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ABSTRACT

MeV blazars are a sub–population of the blazar family, exhibiting larger–

than–average jet powers, accretion luminosities and black hole masses. Because
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of their extremely hard X–ray continua, these objects are best studied in the

X-ray domain. Here, we report on the discovery by the Fermi Large Area Tele-

scope and subsequent follow-up observations with NuSTAR, Swift and GROND

of a new member of the MeV blazar family: PMN J0641−0320. Our optical

spectroscopy provides confirmation that this is a flat–spectrum radio quasar lo-

cated at a redshift of z = 1.196. Its very hard NuSTAR spectrum (power–law

photon index of ∼1 up to ∼80 keV) indicates that the emission is produced via

inverse Compton scattering off photons coming from outside the jet. The overall

spectral energy distribution of PMN J0641−0320 is typical of powerful blazars

and by reproducing it with a simple one-zone leptonic emission model we find

the emission region to be located either inside the broad line region or within the

dusty torus.

Subject headings: galaxies: active – quasars: general -X-rays:general, individual

(PMN J0641−0320)

1. Introduction

Blazars are an extreme class of active galactic nuclei (AGN) whose bright and violently

variable panchromatic emission is ascribed to the presence of a collimated relativistic jet

closely aligned to our line of sight (e.g. Blandford & Rees 1978). These objects are typically

hosted in the nuclei of giant elliptical galaxies (Falomo et al. 2000; O’Dowd et al. 2002) and

can be powered by accretion onto larger–than–average super–massive black holes (see e.g.

Ghisellini et al. 2010; Shaw et al. 2013). Blazars are sub-classified into flat-spectrum radio

quasars (FSRQs) and BL Lacertae (BL Lac) objects depending on the presence (or absence

for BL Lacs) of emission lines in their optical spectrum with equivalent width >5 Å (e.g.,

Urry & Padovani 1995; Marcha et al. 1996).

Among all blazars, the so–called ‘MeV blazars’, those having an inverse Compton peak

located in the MeV band (Bloemen et al. 1995; Sikora et al. 2002; Sambruna et al. 2006),

may be the most extreme objects. These rare, extremely luminous objects are mostly found

at high (z >2–3) redshift and are thought to host super–massive black holes with masses

often in excess of 109 M� (e.g. Ghisellini et al. 2010). Since each detected blazar implies the

presence1 of a much larger population of objects with jets pointing somewhere else, the few

1For each detected blazar with a bulk Lorentz factor Γ, the total number of objects with jets pointing in

all directions is of the order of 2Γ2.
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detections of these extreme blazars are instrumental to set robust constraints on the mass

function of heavy black holes. This becomes particularly important at redshift z >4 when

the age of the Universe is barely compatible with the time needed to grow such monstrous

black holes exclusively by accretion (Volonteri et al. 2011; Ghisellini et al. 2013). All this

has sparked a renewed interest in this elusive, yet interesting, class of blazars.

Lacking an MeV all–sky instrument, the most efficient domain in which to detect MeV

blazars is the hard X–ray (>10 keV) band. In this energy range, such objects display re-

markably hard spectra, which easily distinguish them from other, more normal, sources. The

Swift Burst Alert Telescope (BAT) survey detected 26 flat–spectrum radio quasars (FSRQs)

of which ∼40 % are at z >2 (Ajello et al. 2009) and host massive black holes (Ghisellini et al.

2010). This is in contrast to Fermi-LAT which has detected >400 FSRQs, but only ∼12 %

of those are located at z >2 (Ackermann et al. 2015). This is mostly due to the fact that

high–redshift FSRQs are soft γ–ray sources (e.g. power–law photon indices > 2.4–2.5) and

since the LAT point spread function increases at low energies, it is hard to disentangle point

source emission from the bright diffuse Galactic emission.

In the absence of an all–sky hard X–ray survey more sensitive than the one obtained with

Swift/BAT, MeV blazar candidates have recently been identified on the basis of radio, IR,

optical and soft X–ray observations (e.g. Sbarrato et al. 2012; Ghisellini et al. 2014a) and then

later confirmed by NuSTAR hard X–ray observations (Sbarrato et al. 2013). Another strat-

egy relies on the detection and identification of MeV blazars during flaring episodes at γ rays.

Here we report on the Fermi detection of the transient source Fermi J0641−0317 (Kocevski

et al. 2014) later identified to be coincident with the radio source PMN J0641−0320 (Ajello

et al. 2014). Because of its potentially interesting nature, we initiated a multi-wavelength

campaign and here we present the results of the target of opportunity (ToO) observations

carried out by Swift and NuSTAR in X–rays, and with GROND2, in the optical/NIR, that

firmly establishes PMN J0641−0320 as a new member of the MeV blazar family.

2. Observations

2.1. Fermi

Fermi J0641−0317 was detected as a significant (>6σ) γ–ray transient during 2014 April

14–21 week (and reported to the community in an Astronomer’s Telegram, Kocevski et al.

2GROND is an optical/NIR camera mounted on the MPG 2.2m telescope in La Silla, Chile (Greiner et al.

2008).
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2014) by the Fermi all–sky variability analysis (FAVA, Ackermann et al. 2013). FAVA is a

real-time analysis that searches the γ–ray sky for weekly transients and detects significant

deviations above the mission-averaged flux at every position in the sky. FAVA is an efficient

tool to detect weekly transient all over the sky. Figure 1 reports the FAVA light–curve of

Fermi J0641−0317 with the >6σ flaring episode detected around MJD 56800.

Fig. 1.— FAVA relative flux (upper panel) and significance (lower panel) light curve of Fermi

J0641–0317. The relative flux is the excess flux at that position (i.e. the total flux minus

the mission averaged flux at that position, see e.g. Ackermann et al. 2013) divided by the

mission averaged flux, while the significance is expressed in units of the standard deviation

(σ) of a Gaussian normal distribution. Note the significant flux increase in the week of 2014

April 14–21 (around MJD 56760), which is part of a longer flare indicated as ‘Flare A’ and

marked in gray. There is also a second flare (‘Flare B’) around MJD 57100 (see text).

Using the standard Fermi science tools3 and P7SOURCE photons, the position of Fermi

J0641–0317 was reported to be (for 2014 April 14–21 week, see Kocevski et al. 2014) at

3http://fermi.gsfc.nasa.gov/ssc/data/analysis/
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R.A. = 100.383 deg, Dec. = –3.294 deg (J2000) with a 95 % confidence region of 0.25 deg.

This source is located in the plane of the Galaxy (b = −3.703), but towards the anti–center

region. Its γ–ray spectrum, covering the period 2014 April 14–21 and modeled with a power

law, exhibited a 0.1–300 GeV flux of (7.7 ± 1.3) × 10−7 ph cm−2 s−1 and a photon index

of 2.66 ± 0.15. For comparison, less than 10% of the Fermi–LAT detected FSRQs have a

larger photon index (Ackermann et al. 2011). Thus, even during the flare, Fermi J0641−0317

displayed a very soft γ–ray spectrum.

A source coincident with Fermi J0641−0317 was later reported (as 3FGL J0641.8−0319)

in the 3FGL catalog (Acero et al. 2015) based on four years of Fermi–LAT observations. Its

>100 MeV flux averaged over four years was (1.7±0.5)×10−8 ph cm−2 s−1, about 45 times

fainter than during the flare. The power–law photon index was 2.45±0.13, similar (within the

uncertainties) to the slope during the flare. The long–term FAVA light–curve confirms that

the source had, over the course of Fermi–LAT observations, a total of two flaring episodes:

between 2014 January 1 and 2014 July 4 and between 2015 February 27 and 2015 April 24

(see Figure 1). Here we take advantage of the newly delivered Pass 8 dataset to re–analyze

the data of Fermi J0641−0317. We use P8 SOURCE photons, the P8R2 SOURCE V6 instrument

response function and rely on version 10-00-04 of the Fermi science tools. The analysis was

performed, following the recommendation4 for the analysis of a point source in the plane of

the Galaxy, in a region of interest (ROI) centered on the source and with a radius of 15◦.

All photons detected at zenith angles larger than 90◦ were removed. The background model

comprised the diffuse Galactic and isotropic emission and all 3FGL sources (Acero et al.

2015) within 20◦ of the source. The spectral parameters of all the sources present within

the ROI were left free to vary during the likelihood fitting.

During both long–term flares the source is well detected (with a test statistic, TS5, of

1591 and 471 respectively) and with similar spectral parameters (see Table 1). The weekly

light–curves for both flares (reported in Figure 2) show that the source was significantly

detected by the LAT, with several flaring episodes approaching fluxes (>100 MeV) of 10−6 ph

cm−2 s−1 accompanied, during those times, by a slightly harder than average spectrum.

Figure 2 shows that FAVA first detected the source during the main flare and that the

source was still bright during the NuSTAR observation. However, the source reached its

maximum two weeks later (on 2014 May 13) reaching a flux of (1.44± 0.13)× 10−6 ph cm−2

4http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone Data Exploration/Data preparation.html

5The significance of each source is evaluated using the test statistic TS = 2(ln L1 − ln L0), where L0

and L1 are the likelihoods of the background (null hypothesis) and the hypothesis being tested (e.g. source

plus background). The significance of the detection can be expressed in terms of the number of standard

deviation of a normal Gaussian distribution as nσ ≈
√
T .
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s−1 with a power–law photon index of 2.60±0.10.
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Fig. 2.— Maximum likelihood (>100 MeV) weekly light curves of flare A (left) and flare

B (right). The short dashed and long dashed lines show the times when Fermi-LAT first

detected the source and when NuSTAR observed it.

2.2. Swift Observations

Swift was triggered to perform three observations: on April 24th, April 26th and April

29th 2014, the last one happened simultaneously to the NuSTAR observation (see later). In

all the epochs, only one bright source was detected by the X–ray telescope (XRT) within the

error region of the LAT. The source was localized to R.A.= 6h41m51.20s, Dec.= –3:20:46.34

(J2000) with a 90 % uncertainty of 3.7 arcsec. Figure 3 shows the Fermi–LAT and Swift–

XRT localizations. In all observations the source remained very bright with a 2–10 keV flux

of & 5 × 10−12 erg cm−2 s−1 and displayed a very hard spectrum with a photon index of

∼1.0. As can be seen in Table 1, in the Swift-XRT observations, there is a marginal (≤2σ)

evidence for variability from one pointing to another, at the level of ∼40%. The source flux

extrapolated to the 15–150 keV band is ∼ 10−10 erg cm−2 s−1, which would make it easily

detectable by the Swift Burst Alert Telescope (BAT) in less than 105 s (see e.g. Ajello et al.

2008; Tueller et al. 2008). The lack of such a source in the most recent BAT catalogs that

rely on >50 months of exposure (Cusumano et al. 2010; Ajello et al. 2012; Baumgartner et al.

2013) testifies that this might be an unusually high/hard X–ray state for this source.

The prominent flat–spectrum radio source PMN J0641−0320 (Fomalont et al. 2003) lies

only 2.4 arcsec away from the XRT centroid and well within its error radius. The source
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was resolved in prior very long baseline array (VLBA) observations at 8.6 GHz showing

parsec–scale emission and a total flux of 0.83 Jy. The radio brightness and the small angular

separation between the XRT and the radio source make the probability that the radio source

is a background unrelated object negligible (Petrov et al. 2013). Moreover, within the error

box of XRT and compatible with the radio position of PMN J0641−0320 there is a source

detected at infrared by WISE (J064151.12-032048.4, Wright et al. 2010) with IR colors

typical of blazars (Massaro et al. 2011; D’Abrusco et al. 2012, 2014). The source also has

a flat spectrum below 1 GHz which is typical for γ-ray detected blazars (Massaro et al.

2013a,b). We thus consider the association of the blazar–like source PMN J0641−0320 to

the transient Fermi J0641−0317 very robust.

2.3. NuSTAR Observations

PMN J0641−0320 was observed with NuSTAR (Harrison et al. 2013) starting at UT

10:01 on 2014 April 29 (MJD 56776). The target was observed for 11 hours, resulting in

21.4 ks of source exposure after event filtering. Data were processed using the NuSTAR

Data Analysis Software (NuSTARDAS; Perri et al. 2013) v.1.2.1, and response files from

v. 2013090 of the Calibration Database. We extracted the NuSTAR source and background

spectra from filtered event files using the standard nuproducts script. For the source we used

circular extraction regions with a diameter of 60′′ for both focal plane modules (referred to as

FPMA and FPMB). The background was extracted from large annular regions centered on

the source. The choice of extraction region size optimizes the signal–to–noise ratio at high

energies; we have verified that alternative choices do not affect any of the results. Due to the

very hard spectrum, the target is well detected up to the high-energy end of the NuSTAR

bandpass at ∼70 keV. No variability is apparent within the NuSTAR observation.

For spectral modeling, we bin the NuSTAR spectra to a minimum of 20 counts per bin.

We use Xspec v. 12.8.1 (Arnaud 1996), and a simple power-law model dN/dE ∝ E−ΓX for the

photon spectrum. The neutral hydrogen column density in the direction of PMN J0641−0320

of 6 × 1021 cm−2 (Kalberla et al. 2005) is too low to significantly attenuate the spectrum

above 3 keV, but we include a fixed absorption factor for completeness. The best fit is

obtained for a very hard photon index ΓX = 1.08± 0.03 (90% confidence interval), with no

structure apparent in the residuals and χ2 = 285 for 275 degrees of freedom. The cross–

normalization constant between FPMA and FPMB was left free to vary in the fit and found

to be 1.02± 0.04, consistent with expectations from calibration observations (Madsen et al.

2015). The flux calculated from the power-law model is (6.8±0.2)×10−12 erg s−1 cm−2 for the

2–10 keV energy band and (4.5±0.2)×10−12 erg s−1 cm−2 for the 10–70 keV band. We place
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an upper limit on the curvature within the NuSTAR bandpass by fitting a log–parabolic

model (Tramacere et al. 2007) with one additional parameter (f(E) ∝ E−αx−βx logE), which

leads to βx < 0.09 with 90% confidence.

Figure 4 shows the joint fit to the Swift-XRT/NuSTAR datasets for the simultaneous

observation performed on April 29. It is apparent that the two observations are in agreement

with each other and that, over the entire 1–70 keV energy range, the spectrum of the source

can be described (see Table 1) as a simple (very hard) power law with a photon index of

1.06±0.03 absorbed by Galactic gas and dust along the line of sight (Kalberla et al. 2005).

2.4. GROND observations

On 2014 April 26 01:01 UTC PMN J0641−0320 was observed simultaneously in four

optical (g′, r′, i′, z′) and three NIR (J ,H,K) bands with the GROND (Greiner et al. 2008)

instrument at the 2.2 m MPG telescope at La Silla Observatory (Chile). Single exposures

were obtained with 142 s integrations in the optical bands and 240 s integrations in the NIR

bands. Observing conditions were moderate with a seeing of 1.8′′ and an average airmass of

2.0.

Data reduction and photometry were performed using standard IRAF tasks (Tody 1993),

similar to the procedure described in (Krühler et al. 2008). The g′, r′, i′, z′ photometry was

obtained using point-spread-function (PSF) fitting while due to the under–sampled PSF in

the NIR, the J,H,Ks photometry was measured from apertures with sizes corresponding to

the Full–Width at Half Maximum (FWHM) of field stars.

The optical photometry was calibrated against an SDSS–field calibrated observation

of the same field taken on a different night under photometric conditions. Photometric

calibration of the NIR bands was achieved against selected 2MASS stars (Skrutskie et al.

2006) in the field of the blazar.

The resulting AB magnitudes, not corrected for the predicted Galactic foreground red-

dening of EB−V = 0.98 mag (Schlafly & Finkbeiner 2011), are presented in Table 2.

2.5. Keck Spectrum

We obtained an optical spectrum of PMN J0641-0320 on UT 2014 October 20 using the

Low Resolution Imaging Spectrometer (LRIS; Oke et al. 1995), a dual-beam spectrograph

on the Keck I telescope atop Mauna Kea. The conditions were poor due to Hurricane Ana,
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Table 1. Table of Observations and Spectral Parameters

Instrument Datea Energy Band Fluxb Photon Indexc Description

LAT 04/14–04/21 0.1–500 GeV (7.7±1.3)×10−7 2.66±0.15 LAT First detection

LATd 04/24–05/01 0.1–500 GeV (8.2±0.1)×10−7 2.68±0.15 NuSTAR observation

LAT 01/17–07/04 0.1–500 GeV (5.9±0.2)×10−7 2.79±0.03 Flare A

LAT (2015) 02/27–04/24 0.1–500 GeV (5.5±0.1)×10−7 2.80±0.03 Flare B

XRT 04/24 2–10 keV 4.9+1.0
−0.5 × 10−12 0.93+0.43

−0.39

XRT 04/26 2–10 keV 6.2+0.9
−1.3 × 10−12 0.87+0.43

−0.35

XRTd 04/29 2–10 keV 7.2+0.9
−1.3 × 10−12 0.93+0.33

−0.30

NuSTARd 04/29 3–70 keV 5.2+0.3
−0.3 × 10−12 1.08+0.03

−0.03

XRT+NuSTARe 04/20 1-70 keV 8.9+0.2
−0.2 × 10−12 1.06+0.03

−0.03

aAll dates of observations are in 2014 unless otherwise noted.

bFermi-LAT fluxes are in ph cm−2 s−1, Swift–XRT and NuSTAR fluxes are in erg cm−2 s−1.

cPhoton index of the power-law model fitted to the data.

dData used for building the simultaneous SED reported in Figure 6.

eThese are the results of the joint-fit to XRT and NuSTAR data for the simultaneous observations on 04/29.

g′ r′ i′ z′ J H Ks

λeff (Å) 4587 6220 7641 8999 12399 16468 21706

magAB 22.26± 0.25 20.76± 0.08 20.01± 0.08 19.32± 0.05 18.40± 0.11 18.83± 0.12 17.09± 0.20

Table 2: GROND AB observed magnitudes of PMN J0641–0320, taken UT 2014 April 25

(magnitudes not corrected for Galactic foreground extinction). The first row gives the effec-

tive wavelength of the filter (in Angstroms).
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with significant clouds. We observed the target through a 1.′′0 slit for two 600 s exposures

using the 600 `mm−1 grism on the blue arm of the spectrograph (λblaze = 4000 Å, resolving

power R ≡ λ/∆λ ∼ 1000), the 400 `mm−1 grating on the red arm of the spectrograph

(λblaze = 8500 Å, R ∼ 1200), and the 5600 Å dichroic. The data were processed using

standard techniques within IRAF, and because no standard stars were taken on that cloudy

night, we flux calibrated the spectrum using an archival sensitivity function with the same

instrument configuration.

The optical spectrum (displayed in Figure 5) shows strong, red continuum with two

emission lines that we identify as broad Mg II λ2800 and narrow [O II] λ3727. The broad

line has an observed equivalent width of ∼ 15 Å and a full-width at half maximum of FWHM

∼ 2000 km s−1, clearly indicating a quasar.

The Mg II λ2800 line was confirmed a few nights later using Magellan. Our spectro-

scopic observations thus place the object at a redshift of z = 1.196. Because of its optical

and radio properties, PMN J0641-0320 is a new flat-spectrum radio quasar.

3. SED and Modeling

Figure 6 shows the overall SED of PMN J0641–0320, together with a fitted model.

The Swift–XRT and NuSTAR data are strictly simultaneous, while GROND and radio data

(provided by the RATAN-600, Trushkin et al. 2014) are quasi–simultaneous. The Fermi–

LAT data corresponds to a week integration time centered (i.e. 3.5 days before and 3.5 days

after) on the NuSTAR pointing (see Table 1). The other data are archival (green symbols).

The adopted model is described in Ghisellini & Tavecchio (2009). It is a one–zone,

homogeneous leptonic model, where the emitting particle distribution is derived through a

continuity equation, accounting for continuous injection, radiative cooling, and electron–

positron pair production. The resulting energy distribution of the emitting particles N(γ)

[cm−3] is calculated after one light crossing time R/c, where R is the size of the emitting

region, assumed spherical. As discussed in Ghisellini & Tavecchio (2009), this assumption,

suggested by the fast variability of blazars, allows us to neglect adiabatic losses, particle

escape and the changed conditions in the emitting region: since the source is traveling and

expanding, the magnetic field and the particle density do not dramatically change in a time

R/c.

The injected distribution, of total power P ′i (primed quantities are calculated in the

comoving frame of the source), is assumed to extend between γmin = 1 and γmax and to be
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Model M Γ Rdiss Ld P ′
i B γb γmax s1 s2 logPr logPB logPe logPp

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

BLR 1.1e9 14 240 6.5 0.07 1.25 170 4e3 0.5 3.3 46.6 44.8 45.2 47.6

Torus 1.1e9 17 1.2e3 6.5 0.12 0.07 1e3 2e4 1 3.1 46.9 43.9 46.0 47.6

Table 3: Parameters of the model shown in Figure 6. The two rows correspond to two locations

of the dissipation region: the first is within the BLR, the second is outside it, but within the torus.

For Figure 7 we use, an an illustration, the parameters of the first row. The spectral shape of

the corona is assumed to be ∝ ν−1 exp(−hν/150 keV). The X–ray corona emits 20% of the disk

luminosity. We have assumed a viewing angle θv = 3◦. For Γ = 14 (17), this implies δ = 18.2 (19).

Since we assume a conical jet of semi–aperture angle ψ = 0.1 rad, the size of the (assumed spherical)

region is R = ψRdiss. Thus R = 2.4 × 1016 cm for the “BLR” case, corresponding to a minimum

observed variability timescale tobs
var = R(1 + z)/(δc) ∼ 27 h. For the “torus” case, R = 1.2 × 1017

cm, corresponding to tobs
var = 128 h = 5.4 days. The columns are as follows: Col. [1]: model; Col.

[2]: black hole mass in solar units; Col. [3]: bulk Lorentz factor; Col. [4]: distance of the blob from

the black hole in units of 1015 cm; Col. [5]: disk luminosity in units of 1045 erg s−1. The radius of

the BLR is assumed to be RBLR = 1017L
1/2
d,45 = 2.6×1017 cm, while the size of the torus is assumed

to be Rtorus = 2.5× 1018L
1/2
d,45 = 6.4× 1018 cm. Col. [6]: power injected in the blob calculated in

the comoving frame, in units of 1045 erg s−1; Col. [7]: magnetic field in Gauss; Col. [8], [9]: break

and maximum random Lorentz factors of the injected electrons; Col. [10] and [11]: slopes of the

injected electron distribution Q(γ) below and above γb; Col. [12] logarithm of the jet power in the

form of radiation, [13] Poynting flux, [14] bulk motion of electrons and [15] protons (assuming one

cold proton per emitting electron).
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a broken power law smoothly joining at γb:

Q(γ) = Q0
(γ/γb)−s1

1 + (γ/γb)−s1+s2
[cm−3 s−1] (1)

The normalization Q0 is set through P ′i = (4π/3)R3
∫
Q(γ)γmec

2dγ. The emitting region is

assumed to be located at a distance Rdiss from the black hole. Its size is R = ψRdiss, where ψ

is the semi–aperture angle of the jet, assumed conical. We assume ψ = 0.1 rad. The model

accounts for the accretion disk component, as well as for the IR emission reprocessed by a

dusty torus and the X–ray emission produced by a hot thermal corona placed above and

below the accretion disk. We have assumed that the accretion disk contributes significantly

to the bluest fluxes observed by GROND, and this fixes both the disk luminosity Ld and the

black hole mass M . We find a black hole mass M = 1.1×109M� and Ld = 6.5×1045 erg s−1.

This model under–reproduces the red part of the GROND SED, which by itself may be fit

with a simple power law. This apparent excess may be caused by the oversimplified torus

structure assumed by the model, or by some synchrotron emission produced by another

component. The ratio of the inverse Compton to synchrotron luminosity (the so called

Compton dominance) is rather large (factor ∼100), in agreement with other powerful blazars.

This suggests that the inverse Compton flux benefits from the presence of seed photons

produced not only by the synchrotron process (internal to the jet), but also on photons

produced externally to the jet, such as the broad line photons and the IR emission produced

by the torus. As NuSTAR demonstrates, the X–ray spectrum is intrinsically very hard, and

not because of absorption. This indicates that the seed photons coming from the broad line

region and the torus are important as seeds for the formation of the high energy bump, since

the synchrotron self–Compton (SSC, Maraschi et al. 1992) process would produce a softer

and less powerful luminosity (see the blue dotted line in Figure 6). The large Compton

dominance favors two specific locations (see Ghisellini & Tavecchio 2009; Sikora et al. 2009):

i) the first is within the broad line region (“BLR” case), and ii) the second is outside it,

but within the torus (“torus” case). These are the locations where the ratio between the

radiation and magnetic energy densities are as large as needed to explain the Compton

dominance of the source. However, the size of the emitting zone would be quite different in

the two cases, and this corresponds to two different minimum variability time–scales, which

for our models are about one day for the “BLR” case and five times longer in the “torus”

case. The two models produce very similar SED, with similar total jet power, even if the

bulk Lorentz factors, the injected power and the magnetic fields are different. Therefore the

most promising way to distinguish is through variability of the X and γ–ray fluxes, that are

not contaminated by the much steadier contributions of the disk and torus radiation.

If the radiation produced externally to the jet is important, as here, the beaming pattern

of the synchrotron radiation is different from the beaming pattern of the inverse Compton
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process, with the latter more enhanced in the forward direction (Dermer 1995). We take

this effect into account. Furthermore, we do not assume Γ ∼ δ, but treat both Γ and the

viewing angle θv as parameters of the model.

The obtained parameters, listed in Table 3, are well within the range of parameters

found for other blazars of similar shape and Compton dominance studied and interpreted

with the same model (Ghisellini et al. 2010; Ghisellini & Tavecchio 2010, 2015). Since the

emitting region is rather compact (R = 2.4×1016 cm in the “BLR” case and 5 times that for

the “torus” case), its radio emission is self–absorbed (up to ∼400 GHz) and cannot account

for the observed radio flux, that must necessarily come from much larger zones. The total

power Pr of the emitted bolometric luminosity is of the order (see e.g. Ghisellini & Tavecchio

2009; Ghisellini et al. 2014b)

Pr ∼
Lbol

jet

Γ2
∼ 4× 1046 erg s−1 (2)

This can be considered to be a lower limit on the total jet power. This cannot be provided

by the bulk motion of the relativistic emitting electrons nor by the Poynting flux (see the

corresponding values Pe and PB in Table 3,) and requires the presence of an important proton

component that is dynamically dominant. The value reported in Table 3, assuming one cold

proton per emitting electron, is Pp ∼ 4× 1047 erg s−1, a value much larger (factor 60) than

Ld. Assuming a 10% accretion efficiency, this would imply that Pjet ∼ 6Ṁc2. One can lower

Pp by assuming that there are some emitting e± pairs, but their number cannot exceed ∼10

per proton. In this case Pjet ∼ Pr, the entire kinetic energy would be used to produce the

radiation we see, and the jet would stop. This limit the possible number of pairs to a few

per proton (see discussion in Sikora & Madejski 2000; Celotti & Ghisellini 2008).

3.1. The X–ray hardness

As mentioned above, the extremely hard slope of the X-ray spectrum, that cannot be

due to absorption, strongly suggests that the inverse Compton process uses external photons

as seeds. This is due to two reasons:

i) In the top panel of Figure 7, we show the SED as seen by an observer comoving

with the emitting blob. We use the ν ′`′(ν ′) versus ν ′ representation, where `′(ν ′) is the

monochromatic compactness, defined as `′(ν ′) ≡ σTL
′(ν ′)/[Rmec

3] (Cavaliere & Morrison

1980). Since ν ′`′(ν ′) is a measure of the optical depth for the pair–production process

(becoming important for ν ′`′(ν ′) > 1), the top panel of Figure 7 shows that pair production

is marginal. This is confirmed by the relatively small amount of electron–positron pairs
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produced by the γ–γ →e± process, shown in the bottom panel of Figure 7, together with

the original primary electrons.

In the comoving frame of the emitting blob, the photons produced by the disk, the

BLR and the torus are seen Doppler shifted and aberrated by different amounts, depending

on the angle between the photon direction and the velocity vector. For our values of Rdiss,

most of the disk radiation, produced by the inner part of the disk, would be seen redshifted

in the comoving frame of the blob, and does not contribute much to the seed photons for

the inverse Compton scattering process. Much more important are the seeds produced by

the BLR and the torus. As long as the blob is inside the BLR (torus), the emission of the

BLR (torus) is seen beamed, with a corresponding energy density enhanced by a factor fΓ2

with respect to an observer stationary with respect to the black hole. The f parameter is

of order unity, as long as Rdiss < RBLR (for the BLR case) or Rdiss < Rtorus (torus case) and

its exact value depends on the geometry of the BLR (spherical or flattened) and the torus.

The top panel of Figure 7 illustrates the “BLR” case as shown in Figure 6, but the

plotted SED is as observed in the comoving frame of the blob. Most of the seed photons

are provided by the BLR, and especially the hydrogen Lyα. The frequency of these photons

is seen (in the frame comoving with the blob) at ν ′seed ∼ ΓνLyα ∼ 3 × 1016 Hz. Below ν ′seed

the inverse Compton process can scatter seed photons of lower frequencies, that are fewer in

number. Scattering with relatively cold electrons of γ ∼ 1, photons at ν ′seed will remain at

the same frequency in the comoving frame, but will be observed at δν ′seed, that in our case

is of the order of ∼2.5 keV. As a consequence, the resulting inverse Compton spectrum is

predicted to be hard below this frequency, because of the relative paucity of seed photons

below ν ′seed.

On the other hand the X–ray spectrum of the source continues to be very hard up to

∼ 70 keV. Therefore, this explanation is not sufficient to account for the hardness across the

entire observed X–ray energy range. We thus suggest an additional reason:

ii) The inverse Compton process efficiently cools the electrons. Electrons above γcool ∼ 5

radiatively cool in one light crossing time (i.e. they halve their energy). Electrons below this

energy radiatively cool in a longer time, and will be affected by adiabatic cooling (important

after a doubling time of the source). Assuming that the injection stops after one light

crossing time, and calculating the SED at this time, we find that the particle distribution

N(γ), below γcool, retains the injection slope (which is hard in our case: s1 = 0.5 [namely

N(γ) ∝ γ−0.5 below γcool]). This is illustrated in the bottom panel of Figure 7, showing

γ3τ(γ) as a function of γ [where τ(γ) ≡ σTRN(γ)]. The γ3 factor allows us to immediately

see what electron energies contribute the most at the two peaks of the SED. The very hard

electron distribution in the range 1 < γ < γcool ∼5 corresponds to a very hard spectrum, up
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to δγ2
coolν

′
seed ∼ 75 keV.

These two factors act together to harden the slope of the X–ray spectrum, making it

harder than F (ν) ∝ ν−0.5 (equivalent to dN/dE ∝ E−1.5), that would be typical for fast

cooling electrons below γb scattering a fixed amount of soft seed photons. NuSTAR also

fixes the X–ray slope up to ∼70 keV, and the very soft Fermi–LAT spectrum constrains the

peak of the Compton component to lie in the MeV band. In turn, this constrains both γb

and γcool to be smaller than ∼45. If the emitting region were at much larger distances from

the black hole, with no external photons, we would have the problem of explaining the large

Compton dominance, and also how electrons with γ > 45 cool efficiently.

Very similar considerations can be done for the torus case. In this case γcool ∼ 109

is larger, but the seed photon frequency (the peak of the IR torus emission) is smaller

(we assume a temperature of 370 K) leading to approximately the same inverse Compton

frequency peak (see Fig. 6).

4. Conclusions

‘MeV blazars’ are the most powerful type of blazars and among the most luminous

persistent sources in the Universe. Their large jet power, accretion luminosity, and black

hole mass set them apart from the rest of jetted AGN. Despite their high luminosity, only

a handful of bona-fide ‘MeV blazars’ were known until recently (Bloom & Marscher 1996;

Collmar 2006; Sambruna et al. 2006; Ajello et al. 2009) because of the lack of an MeV

telescope surveying the entire sky. However, MeV blazars are characterized by an extremely

hard (power–law index <1.5) X–ray continuum and the launch of NuSTAR has uncovered a

few new members of the MeV blazar family (Sbarrato et al. 2013; Tagliaferri et al. 2015).

In this paper we report on ToO observations performed by NuSTAR, Swift and GROND

of a flaring source, Fermi J0641−0317, detected by Fermi–LAT in the direction of the anti–

center of our Galaxy. These observations showed that the counterpart of Fermi J0641−0317

is PMN J0641−0320 a very bright (8.6 GHz flux of 0.83 Jy) radio source, which, our Keck

observation places at a redshift of z = 1.196.

The overall SED of PMN J0641−0320, built with contemporaneous and semi–simultaneous

observations, unveils several important characteristics. First, PMN J0641−0320 displays,

while flaring, the SED of a powerful blazar with a peak luminosity of L ≥ 1048 erg s−1, a

high-energy peak located in the MeV band and a Compton dominance of a factor ∼100.

Second, the large Compton dominance suggests that most of the high-energy emission is

produced via inverse Compton scattering of the accelerated electrons off an external photon
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field, very likely the BLR and/or the infrared torus. Our SED modeling suggests a black

hole mass of ∼ 109 M�.

The X–ray continuum, which NuSTAR detects and characterizes up to 70 keV (150 keV

in the source frame), is extremely hard and can be characterized by a power law with a pho-

ton index of ΓX ≈1. This makes PMN J0641−0320 one of the hardest X–ray emitting blazars

and one of the hardest NuSTAR sources. The extreme X–ray hardness is interpreted, in the

framework of the external inverse Compton scenario, as produced by a hard electron distri-

bution, which below γcool ≈5 is not cooled, and retains the shape of the injected spectrum,

N(γ) ∝ γ−0.5, and thus causes the very hard X–ray spectrum.

The jet radiative power (Pr in Table 3), which is a lower limit to the true jet power,

is larger than the disk luminosity (Ld in Table 3), which suggests that the jet is not only

powered via accretion, but taps into the rotational energy of the spinning black hole as found

for other powerful blazars (Ghisellini et al. 2014b; Tagliaferri et al. 2015).

The hard X–ray continuum, the SED peak location, the large Compton dominance and

the high luminosity identify PMN J0641−0320 as a new member of the MeV blazar family.

MeV blazars may substantially contribute to the MeV background (Ajello et al. 2009) and can

be used to constrain the mass density of heavy black holes (Ghisellini et al. 2010; Sbarrato

et al. 2014). The analysis of ∼6 years of Fermi–LAT data shows that PMN J0641−0320

underwent two rather long flaring episodes. Indeed, it is not unusual for MeV blazars to flare

for weeks at a time in γ rays. This together with the increased sensitivity, due to Pass 8,

of Fermi–LAT at <100 MeV might allow us to uncover, in combination with NuSTAR

observations, new powerful blazars.
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Fig. 3.— Top Panel: Fermi–LAT test statistic (TS) map at the position of the transient

Fermi J0641–0317 for the week of April 14–21 (2014). The map shows at every pixel the

likelihood (in term of TS as color coded in the color bar) of the source being at that pixe.

The green contour shows the 95% error region on the position of the source. Bottom Panel:

Swift–XRT observation of April 26th with super–imposed the 95% Fermi–LAT error region.

The white circle shows the position of the only source detected. The X-ray source position

coincides with that of the known radio source PMN J0641−0320. The image was smoothed

and the color bars show the number of counts per pixel.
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Fig. 4.— NuSTAR and Swift/XRT observation of PMN J0641–0320 on 2014 April 29.

The dashed line is the best-fitting absorbed power-law model described in the text. The

absorption is compatible with the Galactic absorption along the line of sight.
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Fig. 5.— Optical spectrum, acquired with Keck, of PMN J0641–0320
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Fig. 6.— Overall SED of PMN 0641–0320 together with the one–zone leptonic model we

have used to interpret the SED. Red circles correspond to quasi–simultaneous data, green

symbols are archival data. The black short dashed lines correspond to the contribution from

the IR torus, the accretion disk and the X–ray corona. The solid blue line corresponds

to a dissipation region lying within the BLR, while the long dashed brown line corresponds

to RBLR < Rdiss < Rtorus. The solid (green) lines correspond to the synchrotron flux of the

“BLR” model. The dotted blue line corresponds to the SSC emission for the same model.

The 3FGL spectrum is also reported.
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Fig. 7.— Top panel: SED of PMN 0641–0320 in the comoving frame (blue solid line). The

black dashed line shows the spectrum of the IR torus, the BLR (assumed to have a black–

body shape, see Tavecchio & Ghisellini 2008) and the X–ray corona, while the gray long

dashed line shows the synchrotron self Compton component. The units are ν ′`′(ν ′), where

`′(ν ′) is the monochromatic compactness defined as `′(ν ′) ≡ σTL
′(ν ′)/[Rmec

3]. In this frame

the observer sees an enhanced BLR and torus component. The inverse Compton scattering,

in this frame, can use the entire amount of seed photons only for ν ′ > ΓνLyα, which becomes

ν = δν ′/(1 + z) in the observed frame. The bottom panel shows the particle distribution in

the form γ3τ(γ) ≡ γ3σTRN(γ), resulting from the solution of the continuity equation, that

accounts for injection, radiative cooling, and pair production. Below γcool the electrons do

not cool in the light crossing time R/c, and the particle distribution retains the same slope s1

of the injection function. Above the break energy γb the slope of τ(γ) is s2 + 1. The γ3τ(γ)

representation allows to easily find γpeak, i.e. is the energy producing the two peaks of the

SED. The dashed line shows the (in this case modest) contribution of the electron–positron

pairs produced within the emitting region.
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de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana

and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture,

Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization

(KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallen-

berg Foundation, the Swedish Research Council and the Swedish National Space Board in

Sweden. Additional support for science analysis during the operations phase is gratefully

acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National
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