Dielectric laser acceleration and focusing using short-pulse lasers with an arbitrary laser phase distribution

2nd August 2016

K. P. Wootton¹, D. B. Cesar², C. Lee¹, I. V. Makasyuk¹, J. Maxson²,

P. Musumeci² and R. J. England¹

¹ SLAC National Accelerator Laboratory
 ² University of California – Los Angeles

This material is based upon work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Under Contract No. DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

SLAC-PUB-16781

- In addition to acceleration, extending scale of DLAs beyond ~1 mm necessitates focussing
- Ideally, compatible with laser-driven accelerating structures
- 1-D grating accelerating structures ideally accelerate high aspect ratio beams, or many round beams in parallel
- Focussing structure supporting multiple parallel beams, powered by short-pulse lasers

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AfAOf 2016, National Harborce Mary Andre No. DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

Short pulse lasers for DLA

 Use measured laser temporal distribution to determine gradient

Measured change in energy (keV)

 $= \overline{\Delta \epsilon_{l}}$

Change in energy arising from interaction with an accelerating gradient of 1 GV m⁻¹

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AfAOr 2016, National Harbory Bright Constants of BMF4744.

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AfAOf 2016, العارة الحيثة المعنية المحية ال المحية المحي محية المحية ال لمحية المحية ا

4

Laser pulse measurement

- FROG (GRENOUILLE)
- Measurement of SHG intensity interferogram in time and wavelength
- Reconstruction of fs pulse amplitude and phase using phase retrieval algorithm

FROG measurements – SHG intensity interferogram

D. Lee, et al., J. Opt. Soc. Am. B, 25, A93 (2008).

> This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – Arte f 2016, Nietional Harborce Mary Angert No. DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

FROG uncertainties - bootstrap statistical resampling

FROG

* There is a reversal-of-time ambiguity in SHG FROG retrieval, which occurred here

Z. Wang, et al., J. Opt. Soc. Am. B 20, 2400 (2003). This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AAO 2016, National Harbor, CMary and Cordon and Betty Moore Foundation: GBMF4744.

FROG uncertainties - bootstrap statistical resampling

 Temporal profile of pulse from reconstruction

 $\begin{array}{c} A(t)\cos\phi(t) \\ \uparrow & \uparrow \\ \\ \text{Amplitude} & \text{Phase} \end{array}$

Scaled to peak
 gradient of 1 GV m⁻¹

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AfAOr 2016, Nietiona Elegrisorice Mary Apric to No. DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

1.0

0.8

0.6

Laser Pulse Measurement – Interpretation

- Electrons accelerated by main peak are (partially) decelerated by tails
 25% difference between flat
- 25% difference between flat phase and measured phase

Flat phase (circles) E = A(t) $\Delta \epsilon_1 = 27.0 \pm 1.5 \text{ keV}$ $E = A(t) \cos \phi(t)$

 $\Delta \epsilon_{\rm l} = 21.5 \pm 2.0 \text{ keV}$

8

Focussing structures

 Previous laserdriven focussing structures support single electron beams

T. Plettner, et al., *J. Mod. Opt.*, 58, 1518-1528 (2011) K. Soong, et al., *AIP Conf. Proc.*, *1507*, 516-520 (2012)

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AfAOr 2016, Niationa Elegrification and Betty More Foundation: GBMF4744.

Deflecting structure

T. Plettner and R. L. Byer, Phys. Rev. ST Accel. Beams, 11, 030704 (2008).

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AtAOr 2016, National Harborce Mary Andre No. DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

Checkerboard focussing structure

- Deflecting structure at 45°
- Half-wavelength scale unit cell
- Square pillars, three heights

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – Atter 2016, العانة العابي المعالي المعالي المحافظ المحاف المحافظ ال المحافظ ال

Force on electron

• Centre designed for zero net force

Checkerboard focussing structure

ACHIP SLAC

- Periodic structure
- Reversal of cells
- Supports multiple
 beams at
 wavelength
 spacing

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AAOf 20016, Niational Harborice Mary and Cross of the State of State of

Focussing force

- Phase where force is focussing
- Equivalent focussing gradient of 2.0 MT m⁻¹
- c.f. Plettner structure,
 - 0.4 MT m⁻¹

This material is based upon work supported by the U.S. Department of Energy, Wootton - 02 Aug 2016 - Arta Of 2016, Mationa Elearbiorce Mary and the DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

Focussing phase

- Phase where force is focussing
- Equivalent focussing gradient of 2.0 MT m⁻¹
- c.f. Plettner structure,

0.4 MT m⁻¹

Vertical position (um) 0.05

0

0.2

0.15

0.1 0

> 0.2 0.3 0.4 0.1 Horizontal position (um)

Future work and conclusions

- Simulations of a laser-driven focussing structure supporting multiple (parallel) beams
- Focussing gradient 2.0 MT m⁻¹
- In order to fabricate, need characterisation of alignment tolerances
- Geometry not necessarily optimised
- Consider angles other than 45°

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AfAOf 20016, Niationa Elegriptic Mary and Cordon and Betty Moore Foundation: GBMF4744.

This work was partially supported by the U.S. Department of Energy under Contract DE-AC02-76SF00515. This work was partially supported by the Gordon and Betty Moore Foundation under grant GBMF4744.

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AtAOr 2016, National Harborce Mary And Cross of Source No. DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

Checkerboard focussing structure – peak force

Peak transverse force

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – AfAOf 2016, National Hearbierce Mary Apric to No. DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

Checkerboard focussing structure – transverse and accelerating forces

This material is based upon work supported by the U. S. Department of Energy, Wootton – 02 Aug 2016 – Arte of 2016, National Harboric Mary Andre to DE-AC02-76SF0051 and Gordon and Betty Moore Foundation: GBMF4744.

SLAC