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ABSTRACT

Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass
are a source of uncertainty for cluster weak lensing. We present a semi-analytical model
to account for this effect, based on a combination of variations in halo concentration,
ellipticity and orientation, and the presence of correlated haloes. We calibrate the pa-
rameters of our model at the 10 per cent level to match the empirical cosmic variance
of cluster profiles at M200m ≈ 1014 . . . 1015h−1M⊙, z = 0.25 . . . 0.5 in a cosmological
simulation. We show that weak lensing measurements of clusters significantly under-
estimate mass uncertainties if intrinsic profile variations are ignored, and that our
model can be used to provide correct mass likelihoods. Effects on the achievable accu-
racy of weak lensing cluster mass measurements are particularly strong for the most
massive clusters and deep observations (with ≈ 20 per cent uncertainty from cosmic
variance alone at M200m ≈ 1015h−1M⊙ and z = 0.25), but significant also under
typical ground-based conditions. We show that neglecting intrinsic profile variations
leads to biases in the mass-observable relation constrained with weak lensing, both
for intrinsic scatter and overall scale (the latter at the 15 per cent level). These biases
are in excess of the statistical errors of upcoming surveys and can be avoided if the
cosmic variance of cluster profiles is accounted for.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology:
observations

1 INTRODUCTION

The largest objects ever formed depend most sensitively on
small changes in the overall properties of the Universe. It
is for this reason that clusters of galaxies are a versatile
probe of cosmology. The number density of clusters and its
evolution with redshift is influenced by the expansion his-
tory, the density and level of inhomogeneity of matter in the
Universe and the growth of structures by means of gravita-
tion. Both the parameters of a standard ΛCDM model and
deviations from primordial Gaussianity or General Relativ-
ity are therefore accessible to cluster cosmology (cf., e.g.,
Allen et al. 2004; Vikhlinin et al. 2009b; Rozo et al. 2010;
Mantz et al. 2010; Mana et al. 2013; Benson et al. 2013;
Planck Collaboration et al. 2013; Mantz et al. 2015 for in-
dividual analyses and Allen et al. 2011 for a recent review).

The building blocks of such analyses are (i) a clus-
ter catalog with well-defined selection function based on,
e.g. optical, X-ray or Sunyaev & Zel’dovich (1972, hereafter
SZ) properties, (ii) a prediction, based on theory or sim-

⋆ E-mail: dgruen@usm.uni-muenchen.de (DG)

ulations, of how the number density of clusters at given
mass and redshift depends on the cosmological parameters
in question (e.g. Press & Schechter 1974; Sheth & Tormen
1999; Tinker et al. 2008) and (iii) a mass-observable relation
(MOR) that connects the observable from (i) to the mass-
based prediction from (ii) in terms of a likelihood. The latter
must not only describe the mean relation of mass and ob-
servable but, because of the observable limited nature of any
practical survey, also the intrinsic scatter in the observable
at fixed mass (e.g. Lima & Hu 2005).

With the advent of large cluster catalogs, our imperfect
knowledge of the MOR remains the most important limiting
factor of cluster cosmology. It is difficult to predict or sim-
ulate, to the level of accuracy required, all physical effects
that influence the observables, particularly ones that are of
baryonic nature. Thus, one needs to rely on an empirical
calibration of the MOR.

The latter can in principle be done by means of
self-calibration, i.e. by constraining both cosmology and
MOR parameters from the cluster catalog alone (Hu 2003;
Majumdar & Mohr 2004; Lima & Hu 2005). However, this
approach greatly reduces the cosmological power of cluster
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2 D. Gruen et al.

studies, especially when extensions to the most simple MOR
and cosmological models are considered.

It is for this reason that weak lensing studies of clusters
of galaxies are a particularly powerful complement to clus-
ter cosmology. Being sensitive to all matter independent of
its astrophysical state, lensing allows, in principle, an unbi-
ased measurement of cluster mass. Several studies have used
this approach to constrain MORs with lensing mass mea-
surements of sets of individual clusters (e.g. Marrone et al.
2009, 2012; Hoekstra et al. 2012; von der Linden et al. 2012;
Gruen et al. 2014; Mantz et al. 2015), with great prospects
of further improving statistics with on-going and future large
surveys.

However, for accurate constraints on the mean MOR
and its intrinsic scatter to be derived, one needs to ensure
that the mass likelihood from a lensing analysis includes
all actual sources of uncertainty. For typical cluster lensing
studies, the dominant uncertainty is observational, i.e. based
on the limited number of intrinsically elliptical background
galaxies. Since all structures between sources and observer
cause a lensing signal, an additional, irreducible uncertainty
results from the variance of the matter density along the
line of sight (LOS; cf. e.g. Hoekstra 2001, 2003). Most clus-
ter lensing studies include either only the first or both of
these effects when fitting the signature of a mass dependent
density profile to observed data.

What this neglects, either entirely or apart from a low-
dimensional approximation in terms of e.g. halo concentra-
tion, is the complexity of cluster profiles. The projected den-
sity profiles of two clusters at the same virial mass can differ
greatly, as could be described accurately only with detailed
information about the shape and orientation of their central
dark matter halo and the positions and masses of subhaloes
and neighbouring structures. Due to its relatively low res-
olution, no weak lensing analysis is able to uncover all or
even most of this information. However, the uncertainty of
mass measurement will depend on the statistical properties
of these variations.

The goal of this work is to provide a model for the
variations in projected density profiles of cluster of galax-
ies at fixed mass. We construct our model using analytical
templates for the expected scatter due to variations in halo
concentration, ellipticity and orientation, and its substruc-
ture and cosmic neighbourhood. We re-scale these templates
to match the empirical variations of cluster profiles in a cos-
mological simulation, where both well-defined true masses
and the lensing signal without any observational noise are
known. We then use this semi-analytical covariance model
to test and predict the accuracy of lensing measurements of
cluster mass and MORs, and to assess the effect of neglect-
ing intrinsic variations.

The structure of this paper is as follows. In Section 2 we
briefly describe the simulations used. Section 3 defines the
components of our model for the mean cluster profile and, in
particular, its intrinsic covariance. In Section 4 we explain
how the model is fitted to the simulated data. Effects of the
intrinsic covariance on weak lensing cluster mass measure-
ments and MOR studies are shown in Section 5, before we
summarize in Section 6.

Conventions

Our calculations are presented in a flat WMAP 7 year
cosmology (Komatsu et al. 2011) with (Ωm, Ωb, σ8, h, n) =
(0.27, 0.044, 0.79, 0.7, 0.95), in consistency with the simula-
tions used. The covariances can be readily re-scaled to dif-
ferent sets of cosmological parameters, up to a potential cos-
mology dependence of our model parameters. We explicitly
write appropriate factors of h = H0/(100 km s−1 Mpc−1)
where applicable. We denote the radii of spheres around the
cluster centre with fixed overdensity as r∆m, where ∆ = 200
is the overdensity factor of the sphere with respect to the
mean matter density ρm at the cluster redshift. The mass
inside these spheres is labelled and defined correspondingly
as M∆m = ∆ × 4π

3
r3

∆mρm.
We use a linear matter power spectrum Plin(k, z) =

D2(z)Plin(k, 0) with the transfer function model including
baryonic effects of Eisenstein & Hu (1998) and normalize to
our value of σ8. For the linear growth factor D(z), normal-
ized to D(0) = 1, we use the expression of Peacock & Dodds
(1996). We define the corresponding linear matter two-point
correlation as

ξlin(r, z) =
1

2π2

∫

dkk2Plin(k, z)
sin(kr)

kr
. (1)

For the scaling of some of the cluster properties we will
use the common definition of peak height

ν = δc/σ(M200m, z) , (2)

where δc = 1.686 and

σ2(M200m, z) = D2(z)

× 1

2π2

∫

dk k2 Plin(k, 0)

∣
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w

(
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3M200m

4πρ0,m

)1/3
)∣

∣

∣

∣

∣

2

, (3)

with the Fourier transform of the top-hat window function
of radius r, w(k, r).

2 SIMULATIONS

We use the simulation labeled L1000W in Tinker et al.
(2008). It consists of 10243 dark matter particles of mass
6.98 × 1010h−1M⊙ in a box of comoving size 1 h−1 Gpc,
simulated with the parallelized Adaptive Refinement Tree
algorithm (Kravtsov et al. 1997; Gottloeber & Klypin 2008)
from redshift z = 60 to z = 0, at an effective spatial resolu-
tion of 30h−1 kpc. In a snapshot at redshift z = 0.24533
almost 15,000 haloes at 0.95 × 1014h−1M⊙ 6 M200m 6

1.5 × 1015h−1M⊙ are identified.
The same haloes are also used in Becker & Kravtsov

(2011) and we employ the lensing maps computed in that
work. For the selected haloes, the mass is integrated along
the LOS and the lensing signal is determined on a grid of
approximately 40 comoving kpc/pixel using the Born ap-
proximation as described in Becker & Kravtsov (2011, Sec-
tion 3). All matter within comoving ±200h−1Mpc along the
LOS and, transversely, in a square with comoving side length
20h−1Mpc centered on the cluster is included in the calcu-
lation. Background sources are assumed to be at a constant
redshift zs = 1, where Σcrit = 4.22 × 1015hM⊙Mpc−2. The
density map inside a clustrocentric radius θ 6 1′ is subject
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to resolution effects, which is why we discard it from our
analysis.

3 MODEL DEFINITION

In the following, we introduce our model for the covariance of
projected cluster profiles. Its components, namely the model
for the mean profile (Section 3.1) and the contributions to
the covariance (Section 3.2), are described subsequently.

Consider the convergence profile of a given cluster with
mass M200m =: M as

K = κ(M) + E , (4)

where K is the observed convergence profile and κ(M) is
the mean convergence profile of clusters of fixed mass M . E
is the residual between the two, which arises due to observa-
tional uncertainty and variations of the noiseless observable
κ profile at fixed mass. These variations could be due to un-
correlated structures along the LOS or the projected cluster
density profile itself. The latter intrinsic variations are the
focus of this work.

The profiles are vectors measured in a system of radial
bins, where bin 1 6 i 6 n is defined as θ ∈ [θi,min, θi,max]
without gaps, i.e. θi,max = θi+1,min.

Approximating the residuals E as a multivariate Gaus-
sian with zero mean, one can write the likelihood for an
observed K given a mass M as

L(K|M) =
1

√

(2π)n det(C(M))

× exp
(

−1

2
E

TC−1(M)E
)

, (5)

where we have introduced the covariance C of residuals E.
This n × n matrix is defined as

Cij = Cov(Ei, Ej) . (6)

We make a semi-analytic ansatz for a parametric model
of C as

C(M) = Cobs + CLSS + cconc(ν)Cconc(M)

+ ccorr(ν)Ccorr(M) + cell(ν)Cell(M)

(7)

with contributions from observational uncertainty (i.e.,
shape noise in shear measurement and Poisson noise in mag-
nification studies) Cobs, uncorrelated large scale structure
along the LOS CLSS, scatter in halo concentration Cconc,
correlated secondary haloes near the cluster Ccorr and vari-
ations in halo ellipticity and orientation Cell. The terms Cobs

and CLSS are independent of the cluster itself. In contrast to
the common case where only these are considered, however,
C(M) inherits a mass dependence from the latter terms,
which we will call intrinsic variations of the cluster profile.
They are described in detail in Section 3.2. The empirical re-
scaling factors c⋆(ν) of Ccorr, Cell and Cconc are determined
by fitting the covariance model to the simulated haloes (see
Section 4).

3.1 Mean profile

Several studies in the past have proposed functional forms
for the three-dimensional density of dark matter haloes.

Navarro, Frenk, & White (1997, hereafter NFW) found that
haloes are well-fit by the two-parametric broken power-law
profile

ρNFW(r) =
ρ0

(r/rs)(1 + r/rs)2
, (8)

with scale density ρ0 and a scale radius rs that can be
expressed as a fraction of r200m using the concentration
c200m = r200m/rs.

Two additional effects need to be accounted for in a
realistic description of halo density profiles. Firstly, the en-
closed mass of an NFW profile diverges logarithmically as
r → ∞. The density must therefore be truncated at large
radii, for which a number of approaches have been pro-
posed (e.g. Takada & Jain 2003; Hayashi & White 2008;
Baltz, Marshall, & Oguri 2009, hereafter BMO). Secondly,
the halo is embedded in an overdensity of correlated matter
that contributes to the overall projected profile at all, and
dominantly at large, radii. We closely follow the work of
Oguri & Hamana (2011), who fit a superposition of a BMO
profile with a linear two-halo term to simulated haloes, i.e.

Σ(M) = κ(M)Σcrit = Σ1h,BMO(M) + Σ2h,lin(M) . (9)

We describe the one-halo (Section 3.1.1) and two-halo term
(Section 3.1.2) in the following.

3.1.1 One-halo term

BMO define a truncated version of the NFW profile as

ρBMO(r) = ρNFW(r) ×
(

τ 2
200m

(r/r200m)2 + τ 2
200m

)β

, (10)

where we use β = 2. Here we have introduced τ200m, the mul-
tiple of r200m around which the halo is smoothly truncated.
The BMO profile can be analytically integrated to yield the
projected profile Σ1h,BMO, as well as the change in mass nor-
malisation due to missing density relative to the NFW pro-
file (cf. BMO; Oguri & Hamana 2011 and the ample code,
http://kipac.stanford.edu/collab/research/lensing/

ample/ample.c).
Besides mass, our one-halo term has two additional free

parameters, the concentration c200m and truncation radius
τ200m. We fix the former with the mass-concentration re-
lation of Duffy et al. (2008). Oguri & Hamana (2011) note
a weak dependence of τ∆virm on mass. Our scaling rela-
tion of τ200m is determined by fitting the mean κ profile
of haloes in our simulation (cf. Section 2) in logarithmic
bins of ∆ log10 M200m = 0.05 in the radial range of 3 to 15
arcmin using the full profile of eqn. 9, with τ as a free pa-
rameter. The uncertainties for our χ2 minimization w.r.t. τ
are derived from the ensemble variance of mean κ in the re-
spective mass bin. We find that the relation is well described
as a linear function of ν. Our fit in ν ∈ [2.2, 3.7] yields

τ200m =

{

3.85 − 0.73ν ν 6 3.7
1.15 ν > 3.7

, (11)

where we have assumed a constant value for τ200m above the
peak height range covered by our simulated haloes.

We note that the fact that more massive haloes are,
on average, truncated at smaller multiples of their r200m

radii could be interpreted in terms of the steepening of the

c© 2014 RAS, MNRAS 000, 1–14
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density slope with increasing mass accretion rate observed
by Diemer & Kravtsov (2014).

3.1.2 Two-halo term

The two-halo surface mass density due to linear evolution
around a cluster of mass M at redshift z can be written as
(e.g. Oguri & Hamana 2011)

Σ2h,lin(θ) = bh(M, z) ρc,0 Ωm W (θ, z) D−2
A (z) . (12)

Here, bh(M, z) is the linear bias of the cluster halo (which
we calculate according to Tinker et al. 2010) and DA(z) is
the angular diameter distance to redshift z. We have defined
the projected linear excess Lagrangian depth W (θ, z) as

W (θ, z) = [DA(z)(1 + z)]2

×
∫ +∆ζ

−∆ζ

ξlin

(

√

[DA(z)(1 + z)θ]2 + ζ2, z
)

dζ

=

∫

ldl

2π
J0(lθ)Plin

(

l

(1 + z)DA(z)
, z

)

, (13)

where ±∆ζ is the interval in comoving distance along the
LOS integrated in our simulated projected density profiles.
For large enough ∆ζ, almost all correlated matter is included
in the integration and the latter equality holds. In eqn. 13,
we have used the Bessel function of the first kind and order
zero, J0. W has units of comoving volume per solid angle
and is readily interpreted as the excess in Lagrangian volume
per solid angle that has moved to the projected vicinity of
a structure with unit bias due to linear evolution.

The mass measurements of our haloes from the simula-
tions contain all particles within r200m. We therefore need
to correct for contributions of two-halo matter M2h when
defining the mass of the one-halo profile, which we do at
first order as

M200m,1h = M200m − M2h(r200m, M200m, z) . (14)

Inside a sphere of radius r around the cluster centre, the
mass of two-halo matter is

M2h(r, M, z) = bh(M, z) ρc,0 Ωm,0 U(r, z) . (15)

Here we have defined the linear excess Lagrangian volume
inside a sphere of radius r as

U(r, z) =

∫ r(1+z)

0

dr′ξlin(r′, z) 4πr′2

= D2(z) U(r(1 + z), 0) . (16)

3.1.3 Comparison to simulations

Figure 1 shows model and mean profiles of simulated haloes
in two mass bins spanning most of the dynamic range of our
halo catalog (see Section 2 for details on the simulations).
The model fits the data well at projected r > 0.3 × r200m,
but moderately overestimates projected density at smaller
radii, where an un-truncated NFW profile without two-halo
contribution is a better fit. Potential reasons for the dis-
crepancy include factual deviations of the simulated dark
matter haloes from the NFW profile at small radii (cf.
Becker & Kravtsov 2011, their Fig. 2, for an analysis based
on the same cluster sample), resolution effects at small

radii and the simplified nature of our linear superposition
of the collapsed halo profile with a linear two-halo term (cf.
Hayashi & White 2008 for a different approach, in which the
three-dimensional density is assumed to be piecewise equal
to the NFW one-halo or a linear two-halo term, only). Since
we only use the model for re-normalization of the ensemble
mean profile to the mass of a given cluster (cf. Section 3.3),
this is not problematic for our purposes.

3.2 Components of profile covariance

We have made the ansatz for the residual between a given,
noise-free cluster κ profile K and the mean profile at its
mass κ(M) as a sum of multivariate Gaussian vectors corre-
sponding to four distinct physical effects: uncorrelated large
scale structure along the LOS, variations in concentration,
halo asphericity and orientation, and correlated haloes in
the cluster substructure and neighbourhood (cf. eqn. 7). All
of these effects have the potential to bias the lensing mass
measurement or, equivalently, can be interpreted as a source
of intrinsic covariance between the components of K−κ(M)
that causes additional intrinsic noise on a cluster-by-cluster
basis. In this section, we provide analytic expressions for all
four components of the intrinsic covariance.

3.2.1 Uncorrelated large-scale structure

For a given source population, random structures along the
LOS introduce a covariance in convergence measured in an-
gular bins, which can be written as (e.g. Schneider et al.
1998; Hoekstra 2003; Umetsu et al. 2011)

CLSS
ij =

∫

ldl

2π
Pκ(l)Ĵ0(lθi)Ĵ0(lθj) . (17)

Here, Ĵ0(lθi) is the area-weighted average of J0 over annu-
lus i. Using the identity (Abramowitz & Stegun 1965, their
eqn. 9.1.30)

(

1

z

d

dz

)k

[zlJl(z)] = zl−kJl−k(z) . (18)

with k = l = 1 and integrating yields (cf. also Umetsu et al.
2011, their eqn. 16)

Ĵ0(lθi) =
1

2dlθi
[(1+d)J1(lθi(1+d))− (1−d)J1(lθi(1−d))] ,

(19)
where we have assumed an annulus of width 2dθi from (1 −
d)θi to (1 + d)θi.

The convergence power spectrum Pκ in eqn. 17 is ob-
tained from the matter power spectrum by means of the
Limber (1954) approximation as

Pκ(l) =
9H2

0 Ω2
m

4c2

∫ χ2

χ1

dχ

(

χs − χ

χsa(χ)

)2

Pnl(l/χ, χ) , (20)

where we have assumed a fixed comoving distance of the
sources χs. For calculating CLSS around our cluster haloes,
we set the source redshift to a fixed zs = 1 and limit the
interval [χ1, χ2] to the range of ±200h−1 comoving Mpc
included in the boxes around the cluster haloes (cf. Sec-
tion 2). For the non-linear matter power spectrum Pnl we use
the model of Smith et al. (2003) with the Eisenstein & Hu

c© 2014 RAS, MNRAS 000, 1–14
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Figure 1. Mean convergence profiles of haloes at the low-mass (left) and high-mass (right) end of our sample, shown for haloes at the
simulation redshift z = 0.24533 with corresponding angular (bottom axis) and r200m (top axis) scales. Black lines show average profiles
in the simulations, with error bars giving the uncertainty of the mean. Our model is shown as the red, solid line, composed of the BMO
one-halo term (red, dotted) with truncation radius according to equation 11 and the two-halo term (red, dashed). The blue, dotted line
shows un-truncated one-halo NFW profile for comparison.

(1998) transfer function including baryonic effects. We per-
form the integral using a customized version of nicaea

(Kilbinger et al. 2009). The result is shown in the lower left
panel of Fig. 2.

3.2.2 Concentration

The covariance due to variations in concentration parameter
at fixed mass is calculated as

Cconc
ij =

∫

dP (c)κiκj

−
[∫

dP (c)κi

]

×
[∫

dP (c)κj

]

, (21)

where κi is taken to be the convergence of a halo of
concentration c in annulus i. For the probability density
dP (c), we assume a log-normal scatter of σlog10 c200m

=
0.18 (Bullock et al. 2001) about the mean concentration of
Duffy et al. (2008). The result is shown in Fig. 2, lower
second-to-left panel. As can be seen, it is subdominant at
the radii considered here relative to other sources of intrin-
sic profile variation, at least for clusters of moderate mass,
which illustrates the difficulty of measuring individual clus-
ter concentrations with weak lensing.

3.2.3 Correlated large-scale structure

Clusters of galaxies are likely to form in overdense regions,
where the abundance of additional (correlated) haloes is
also higher than average. The mean effect of this on pro-
jected density is the two-halo term of Section 3.1.2. However,

the stochastic variation of the number of correlated haloes
around a cluster also contributes to the covariance of κ.

We calculate this effect in a halo model, in analogy to
Gruen et al. (2011, their Appendix A2). The idea is to split
the set of all possible haloes into subsets that are alike in the
sense that they cause a similar shear signal, e.g. ones that
are of similar mass and projected distance from the cluster.
We then apply Poissonian statistics to the number of haloes
that is actually present from each subset.

Let H = {h} be the set of tuples h that completely char-
acterize all possible halos, e.g. in terms of their coordinates
and masses. Consider mutually exclusive and collectively ex-
haustive subsets Hk ⊂ H that are small enough such that
∀Hk : ∀ha,hb ∈ Hk : Σi(ha) ≈ Σi(hb) is a good approxi-
mation for the surface mass density of such a halo averaged
over annulus i. Then we can write the surface mass density
of correlated haloes Σi

corr in annulus i as

Σi
corr =

∑

k

λkΣi(hk) (22)

where λk > 0 is a random variable that describes the
number of correlated haloes ∈ Hk realized in a manifes-
tation of the cluster. Defining a halo excess probability den-
sity dPc around a cluster with properties hcl such that
∫

Hk

dPc(h|hcl) = 〈λk〉, this immediately results in the ex-

pectation value

〈Σi
corr〉 =

∫

dPc(h|hcl)Σ
i(h) . (23)

For the covariance we make the assumption (discussed
below) that the population random variables λk and λl of
the halos in sets Hk and Hl are Poisson distributed and

c© 2014 RAS, MNRAS 000, 1–14
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Figure 2. Illustration of our model for the profile covariance. Top left panel shows the empirical intrinsic covariance of κ profiles between
1 and 30 arcmin of simulated clusters of mass M200m = 1.8 . . . 2.2 × 1014M⊙. Our model prediction for the covariance is shown in the
top right panel. It is a linear combination of the components shown in the bottom panel. Even at this relatively low mass, uncorrelated
large-scale structure (left in lower panel) is an insufficient description of the observed covariance, especially in the inner regions. We
model the additional covariance as a linear combination of variation of the concentration parameter, the covariance of correlated haloes
and halo ellipticity and orientation (remaining plots in lower panel). All panels use the same color scale with contour lines spaced by
∆ log10 Covκ = 0.25. At the mass plotted here, ccorrCcorr is the dominant component of the intrinsic (co)variance on most scales, with
significant contributions from cellCell in the innermost region and subdominant concentration scatter. We note, however, that the relative
importance of these three components changes as a function of mass (cf. Fig. 3).

mutually independent (Cov(λk, λl) = δklλk). Then

Ccorr
ij × Σ2

crit =

∫

dPc(h|hcl)Σ
i(h)Σj(h) . (24)

If we characterize secondary haloes only by their mass
and projected angular distance from the cluster centre, h =
(M, θ), we can write

dPc(h|hcl) = b(Mcl)b(M)
dN(M, zcl)

dMdV
W (θ, zcl) 2πθdθdM ,

(25)

Here we have introduced the halo mass function dN(M,zcl)
dMdV

and used the projected linear excess Lagrangian depth W
from eqn. 13, which assumes that pairs of haloes of masses
Mcl and M cluster according to the linear matter two-point

correlation and a mass dependent linear halo bias b as

ξhh(Mcl, M, r) = b(Mcl, zcl)b(M, zcl)ξlin(r, zcl) . (26)

We perform the two-dimensional integral of equa-
tions 24 and 25, factoring out the cluster halo bias b(Mcl, zcl)
for later re-scaling of the covariance matrix to clusters of any
mass. For the halo mass function and halo bias we use the
models of Tinker et al. (2008, 2010). The haloes are mod-
elled as BMO profiles (cf. Section 3.1.1) with concentration
according to Duffy et al. (2008) and the truncation radius
model of Eqn. 11. We include contributions from haloes of
mass 108h−1M⊙ 6 M200m 6 1015.5h−1M⊙.

Finally, we note that a mutual (three-point) correlation
of different correlated haloes is in fact expected, i.e. the pres-
ence of one massive, secondary halo makes the presence of

c© 2014 RAS, MNRAS 000, 1–14



Cosmic variance of cluster weak lensing 7

tertiary haloes more likely. This means that the approach
presented above yields merely a lower limit of the true co-
variance, yet this can be approximately compensated by an
empirical re-scaling of the covariance matrix with ccorr. The
resulting covariance matrix is shown in the lower second-to-
right panel of Fig. 2.

Non-linearly correlated subhaloes

The model for correlated large-scale structure in Sec-
tion 3.2.3 assumed a linear correlation of secondary haloes
at all radii. A more realistic approach might be to make this
assumption only for haloes outside the virial radius and add
a distinct population of subhaloes. We test this model as
follows.

For the subhalo abundance inside the virial radius
(Bryan & Norman 1998, their eqn. 6) we use the subhalo
mass function of Jiang & van den Bosch (2014). The sur-
face density of haloes is distributed according to an NFW
profile with concentration c200m = 3.9, adapted from the
measurement of c200c = 2.6 by Budzynski et al. (2012)
for Duffy et al. (2008) halo concentration, M200m = 2 ×
1014h−1M⊙ and the snapshot redshift. These assumptions
yield dPc for the subhalo case.

We assume a truncation of subhaloes at their r200m ra-
dius, i.e. τ200m = c200m(Msub), motivated by halo stripping.
For the projected density profile of the individual subhalo,
we ensure mass compensation by subtracting as much mat-
ter according to the mean subhalo density profile (eqn. 23)
as is contained in the individual halo. Otherwise we apply
the prescription of Section 3.2.3 to determine the subhalo
shot noise covariance matrix Csub. In this we are ignoring,
as before for the linear correlation, both a potential depen-
dence of the subhalo number density profile on the parent
halo concentration and ellipticity (which might cause corre-
lations between Csub and the respective other components
of the model) and mutual correlation of subhaloes.

The covariance for linearly correlated haloes in this
model is calculated as in eqn. 24, yet using a virial sphere
excised version of W (θ) to calculate dPc(h|hcl) in eqn. 25.
Note that Ccorr in this model explicitly depends on the halo
mass rather than being a constant template that is re-scaled
by the central halo bias.

We find that the predicted subhalo covariance is a sig-
nificant contribution to the intrinsic covariance of the halo
profile at the high mass end of our sample. The contribution
is dominated by massive subhaloes that are sufficiently re-
solved by our simulations. When we fit a linear dependence
of a re-scaling parameter csub = csub

0 + csub
1 (ν − νsub

0 ) to-
gether with ccorr

0/1 and cell
0/1 as described in Section 4 below,

we find csub
0 = 0.8±0.8 and csub

1 = −2±1.5. Fixing csub
1 = 0

and ccorr
1 = 0 yields a best-fit csub

0 = 0. The contribution of
subhaloes is particularly degenerate with the halo aspheric-
ity covariance Cell (see Section 3.2.4). We conclude that a
larger sample of massive haloes would be required to deter-
mine whether the addition of Csub improves the model and
therefore do not include it in the following analyses.

3.2.4 Halo asphericity

Dark matter haloes are known to be triaxial in general. The
axis ratios and their orientation along the LOS can change
the projected κ profile significantly. It is difficult, however,
to model the effect in its full generality.

We therefore make the following simplified model for
the covariance due to halo asphericity. In accordance with
the dominant feature of halo shapes in nature, we assume
them to have a prolate shape with minor-to-major axis ratio
0 < q = b/a = c/a 6 1. We define a coordinate system with
ellipsoidal radius re such that

r2
e = x

T





q−2/3 0 0

0 q−2/3 0

0 0 q4/3



x , (27)

where xT = (x, y, z) is a Cartesian coordinate system cen-
tred on and aligned with z along the major axis of the halo.
For the spherical coordinate system (R, θ, φ) with θ = 0
along the major axis,

re(R, θ)/R =
√

q−2/3 sin2 θ + q4/3 cos2 θ . (28)

We find the three-dimensional density of a prolate NFW
halo by evaluating equation 8 at r = re. By virtue of
the unit determinant, the volume of ellipsoidal shells is
V (re, re + dre) = 4πr2

edre. The usual normalization of
ρ0 therefore means that the density integrated out to an
ellipsoidal radius re = r200m matches M200m. However,
we need to re-scale ρ0 numerically for the mass inside a
sphere of radius r200m to match M200m (cf. Jing & Suto
2002; Oguri et al. 2003; Corless & King 2007 for definitions
based on ellipsoidal overdensity and Dietrich et al. 2014 for
a spherical overdensity approach to ellipsoidal haloes).

Integration of ρ along the LOS yields the surface mass
density for any combination of M200m , c200m , q and orien-
tation angle α, where α = 0 puts the major axis along the
LOS. We take care to use an approximation to the analytical
result for the integrated density inside the innermost region,
r/rs < 10−3, where the diverging density leads to numerical
instability. Here we can approximate θ ≈ α for most of the
matter along the LOS to find the mean surface density in-
side a small projected radius δv = δr/rs as (cf. Bartelmann
1996; Wright & Brainerd 2000)

〈Σ〉(< δv) = ρ0rs

×
(

(1 − e2)−1/3 sin2 α + (1 − e2)2/3 cos2 α
)−1/2

× 4

δv2

(

2√
1 − δv2

arctanh

(

√

1 − δv

1 + δv

)

+ ln
(

δv

2

)

)

. (29)

The covariance matrix is integrated as

Cell
ij =

∫

dP (q, cos α)κiκj

−
[∫

dP (q, cos α)κi

]

×
[∫

dP (q, cos α)κj

]

, (30)

where κi is the mean surface density of a halo of axis ratio
q and orientation angle α in annulus i. We assume isotropic
orientation, i.e. a uniform distribution of cos α ∈ [0, 1], and
a truncated Gaussian distribution of q

P (q) ∝
{

N (µ = 0.6, σ = 0.12), 0.1 6 q 6 1
0, q < 0.1 ∨ q > 1

, (31)
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approximating the distribution of q for haloes of mass ≈
1014M⊙ as measured in simulations by Bett et al. (2007,
cf. their Section 4.3). The resulting covariance matrix, re-
scaled empirically by cconc, is shown in the lower right panel
of Fig. 2. We see that the influence of halo ellipticity is
limited to small radii compared to correlated and uncorre-
lated structures along the LOS, yet quite significant in that
regime.

3.3 Covariance estimation

Given a model for κ(M200m) that we can subtract from the
observed K, any simulated cluster of mass M200m yields an
estimate for C as

Cov(Ei, Ej) = 〈EiEj〉 . (32)

While this approach heavily relies on the accuracy of κ, it is
also possible to estimate the covariance matrix C(M200m)
from an ensemble of N simulated clusters of fixed mass
M200m without assuming a model for the mean profile. This
is done by applying the ensemble covariance estimator

Cov(Ei, Ej) =
N

N − 1
〈ÊiÊj〉 , (33)

where Ê is the residual with respect to the ensemble mean
profile. The variance of the estimator of eqn. 33 is larger than
the one of eqn. 32 by a factor N/(N − 1). We decide to bin
our clusters in mass in subsamples of N = 24, such that the
loss of information due to not assuming a model for the true
mean profile is negligible. However, especially at the massive
end where the number of clusters in our simulations is small,
this would introduce an additional variance of profiles due
to the systematic change of mass within each subsample. We
therefore define

Êk
i =

√

N

N − 1

(

Kk
i − N−1

N
∑

l=1

Kl
i × κk

i

κl
i

)

, (34)

where Kj
i and κj

i are the actual and model convergence of
cluster j in radial bin i. Here, we have re-scaled each of
the other cluster profiles to the expected value at the mass
of cluster k by means of the model and amplified the de-
viations from the mean by

√

N/(N − 1) to correct for the
bias of the maximum-likelihood ensemble variance, such that
Cov(Êi, Êj) = Cov(Ei, Ej).

4 DETERMINATION OF COVARIANCE

MODEL PARAMETERS

The multivariate Gaussian of equation 5 corresponds to a
log-likelihood

− 2 ln L = ln det C(M)

+ (κ(M) − K)TC−1(M)(κ(M) − K)

+ const . (35)

This could be interpreted as a likelihood of mass or of the
parameters of both the mean profile model κ(M) and the
covariance model C(M). For the latter, the first term on
the right-hand side serves as a regularization that prevents
run-off of the (co)variance estimate to infinity. In our case,
as discussed above, we use a non-parametric profile model

to replace κ(M)−K by the Ê of equation 34 and maximize
the likelihood to constrain the parameters of the covariance
model.

Equation 35 has the disadvantage that the precision
matrix C−1(M) and det C(M) become numerically unstable
due to the large conditional number and strong covariance
between neighbouring radial bins. Related to this, the uncer-
tainty of empirically estimated off-diagonal components of
the covariance matrix is large (e.g. Taylor et al. 2013, their
eqn. 18). We therefore decide to use equation 35, however
with a diagonal model covariance matrix, i.e. one where all
off-diagonal components are set to zero. We verify, using a
toy model, that this yields an unbiased maximum-likelihood
estimate of the covariance model parameters.

For the covariance model, we assume equation 7.
The contribution of concentration becomes important only
at large mass and small radii, and rather than (poorly)
constraining it from the data we decide to adopt the
Bullock et al. (2001) log-normal concentration scatter, i.e.
we set cconc = 1.

As a baseline for ccorr(ν) and cell(ν) we use the mass-
independent model

ccorr(ν) = ccorr = const

cell(ν) = cell = const . (36)

As a test for mass dependence we also run our analysis with
a model that allows for linear evolution in ν,

ccorr(ν) = ccorr
0 + (ν − νcorr

0 )ccorr
1

cell(ν) = cell
0 + (ν − νell

0 )cell
1 , (37)

where we set the pivot points νcorr
0 = 2.5 and νell

0 = 2.8 to
make errors on c⋆

0 and c⋆
1 approximately uncorrelated in the

bootstrap runs.

4.1 Results

The best-fitting values for the parameters of eqn. 36 with
errors estimated from bootstrapping are ccorr = 5.0 ± 0.3
and cell = 3.7 ± 0.3. Allowing for a linear dependence as
in eqn. 37 these values are unchanged at best fit and we
get no indication (but relatively poor constraints) for a ν
dependence with ccorr

1 = −0.04 ± 0.88 and ccell
1 = −0.05 ±

0.79. For the remainder of the analysis, we therefore adopt
ν independent ccorr = 5.0 and cell = 3.7.

Figure 2 shows the full covariance model with these pa-
rameters for M200m = 2×1014h−1M⊙. Figure 3 shows model
and data variance for a range of masses. The model repro-
duces observed intrinsic variations well over a wide range
of mass. We note, however, the large uncertainty in data
variance due to our limited sample size.

4.2 Redshift dependence

In order to test for a potential redshift dependence of our
model parameters, we repeat the analysis with a second
snapshot at z = 0.499, using 788 haloes at M200m >

2 × 1014h−1M⊙.
The best-fitting truncation radii are consistent with

eqn. 11. We fit the parameters of eqn. 36 as in Section 4
and determine errors using bootstrapping. Empirical covari-
ances are well reproduced by a model with ccorr = 4.2 ± 1.1
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Figure 3. Empirical covariance (black, left panel) and covariance model (red, left panel) for clusters of mass M200m = 1.8 . . . 2.2 ×

1014h−1M⊙ (solid lines), M200m = 3.5 . . . 4.5 × 1014h−1M⊙ (dotted) and M200m = 7 . . . 9 × 1014h−1M⊙ (dashed lines). Right panel
shows components of the model with ccorr = 5.0 and cell = 3.7 for all three cases (uncorrelated LSS inside the snapshot box shown as
grey, dotted-dashed line).

and cell = 3.8 ± 0.9. Due to the much smaller sample size
and lower contrast of the haloes relative to LSS noise, the
parameters are significantly less well constrained as in the
z = 0.245 snapshot, however, consistent within the uncer-
tainties.

We conclude that at the present level of statistical
certainty the best-fit values of Section 4.1 can be used
over the most relevant redshift range for cluster lensing of
z ≈ 0.2 . . . 0.5.

5 EFFECT ON WEAK LENSING CLUSTER

SURVEYS

In this section, we estimate the influence of intrinsic covari-
ance of density profiles at fixed mass

• on mass measurements of individual clusters (Sec-
tion 5.1)

• and on the determination of parameters of the mass-
observable relation (MOR) in a lensing follow-up of a sample
of clusters (Section 5.2).

In our analyses we fix the lens redshift to zl = 0.24533,
the primary redshift of our simulated cluster profiles. We
consider shear surveys of different depths, parametrized by
the surface density n of source galaxies, which we assume to
lie at a fixed zs = 1. The three settings chosen roughly
correspond to current large ground based surveys (n =
10 arcmin−2), the best available ground-based data (n =
50 arcmin−2) and space-based data (n = 100 arcmin−2).

The full covariance of equation 7 contains, apart from
uncorrelated and intrinsic variations of surface mass den-
sity, the measurement uncertainty of the survey Cobs. For
a shear survey, assume that we can measure the tangential

gravitational shear γ in each annulus i with variance

σ2
γ,i =

σ2
ǫ

nAi
, (38)

where σǫ ≈ 0.3 is the shape noise (including intrinsic
shape dispersion and measurement noise), n is the back-
ground source density and Ai the area of annulus i. The n-
dimensional covariance matrix of γ (ignoring intrinsic align-
ment and shear systematics) is diagonal with Cobs,γ

ii = σ2
γ,i.

In the limit that annuli are thin, γ and κ are connected
by a linear equation γ = Gκ, where the n × n matrix G is
defined such that

γi = 〈κ〉<i − κi =

i−1
∑

j=0

κjAj/(πθ2
i,min) − κi . (39)

Our goal is to calculate the observational covariance Cobs of
κ, which can be written as

Cobs = G−1Cobs,γ(G−1)T . (40)

The above derivation has omitted the technical step of
breaking the mass-sheet degeneracy, which is necessary for
G to be of full rank. To this end, we increase the dimension-
ality by 1 and let the newly introduced entry γn+1 represent
the convergence in the outermost radius, and the new κn+1

be the mean convergence inside the innermost annulus. The
measurement error of γn+1 is defined to be the LSS vari-
ance of κ on the outermost angular scale (this is essentially
what happens in the common assumption of κ = 0 on large
scales). The mean convergence inside the innermost annulus
is connected to γ by the linear equation above. We later ex-
clude the added component from our analysis again, i.e. we
consider only the sub-matrix i, j ∈ [1, n] (similar in effect to
Mandelbaum et al. 2010).
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Apart from the full model covariance C(M) of equa-
tion 7, we also define the covariance without intrinsic vari-

ations

Cnoint = Cobs + CLSS . (41)

For a model independent representation, we calculate
the ensemble covariance of the re-scaled profiles (cf. eqn. 34)
as Ĉint(M). When calculating Ĉint(M), we use 100 clusters
that are nearest neighbours in a mass-ordered list of our
simulated haloes to the target mass M and subtract the
uncorrelated LSS covariance inside the simulation box. The
empirically estimated covariance is

Cemp(M) = Cobs + CLSS + Ĉint(M) . (42)

5.1 Mass confidence intervals

We determine the effect of intrinsic variations of the density
profile on the validity of confidence intervals of weak lens-
ing mass measurements. In this procedure, we assume the
empirically estimated density profile covariance from our en-
semble of simulated haloes to represent the true variability.
We test for the effects of either taking into account intrinsic
variations with the model proposed in this work or ignoring
them. We design this test as follows.

At given mass M , we define and determine the full
empirically estimated covariance Cemp(M) as described in
eqn. 42. In a Monte Carlo simulation, we then generate pro-
files by adding a multivariate Gaussian random vector ac-
cording to Cemp(M) to the model profile κ(M) (eqn. 9) of
mass M .1

Consider one such realization K. The likelihood in
eqn. 35, now interpreted as a function of mass L(M ′|K),
can then be run over a range of model profiles κ(M ′) with
different mass M ′. For C(M ′) and C−1(M ′) we use

• either the covariance without intrinsic variation Cnoint

of equation 41 (colour coded red in the following figures)
• or the covariance of equation 7, including our paramet-

ric model for intrinsic variations (colour coded blue).

Note that the latter option requires to include the ln det C
term of the likelihood, since covariance is now a function of
mass.

We determine 68% (and 90%) confidence intervals using
mass limits where the likelihood is 2∆ ln L = 1 (and 2.7)
worse than at best fit. We repeat the procedure for 10,000
realizations at every fixed mass and determine the empirical
coverage, e.g. the fraction of cases in which the true mass
lies inside these confidence intervals.

Results for three different survey depths are shown in

1 As a test for the validity of considering only multivariate Gaus-
sian variations over the mean profile, we perform another run
where instead of a synthetic variation we use 100 nearest neigh-
bors in mass around M , re-scale their profile to M using the

model profiles of eqn. 9 and subtract their mean to generate 100
realistic random variations. We then add these (and multivariate
Gaussian random vectors to simulate observational and uncor-
related LSS covariance) to the model profile at M and run the
likelihood as described below. Results in this approach do not
differ significantly from the synthetic multivariate Gaussian ones
presented here.

Figure 4, where we now compare results of the two methods
(red and blue lines) to the target levels of 68 and 90% (black
lines). Increasingly with increasing mass, ignoring intrinsic
variations leads to an underestimation of errors. Even for
present surveys with relatively shallow depth, this manifests
in ≈ 15% excess outliers at the one and two sigma level for
massive clusters at around M200m ≈ 1015h−1M⊙. The effect
is more severe in deeper data, where the relative importance
of intrinsic over observational covariance increases.

Using our model covariance, confidence intervals are
correctly estimated over a wide range of masses and even
in deep data. The small number of systems above M200m >
1015h−1M⊙, however, limits the range of masses where we
can evaluate the validity of our model. Note in this context
that the scatter in the plots is due to the noise in Ĉint(M),
as estimated on a limited number of clusters, rather than
the number of realizations we run (the effect of the latter is
indicated as the small vertical bar on the black lines).

5.1.1 Effect of intrinsic covariance on mass uncertainty

In the previous section, we found that the confidence inter-
val based on a κ covariance matrix without contributions
from intrinsic profile variation is significantly too narrow,
especially for more massive clusters and larger depth of the
data. Here, we perform a Fisher analysis to determine how
well masses can be measured, a question particularly rele-
vant for the design of lensing follow-up programmes.

For a mass dependent covariance matrix, the Fisher in-
formation for mass F reads (e.g. Vogeley & Szalay 1996;
Tegmark et al. 1997)

F(M) =
(

dκ

dM

)T

C−1
(

dκ

dM

)

+
1

2
tr

[

(

C−1 dC

dM

)2
]

, (43)

where κ, C and their derivatives are taken to be evaluated
at mass M .

We calculate the Fisher information for the model with-
out intrinsic variations (eqn. 41) and our full model. In
the first case, the second term of eqn. 43 drops because of
the mass independence of the covariance. Including intrinsic
variations, we also evaluate the second term, which however
contributes to the Fisher information at most at the per-
cent level. The mass uncertainty σM is related to the Fisher
information as σM = F−1/2.

Figure 5 shows relative uncertainties in mass σM /M due
to a shear surveys of various depth. The increase in uncer-
tainty due to intrinsic profile variation is substantial, even
for shallow data with sufficiently massive clusters, but more
strongly for deeper observations. Our results are consistent
with the findings of Becker & Kravtsov (2011), who used the
same simulations to derive uncertainties empirically rather
than with a covariance model.

5.2 Mass-observable relations

We study the effect of intrinsic variations of projected cluster
density profiles on weak lensing follow-up surveys used for
determining parameters of a mass-observable relation. Con-
sider an observable Y (which could be the Compton decre-
ment, an X-ray mass proxy or an optical richness) with a
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Figure 4. Fraction of weak lensing measurements of cluster mass
where the true mass is inside the 68% (f68, solid lines) and 90%
(f90, dashed lines) confidence interval (black lines at target levels
for reference). In red, thin lines we show the common case where
only measurement noise and uncorrelated LSS are considered for
the covariance matrix (eqn. 41). Blue, thick lines show results
that include our model for the intrinsic covariance (eqn. 7). Pan-
els correspond to typical large ground based-surveys (top), best
available ground based data (centre) and space-based analyses
(bottom). As data quality and cluster mass increase, intrinsic vari-
ations become a significant component of the uncertainty budget
of weak lensing mass measurements and should not be ignored.
All plots are for lenses at zl = 0.24533.

Figure 5. Relative uncertainty of weak lensing mass measure-
ments from a Fisher analysis excluding (red) and including (blue)
intrinsic covariance according to our model. Not including intrin-
sic covariance leads to an underestimation of uncertainty, espe-
cially at high mass and large depth. Notably, the improvement of
uncertainty for massive clusters going from typical (10 arcmin−2

background galaxies, dotted line) to noiseless measurements (solid
line) is only modest when intrinsic variations are considered. Re-
sults are for lenses at zl = 0.24533.

power-law mass-observable relation that describes the fidu-
cial value Y0(M) as a function of mass M ,

ln Y0(M)/Ŷ = A + B ln M/M̂ . (44)

We have introduced here pivot values Ŷ and M̂ in addition
to the power-law slope B and amplitude A.

The observed value of Y for any cluster shall include a
log-normal intrinsic scatter σint and, for simplicity, also log-
normally distributed measurement related uncertainty σobs.
The combined uncertainty σ =

√

σ2
int + σ2

obs leads to an
observable

ln Y (M) = ln Y0(M) + N (µ = 0, σ) . (45)

5.2.1 Likelihood

Consider a single cluster with observed convergence profile
K and measured observable Y . We maximize, as a function
of MOR parameters, the likelihood

P (K|Y, A, B, σint) =

∫

P (K|M)P (M |Y, A, B, σint) dM

∝
∫

P (K|M)P (Y |M, A, B, σint)P (M) dM . (46)

For P (K|M) we insert the expression of eqn. 5 with C equal
to either our full model or the covariance without intrinsic
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variations. The term for the Y likelihood can be written as

P (Y |M, A, B, σint) =
exp[−(ln Y0(M) − ln Y )2/(2σ2)]√

2σ

× Θ(Y − Ylim)P −1
det(M) . (47)

Here we have used the Heaviside step function Θ to im-
pose the observable limit Ylim and re-normalized by the in-
verse of the detection probability Pdet(M) = erfc[(ln Ylim −
ln Y0(M))/(

√
2σ)]/2 to compensate for the removed part of

the probability distribution (cf. Vikhlinin et al. 2009a, their
eqn. A10) and correct for the (Malmquist) bias due to pref-
erential selection of objects with positive contribution from
scatter.

Finally, the normalized mass prior P (M) can be written
for an observable limited survey as

P (M) ∝ dn

dM
(M)Pdet(M)

[∫

dM ′ dn

dM
(M ′)Pdet(M

′)

]

−1

(48)
to correct for (Eddington) bias due to the increase of abun-
dance with decreasing mass. Note that P (M) depends on
the MOR by means of Pdet and, by means of the halo mass
function dn

dM
, also on cosmology (for which we, however, as-

sume fixed values in the simulations presented here).

5.2.2 Results

We simulate samples of clusters 1 6 i 6 n, where cluster i is
characterized by its observable Yi and an observed conver-
gence profile Ki.

For Y , we assume a MOR with B = 5/3 (the self-similar
slope for Compton decrement YSZ and the X-ray equivalent
YX) and choose the pivots such that measurement errors
on A and B are uncorrelated and A = 0. We assume an
intrinsic scatter σint = 0.1 and observational uncertainty of
σobs = 0.05.

The convergence profile K is simulated including a mul-
tivariate Gaussian deviation from eqn. 9, according to the
full covariance (including uncorrelated LSS, measurement
uncertainty of the survey and intrinsic variation as predicted
from our model) of eqn. 7.

We take the sample to be observable limited, i.e. draw
clusters with abundance proportional to the halo mass func-
tion, assign observables according to eqns. 44-45 and only ac-
cept objects where the observable exceeds the survey thresh-
old, Y > Ylim. The threshold Ylim is chosen as Ylim =
Y0(M200m = 4 × 1014h−1M⊙), comparable for instance to
ongoing SZ surveys. The number of clusters drawn is taken
to be representative of a volume of V = 0.15h−3Gpc3 (co-
moving, at z = 0.24533), which contains roughly 100 detec-
tions in our simulated survey.

Figure 6 shows the distribution of maximum likelihood
estimates of the MOR parameters A, B and σint, with con-
tours enclosing 68 and 95 per cent of the 15,000 realiza-
tions, respectively. We find that the analysis using the full
covariance (blue) reproduces the input MOR well. The fea-
ture near σint = 0 is due to the hard prior σint > 0, which
pushes random realization with lower empirical scatter to-
wards this limit. The analysis using the covariance without
intrinsic variations (red) significantly overestimates intrin-
sic scatter. As an additional bias, the overall mass scale A
(and, although less strongly, the slope B) are systematically

underestimated. The move from a shallow (dotted) to deep
(solid lines) surveys only moderately improves constraints
and makes the bias due to using the covariance without in-
trinsic variations more apparent.

We note that the biases in A and B are due to a degen-
eracy between them and the intrinsic scatter. If the latter
could be constrained externally with small uncertainty, e.g.
by means of realistic simulations or by combining several ob-
servables with uncorrelated intrinsic scatter, the bias in the
former would be mitigated even without a realistic model
for the lensing covariance.

6 CONCLUSIONS

We have presented a model for the variation of projected
density profiles of clusters of galaxies at fixed mass, con-
structed as a combination of the effects of variations of halo
concentration, ellipticity and orientation, and correlated sec-
ondary structures.

The full covariance including our model for intrinsic
variations faithfully reproduces confidence intervals in the
weak lensing likelihood of cluster mass. We show that when
intrinsic variations are ignored, uncertainties in lensing-
derived mass are underestimated significantly (cf. Fig. 4).

Using the full covariance model we have made Fisher
predictions for the accuracy of lensing measurements of clus-
ter mass. We have shown that intrinsic variations take away
some of the comparative advantage of studying a small sam-
ple of the most massive clusters with the deepest possible
observations. For a massive cluster (M200m ≈ 1015h−1M⊙
at z = 0.25) we find an irreducible relative uncertainty in
lensing mass of ≈ 20 per-cent due to intrinsic profile vari-
ations and uncorrelated LSS along the LOS, three times
higher than the uncertainty from uncorrelated LSS alone.
Our results agree with the analysis of Becker & Kravtsov
(2011).

With simulations of mock surveys for constraining clus-
ter mass-observable relations with lensing data, we have
shown that intrinsic variations significantly bias the derived
intrinsic scatter and amplitude if they are not accounted for
in the lensing mass likelihood. For a follow-up of a sample
of 100 clusters selected by YSZ above the fiducial value of
the observable at M200m = 4 × 1014h−1M⊙ at a redshift
z = 0.25, the bias in the MOR amplitude is ≈ 15 per cent
unless tight external constraints on the intrinsic scatter are
available. Accounting for the cosmic variance of cluster lens-
ing is therefore necessary for upcoming cluster surveys that
target the calibration of MORs for cluster cosmology.

ACKNOWLEDGEMENTS

We thank Gary Bernstein, Eduardo Rozo and Peter Schnei-
der for helpful discussions and Martin Kilbinger for support
with the software nicaea used in this work.

This work was supported by SFB-Transregio 33 ’The
Dark Universe’ by the Deutsche Forschungsgemeinschaft
(DFG) and the DFG cluster of excellence ’Origin and Struc-
ture of the Universe’.

c© 2014 RAS, MNRAS 000, 1–14



Cosmic variance of cluster weak lensing 13

Figure 6. Distribution of maximum likelihood MOR parameters (true input indicated by black squares) estimated from a weak lensing
follow-up of an observable limited sample. We show results for a shallow (dotted contours, n = 10 arcmin−2) and deeper (solid contours,

n = 50 arcmin−2) lensing survey. Cluster profiles are simulated including intrinsic variation according to our model and the lensing
likelihood for cluster mass is estimated including (blue, thick lines) and not including (red, thin lines) the intrinsic component of the
covariance matrix in addition to shape noise and uncorrelated LSS. Inner and outer contours enclose 68% and 95% of data points,
respectively. Results are for lenses at zl = 0.24533.
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