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Abstract

The recent determination of the β–function of the QCD running coupling

αMS(Q
2) at 5-loops, together with improvements in determining the holographic

QCD nonperturbative scale parameter κ, allows a high accuracy computation of

the perturbative QCD scale parameter ΛMS . We find Λ
(3)

MS
= 0.339 ± 0.019 GeV

for nf = 3, in excellent agreement with the world average, Λ
(3)

MS
= 0.332 ± 0.019

GeV. The convergence of the method used for this determination is discussed.
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1 Introduction

The strong coupling αs is a central quantity for the study of Quantum Chromody-

namics (QCD), the gauge theory of the strong interactions [1]. Traditionally, αs –or

equivalently, the perturbative QCD (pQCD) scale parameter Λs– has been determined

from measurements of high momentum processes or from Lattice Gauge Theory. More

recently, it has also been determined from nonperturbative dynamics using the light-

front holographic approach to QCD (AdS/QCD) [2], an approach to color confinement

that successfully describes both the hadronic spectrum and the bound-state light-front

wave functions that control hadronic processes [3].

The method used to obtain Λs from AdS/QCD utilizes the effective charge αg1 ,

defined from the Bjorken sum rule [4]. It has the specific nonperturbative form [5]:

αAdS
g1

(Q2)

π
= exp

(

− Q2

4κ2

)

. (1)

Here Q is the momentum transfer in the spin-dependent nucleon structure functions

appearing in the Bjorken sum rule, and κ is the fundamental AdS/QCD scale parameter

determined from the light hadron spectrum. This prediction for αAdS
g1

(Q2) agrees re-

markably well with experimental data for αg1(Q
2) in the domain Q2 ≤ 1 GeV2 [6] where

AdS/QCD is applicable, and displays an infrared fixed point. In the nonperturbative

domain, the relations between αg1(Q
2) and αs(Q

2) in other schemes, such as the MS,

MOM, or V schemes are given in Ref. [7]. Such relations are obtained by first assuming

that αs always has an infrared fixed point regardless of the scheme it is expressed in.

Then, αs(Q
2 = 0) is left as a free parameter to be determined by the matching procedure

described below, but with Λs determined by the world data. The relations between cou-

plings in different schemes are provided in the pQCD domain by “commensurate scale

relations” [8], which are strict predictions of pQCD.

The effective charge αg1 can be expressed at high momentum transfer as a perturba-

tive expansion in the perturbative coupling αMS(Q
2), as defined by the MS renormal-

ization scheme:

αg1(Q
2) = π

[

αMS(Q
2)

π
+ a1

(

αMS(Q
2)

π

)2

+ a2

(

αMS(Q
2)

π

)3

· · ·
]

, (2)

with the ai coefficients known up to a4 [9] and a5 having been estimated [10]. The

normalization and evolution of αg1 is then determined in theMS renormalization scheme
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by the QCD βMS-function and the mass scale ΛMS [11]. Global hadron-parton duality

[12] predicts that the nonperturbative description for αg1(Q
2) overlaps with the pQCD

expression at intermediate values of Q2. Matching the AdS/QCD and pQCD expressions

of αg1(Q
2) and their derivatives then allows us to determine ΛMS and the scale Q0

characterizing the transition between the perturbative and non-peturbative descriptions.

The comparison between ΛMS obtained from light-front holographic QCD and the world

data provides a key test of this novel approach to nonperturbative QCD.

It is usually argued that one determines the proton mass and other aspects of the

QCD mass scale starting from a measurement of Λs in the pQCD domain. This ansatz

is difficult to justify since Λs is renormalization scheme dependent, whereas masses or

other physical observables are not. In fact, the procedure outlined above is the opposite:

Λs is determined in any scheme starting from the fundamental –scheme independent–

confinement scale κ of nonperturbative QCD. Since the QCD Lagrangian has no mass

parameter in the limit where the quark masses are neglected, the magnitude of the mass

parameter κ cannot be determined in fixed units by QCD itself. Actually, the units

normally used for mass, GeV, are a convention. The key predictions are thus ratios such

as Λs/κ. The value of κ determines all other mass scales in the chiral limit. Indeed,

holographic QCD predicts the ratios of masses and mass times radius, etc. For example,

it predictsmp/Λs [2],mρ/mp,mp×Rp [3], etc. Thus κ is in a sense a “holding parameter”,

a scale which arises from color confinement and the breaking of conformal symmetry,

but it cannot be determined in absolute units by QCD. In fact, the mechanism which

sets the confinement scale in the limit of massless quarks is essentially unknown.

As shown in a remarkable article by de Alfaro, Fubini and Furlan (DAFF) [13], it

is possible to generate a mass scale κ and a confinement potential while maintaining

the conformal symmetry of the action. DAFF write the quantum mechanical evolution

operator as a superposition of the generators of the conformal group Conf (R1): The

generator of time translation H , the generator of dilatations D, and the generator of

special conformal transformations K. Since the generators of Conf (R1) have different

dimensions, a mass scale is introduced which in the present context plays a fundamental

role, as initially conjectured in [13]. The resulting confining potential in the light-front

Hamiltonian then has the unique form of a harmonic oscillator κ4ζ2, and the soft wall

dilaton, which encodes the breaking of conformal symmetry in the higher dimensional

anti-de Sitter AdS5 space, must have the form eκ
2z2. The holographic variable z in the 5-

dimensional classical gravity theory is identified with the invariant transverse separation

ζ between the hadron constituents in the light-front quantization scheme [14, 15, 16].
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The harmonic form of the confining light-front potential is equivalent to the familiar

linear heavy quark QQ̄ potential in the instant form [17] and has been successful in

reproducing essential non-perturbative QCD features, such as Regge trajectories and

the Q2-dependence of hadronic form factors [3].

Since the initial AdS/QCD determination of ΛMS reported in Ref. [2], several new

developments have occurred which allow us to significantly improve the comparison be-

tween light-front holographic QCD and the world data: 1) the AdS/QCD scale parameter

κ has been determined with greater accuracy from a systematic analysis of the light-

quark excitation spectra [18] in the context of a semiclassical superconformal approach

unifying mesons and baryons [19]; 2) the running of αMS(Q
2) has been computed to five

loops [20], that is the β–function is now known up to order β4 in theMS renormalization

scheme; and 3) the average world data for ΛMS has been updated [21]. In this article, we

improve our determination of ΛMS from the light-front holographic QCD framework [2]

utilizing these new developments. We also study the convergence of this determination.

The pQCD approximants are asymptotic Poincaré series that converge up to an optimal

order ∼ 1/a, where a = αpQCD
s /π is the expansion parameter of the series. We have

shown in Ref. [7] that the transition between the AdS/QCD description of αs(Q
2) and

its pQCD description occurs at Q2
0 = 0.75± 0.07 GeV2 in the MS scheme: The optimal

order in the Poincaré series is thus 1/a(Q2
0) ≃ 8. Consequently, it is advantageous to use

αpQCD

MS
(Q2 > Q2

0) evaluated at five loops to obtain an accurate value of ΛMS following

the matching procedure with the nonperturbative regime described above.

2 Result for ΛMS

The perturbative series of the β function

Q2 ∂αs

∂Q2
= β (αs) = −

(αs

4π

)2 ∑

n=0

(αs

4π

)n

βn, (3)
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calculated up to order β4 yields the five-loop expression of αpQCD

MS
[22]:

αpQCD

MS
(Q2) =

4π

β0t

[

1− β1

β2
0

ln(t)

t
+

β2
1

β4
0t

2

(

ln2(t)− ln(t)− 1 +
β2β0

β2
1

)

+
β3
1

β6
0t

3

(

−ln3(t) +
5

2
ln2(t) + 2 ln(t)− 1

2
− 3

β2β0

β2
1

ln(t) +
β3β

2
0

2β3
1

)

+
β4
1

β8
0t

4

(

ln4(t)− 13

3
ln3(t)− 3

2
ln2(t) + 4 ln(t) +

7

6
+

3β2β0

β2
1

(

2 ln2(t)− ln(t)− 1
)

− β3β
2
0

β3
1

(

2 ln(t) +
1

6

)

+
5β2

2β
2
0

3β4
1

+
β4β

3
0

3β4
0

)

+O
(

ln(t)6

t

)]

, (4)

with t = ln (Q2/Λ2
s) and

β4 = 524.56− 181.8nf + 17.16n2
f − 0.22586n3

f − 0.0017993n4
f , (5)

for NC = 3 [20]. The expressions for the lower order βi can be found e.g. in [1, 7]. Here,

we will set nf = 3 and use the updated value of the holographic QCD scale parameter,

κ = 0.523 ± 0.024 GeV [18]. This value characterizes the mass scale of light-quark

hadron spectroscopy and is compatible with the fit to the Bjorken sum data at low

Q2 [23] in the holographic QCD validity domain, which yields κ = 0.496 ± 0.007 GeV

[1]. The updated κ value is lower than –but compatible with– the value we used in [2]:

κ = Mρ/
√
2 = 0.548 GeV [3], with Mρ the ρ–meson mass. This value is also used in

the study of hadronic form factors, which are expressed in terms of ρ mass poles and its

radial recurrencies [3, 24].

As in Ref. [2], we compute αpQCD
g1 (Q2) using the Bjorken sum rule [4] up to 5th order

in αpQCD

MS
[9]. At β4 and

(

αpQCD

MS

)4

orders, we obtain ΛMS = 0.339 ± 0.019 GeV and

Q2
0 = 1.14±0.12 GeV2, to be compared to the present world data, ΛPDG

MS
= 0.332±0.019

GeV for nf = 3 [21]. (The value of Q0 is given in the g1 scheme and is higher than that

in the MS scheme [7].)

The uncertainties entering our determination stem from the uncertainty on κ (±0.016

GeV), the uncertainty from the chiral limit approximation (±0.003 GeV) and the trun-

cation uncertainty on the Bjorken and αpQCD

MS
series, Eqs. (2) and (4), respectively,

(± 0.010 GeV). This uncertainty is taken, for order n, as the difference between the

results at orders n and n+ 1, the uncertainty at the highest order being taken equal to

that of the preceding order.

The total uncertainty has significantly improved compared to our previous determi-
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nation, ΛMS = 0.341± 0.032 GeV [2]. The updated prediction of the running coupling

is shown in Fig. 1 together with the previous determination [2] and experimental data

[6].

Q (GeV)

α g1
(Q

)/
π

αg1/π Hall A/CLAS

αg1/π JLab CLAS (2008)
αg1/π JLab CLAS (2014)

αg1(τ)/π OPAL
αF3/π

αg1/π DESY HERMES
αg1/π CERN COMPASS
αg1/π SLAC E142/E143
αg1/π SLAC E154/E155
αg1/π JLab RSS
αg1/π CERN SMC

Holographic QCD +
pQCD matching (2015)

This work

Q0

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Figure 1: Running of αg1(Q) for κ = 0.523 GeV, ΛMS = 0.339 GeV (red line). Also
shown are experimental data [6] and the earlier determination of αg1(Q) for κ = 0.548
GeV, ΛMS = 0.341 GeV (black line) [2]. The arrow marks the transition scale Q0.

The result using the Bjorken sum rule coefficient a5 in Eq. (2), which is assessed in

Ref. [10], is ΛMS = 0.317±0.019 GeV. The uncertainty stems from the uncertainty on κ

(± 0.015 GeV), the uncertainty from the chiral limit approximation (± 0.003 GeV), the

truncation uncertainty on the Bjorken and αpQCD

MS
series, Eqs. (2) and (4), respectively,

(± 0.010 GeV), and an estimate on the a5 uncertainty (±0.005 GeV). This latest con-

tribution is assessed by rescaling a5 by 175.7/130 and obtaining ΛMS with this rescaled

value. (The estimate of the Bjorken sum rule coefficient a4 in [10] was 130 while the

recent exact calculation yields a4 = 175.7 [9]. The ratio 175.7/130 provides an indication

of the uncertainty on a5). We will not use the result for ΛMS at order a5 as our main

result since a5 has been only estimated rather than computed.
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3 Convergence

The convergence with respect to the β-order is shown in Fig. 2 for the Bjorken

series calculated at order
(

αpQCD

MS

)4

. This series oscillates but nevertheless converges

well. The convergence with respect to the Bjorken series order is shown in Fig. 3 for

αpQCD

MS
calculated at order β4. The overall convergence of our method is estimated with

both the β- and Bjorken series calculated at the same order. This is also shown in Fig.

3. The convergence is slightly faster than the case when the β-series is kept at order β4.

β-order

Λ
(3

)

Λ(3)   AdS/QCDMS

Λ(3)   World data (2015)MS

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6

Figure 2: Convergence of our determination of ΛMS (black squares) in function of the
β-series order for nf = 3. The pQCD series for the Bjorken sum rule is computed at

order
(

αpQCD

MS

)4

. The error bars reflect only the uncertainty from the truncation of the

β-series. The blue band gives the latest world data.

4 Conclusion

The updated prediction ΛMS = 0.339 ± 0.019 GeV obtained from matching holo-

graphic QCD and pQCD at five loops, is in excellent agreement with the value from the

present world data, ΛPDG
MS

= 0.332 ± 0.019 GeV. Our method is applicable for setting

the perturbative QCD scale Λs in any renormalization scheme. We have used the MS

scheme since this has been the conventional choice for pQCD analyses. The convergence

of the method is satisfactory overall, for both the β-series and the pQCD prediction for

the Bjorken sum rule. The largest uncertainty stems from the truncation of the Bjorken

sum pQCD series. A calculation of its next term –presently only estimated– and the

application of the Principle of Maximum Conformality (PMC) [25, 26] would be valuable
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Series order

Λ
(3

)

Λ(3)   AdS/QCD with β-series at β4MS

Λ(3)   World data (2015)MS

Λ(3)   AdS/QCD, series at same orderMS

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 3 4 5 6 7

Figure 3: Convergence of our determination of ΛMS in function of the Bjorken series
order (squares). αpQCD

MS
is computed at order β4 and for nf = 3. The triangles represent

the results when both the β- and Bjorken series are computed at the same order. The
error bars include only the uncertainty from the series truncation. The blue band gives
the latest world data.

for further improving the accuracy of the method discussed here. The uncertainty from

the determination of the mass scale κ from hadronic spectroscopy contributes similarly.

Thus a reduction in the uncertainty of its value will provide an even more accurate holo-

graphic prediction for ΛMS. The excellent agreement between the light-front holographic

prediction and the world data validates the relevance of the gauge/gravity approach to

nonperturbative strong interaction phenomena.
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