ6 1 Ω̄ Ω −1 −Ω̄ −Ω 1 Ω̄ Ω −1 −Ω̄ −Ω (x+ iy)z
Γ7 1 −Ω −Ω̄ i −iΩ iΩ̄ −1 Ω Ω̄ −i iΩ −iΩ̄ ↑z
Γ8 1 −Ω̄ −Ω −i iΩ̄ −iΩ −1 Ω̄ Ω i −iΩ̄ iΩ ↓z
Γ9 1 −Ω −Ω̄ −i iΩ −iΩ̄ −1 Ω Ω̄ i −iΩ iΩ̄

Γ10 1 −Ω̄ −Ω i −iΩ̄ iΩ −1 Ω̄ Ω −i iΩ̄ −iΩ
Γ11 1 −1 −1 i −i i −1 1 1 −i i −i
Γ12 1 −1 −1 −i i −i −1 1 1 i −i i

(b) single-group and double-group irreducible representations of the Wannier orbital basis

state single group IR double group IR
|d3z2−r2 , ↑〉 A′ Γ7

|dx2−y2 − id2xy, ↑〉 E ′ Γ10

|dx2−y2 + id2ixy, ↑〉 Ē ′ Γ11

|dxz−iyz, ↑〉 E ′′ Γ8

|dxz+iyz, ↑〉 Ē ′′ Γ12

|d3z2−r2 , ↓〉 A′ Γ8

|dx2−y2 − id2xy, ↓〉 E ′ Γ12

|dx2−y2 + id2xy, ↓〉 Ē ′ Γ9

|dxz−iyz, ↓〉 E ′′ Γ11

|dxz+iyz, ↓〉 Ē ′′ Γ7

(c) Selection rules for electric dipole transitions, for circular polariza-
tion

C̄3h IR
⇑ ⇓

Γ7 Γ10 Γ11 Γ8 Γ12 Γ9

Γ7 	 �

⇑ Γ10 � 	

Γ11 	 �

Γ8 	 �

⇓ Γ12 � 	

Γ9 	 �
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Figure S2: Photo-induced inversion of the equilibrium band gap in WS2 for strong pump
fields, for spin-↓. (a) A sufficiently blue-detuned pump field closes the gap selectively at
a single valley K′, transitioning into a C = 1 phase. One of the two trivial equilibrium
edge states disappears, leaving a single chiral edge mode that spans the band gap. The
corresponding phase diagram of Floquet Chern numbers at strong pump strengths is
depicted in (b), with (a) corresponding to parameters A = 0.9, ω = 2.7eV . Further
increase of the pump amplitude or decrease of frequency triggers additional gap closings
at K, Γ, and around the second conduction band minimum Q, inducing a mosaic of
possible Chern numbers for the photo-modulated valence band. Closing the gap at K,
K′ changes the Chern number by ±1, whereas C3 symmetry dictates closing the gap at
Q must happen at three points in the Brillouin zone, triggering a change of the Chern
number by ±3. Progressive flattening of the valence band dispersion at strong pump fields
indicates the onset of Wannier-Stark physics.
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