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Ghosts in the self-accelerating DGP branch with Gauss-Bonnet effect
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The Dvali-Gabadadze-Porrati brane-world model provides a possible approach to address the late-
time cosmic acceleration. However, it has subsequently been pointed out that a ghost instability
will arise on the self-accelerating branch. Here, we carefully investigate whether this ghost problem
could be possibly cured by introducing the Gauss-Bonnet term in the five-dimensional bulk action,
a natural generalization to the Dvali-Gabadadze-Porrati model. Our analysis is carried out for a
background where a de Sitter brane is embedded in an anti–de Sitter bulk. Our result shows that
the ghost excitations cannot be avoided even in this modified model.

I. INTRODUCTION

In recent years, the late-time cosmic acceleration has
been confirmed by several observational evidences [1–3].
This important discovery leads to one of the great puz-
zles in cosmology, and various plausible models have been
developed to unravel the nature of such a late-time speed-
up over the last decade. There have been many attempts
at building up reasonable and consistent models by mod-
ifying the standard cosmology, which can be roughly cat-
egorized into two major directions: one is to introduce a
dominant dark energy component in the Universe (see,
e.g., Ref. [4]), while the other is to modify Einstein’s gen-
eral relativity (GR) at large scales (see, e.g., Ref. [5]).
An intriguing brane-world scenario proposed by Dvali,

Gabadadze, and Porrati (DGP) provides a new mech-
anism with an induced gravity (IG) term, i.e., a four-
dimensional (4D) Ricci scalar, included in the brane ac-
tion [6]. The IG term is expected to arise as a quantum
correction due to the matter field on the brane [7], and
it makes possible to reproduce the correct 4D Newto-
nian gravity at short distances even if the bulk is a five-
dimensional (5D) Minkowski space-time with an infinite
size [6]. The promising feature of the DGP model is that,
when generalized to a Friedmann-Lemâıtre-Robertson-
Walker (FLRW) brane with ordinary matter on it, one
of its solutions, called the self-accelerating branch, will
become asymptotically de Sitter in the far future, giving
rise to a late-time accelerating phase without needing to
introduce additional substances on the brane that vio-
lates the strong energy condition [8, 9].
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Despite this advantage, it was pointed out later on that
the self-accelerating branch is plagued with a ghost insta-
bility [10–15]. The spin-2 perturbations in this branch,
viewed as an effective 4D massive gravity theory on a
de Sitter background, are composed of a tower of infinite
Kaluza-Klein (KK) massive gravitons. Then, the mass of
the lowest mode m is within the range 0 < m2 < 2H2 if
the brane tension is positive, where H is the Hubble pa-
rameter, and thus there will be a spin-2 ghost excitation
in its helicity-0 component [16]1. On the other hand, if
the brane tension is negative, the lowest mass is larger
than the critical scale, i.e., 2H2 < m2, but the spin-0
perturbation, associated with the brane-bending mode,
becomes a ghost instead [12]. In the specific case with-
out brane tension, the lowest mass is equal to the criti-
cal scale. Even in this marginal case a detailed analysis
shows the existence of a ghost from the mixing between
the spin-0 sector and the helicity-0 part of the spin-2
sector [13]. Furthermore, the appearance of ghosts in
the DGP self-accelerating branch cannot be eliminated
even by invoking a second brane in the bulk with a sta-
bilization mechanism [19]. For more discussions on DGP
ghosts, please see Ref. [15] and the references therein.
Nonlinear instabilities of the model have also been dis-
cussed in Refs. [20–22].
In this paper, we will investigate the possibility of

avoiding the ghost in a generalized DGP model. A natu-
ral generalization to the DGP gravitational action, based
on its higher-dimensional nature, is by adding the Gauss-
Bonnet (GB) term to the original 5D bulk action [23–43].
This modification then yields the most general field equa-
tion for the bulk metric with its derivatives only up to

1 The instability of the ghost might be suppressed due to the spon-
taneous breaking of Lorentz symmetry by the helicity-0 ghost
[17, 18].
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the second order [23]. Moreover, this GB term keeps the
bulk theory ghost-free and arises as the leading-order cor-
rection to the low-energy effective action of the heterotic
string theory [24, 25], and furthermore, it plays an es-
sential role in the Chern-Simons gauge theory of gravity
[26–28].

This approach has been first discussed in Ref. [29].
Modes that have the potential to be ghosts are (i) the
helicity-0 excitation of the lightest KK graviton and (ii)
the brane bending mode. In Ref. [29], considering a
model with a minus sign in front of the bulk Einstein-
Hilbert term, the authors succeeded in eliminating these
modes. However, considering only an Einstein-Hilbert
term in the 5D action even with a minus sign generates
ghost modes for the graviton in the bulk. The ghosts
can be eliminated by introducing a GB term with a neg-
ative prefactor and by taking the anti-de Sitter (AdS5)
vacuum called the GB vacuum. It is a kind of a ghost
condensation of spin-2 particles. Therefore, their model
is ghost-free both in the five-dimensional theory and in
the four dimensional effective theory.

The purpose of this paper is, in contrast, confirming
if the straightforward extension of DGP model with the
GB term still bothers the ghost mode. As discussed in
Ref. [29], we expect that the discrete light mode of the
KK tower of the graviton and the brane bending mode
to appear in the four dimensional effective action. Even
though these two modes have the potential to be a ghost,
their existence does not necessarily imply a ghost exci-
tation. The massive graviton is a ghost excitation only
if its mass squared is less than 2H2, while the brane
bending mode becomes a ghost only if the kinetic term
has a wrong sign. In the original DGP model, the ghost
conditions have been carefully checked [10–15], and one
of the above mentioned condition is always satisfied, i.e.
one of the ghost modes appears. This means that the
flip of the sign in the kinetic term of the brane bending
mode happens when the squared value of the mass of
the lightest KK graviton is 2H2. Nevertheless, its rea-
son is still mysterious [19] and there is no reason why in
the extended models the same happens. Moreover, we
may expect that the GB terms give a large correction to
the self-accelerating branch. With GB corrections, there
are three branches of solutions; two branches appearing
in the original DGP (the normal branch and the self-
accelerating branch) and one additional branch called the
GB branch. The transition into the GB branch appears
at the high energy region of the self-accelerating branch,
and thus it is natural to expect that the self-accelerating
branch is largely modified. Therefore, a detailed analysis
is needed to confirm the existence of the ghost. Then, we
study herein the linear perturbations around the back-
ground given by (2.8) and (2.9) with ǫ = +1 which in-
cludes as a particular case the self-accelerating branch,
and carefully examine whether or not the ghost exci-
tations appearing in the DGP model could be possibly
evaded in this framework. We show that even by includ-
ing the GB term into the bulk, the ghost excitations are

still present in this model.
The outline of the paper is as follows. In Sec. II, we

consider the generalized DGP model with the GB term as
well as a cosmological constant in the bulk. We then re-
view the background solutions of this system. In Sec. III,
we study the linear perturbations over an AdS5 bulk with
a de Sitter brane within the model introduced in Sec. II.
In Sec. IV, we analyze the effective action for these per-
turbations, from which we examine the existence of the
ghosts in this model. Finally, we present our summary
in Sec. V.

II. THE MODEL

We consider a generalized DGP model with a GB term
and a cosmological constant included in the bulk action.
The gravitational action for this system is given by [30–
38]

S =
1

2κ2
5

∫

M

d5x
√

− (5)g
[

R− 2Λ5 + α
(

R2 − 4RabRab+

RabcdRabcd
)]

− 1

κ2
5

∫

Σ±

d4x
√−g [K + 2α (J−

2GµνKµν)] +

∫

Σ

d4x
√−g

[

γ

2κ2
4

R− λ+ Lm

]

,

(2.1)

where the 5D manifold M is split into two regions by
a brane hypersurface Σ, and the two sides of the brane
are denoted by Σ±. The Latin indices a, b, c, . . . , run
from 0 to 4, while the Greek indices µ, ν, . . . , run from
0 to 3. (5)gab is the five dimensional metric, and gab =
(5)gab − nanb is the induced metric on the brane, with
na being the unit normal vector to the brane; R, R, κ2

5,
Λ5 (< 0), λ, and Lm are the 5D Ricci scalar, the 4D Ricci
scalar of the induced metric, the bulk gravitational con-
stant, the bulk cosmological constant, the brane tension,
and the matter Lagrangian on the brane, respectively.
The GB parameter is denoted by α (≥ 0), which has the
dimension of length square, and the strength of the IG
term is characterized by a dimensionless parameter γ.
Moreover, the second term in Eq.(2.1) corresponds to the
generalized York-Gibbons-Hawking surface term [44–47],
where Kµν is the extrinsic curvature, Gµν the Einstein
tensor of the induced metric, and J the trace of

Jµν =
1

3
(2KKµσK

σ
ν +KρσK

ρσKµν

−2KµρK
ρσKσν −K2Kµν

)

. (2.2)

The 5D field equation, obtained by varying the bulk
action in Eq.(2.1), is given by [47–51]

Gab + Λ5
(5)gab −

α

2
Hab = 0, (2.3)

where Gab is the 5D Einstein tensor and the quadratic
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curvature correction Hab reads

Hab =
(

R2 − 4RcdRcd +RcdefRcdef
)

(5)gab

− 4
(

RRab − 2RacRb
c − 2RacbdRcd

+RacdeRb
cde

)

. (2.4)

With the Z2 symmetry assumed across the brane, the
junction condition imposed at the brane is then given by
[47–51],

Kµν + 2α

[

3Jµν − 2

3
Jgµν +

(

2Pµρσν − 2

3
gµνGρσ

)

Kρσ

]

= rc

[

− κ2
4

(

Tµν − 1

3
Tgµν +

1

3
λgµν

)

+ γ

(

Gµν − 1

3
Ggµν

)]

,

(2.5)

where the crossover scale rc is defined by rc ≡ κ2
5/2κ

2
4,

Tµν is the energy-momentum tensor of the matter content
on the brane, and

Pµνρσ = Rµνρσ + 2Rν[ρgσ]µ − 2Rµ[ρgσ]ν +Rgµ[ρgσ]ν .

(2.6)

Here, we consider a background solution corresponding
to a de Sitter brane with a vanishing energy-momentum
tensor of matter, i.e., Tµν = 0, and the de Sitter brane
is embedded in a bulk corresponding to two symmetric
pieces of an AdS5 space-time glued through the brane.
In this configuration, the bulk field equation (2.3) for
the AdS5 bulk implies the relation Λ5 = −6µ2 + 12αµ4,
where µ is the energy scale associated with the AdS5
length ℓ ≡ 1/µ and has the following solutions:

µ2 =
1

4α

[

1±
√

1 +
4

3
αΛ5

]

. (2.7)

However, it has been proved that the bulk solution with
the + sign in Eq.(2.7) is perturbatively unstable [52–55];
therefore, we will focus on the − branch from now on, and
the energy scale µ2 is then bounded as2 0 < µ2 < 1/4α
accordingly. Moreover, this background can be described
by the bulk metric

ds2 = dy2 + n2(y)γµνdx
µdxν , (2.8)

where the brane is located at y = 0, γµν is the 4D de
Sitter metric with its scalar curvature R[γµν ] = 12H2,
and the warp factor n(y) is given by

n(y) =
H

µ
sinh [µ (y∗ + ǫ|y|)], (2.9)

2 We have excluded the limiting case where µ2 = 1/4α correspond-
ing to the Chern-Simons gravity, because in that case a homoge-
neous and isotropic brane cannot be embedded in a static bulk
[48]. In addition, we assume a nonvanishing bulk cosmological
constant Λ5.

õ

H2 + ö2
p

8ë

írcà í2rc
2
à8ë(1à4ëö2)

p

8ë

írc+ í2rc
2
à8ë(1à4ëö2)

p

FIG. 1. The relation between λ and
√

H2 + µ2 for ǫ = +1 in
Eq.(2.11): The solid line corresponds to the self-accelerating
branch which is connected with the other two branches at
one of the edges. The upper dotted line is called GB branch,
while the lower branch corresponds to the normal branch with
ǫ = +1.

with

y∗ =
1

µ
arcsinh

( µ

H

)

, (2.10)

where the warp factor has two possible branches with
ǫ = ±1 and is normalized at the position of the brane as
n(0) = 1.
From the junction condition (2.5), we derive the gen-

eralized Friedmann equation on the brane using the bulk
metric (2.8),

[

1 +
8

3
α

(

H2 − µ2

2

)]

√

H2 + µ2

= −ǫ rc

(

κ2
4

3
λ− γH2

)

. (2.11)

The relation between λ and
√

H2 + µ2 is shown in fig. 1
and the exact solutions of Eq.(2.11) have been analyzed
in Refs. [30–38]. In general, there are three branches of
solutions in Eq.(2.11), among which the “self-accelerating
branch” with ǫ = +1 includes the DGP self-accelerating
solution in the absence of the GB term and for a vanish-
ing bulk cosmological constant [8, 9], while the “normal
branch” with ǫ = −1, when switching off both the GB
and IG effects, will recover the Randall-Sundrum single
brane model. We have an additional branch called the
GB branch. The transition to the GB branch appears
at the high energy regime of the self-accelerating branch
(see Fig. 1). The ghost problem is known to arise on the
DGP self-accelerating branch, i.e., ǫ = +1 with α → 0 in
Eq.(2.11). We will therefore restrict our analysis to the
solution with ǫ = +1 and α > 0, seeking to see if the GB
term can in some way alleviate the ghost problem of the
DGP self-accelerating model.

III. PERTURBED EQUATIONS

We now study the linear perturbations on the self-
accelerating branch following the methodology used in
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Ref. [19] (see also Ref. [56]). To derive the perturbed
bulk field equation, we start with the perturbed metric

ds2 = dy2 +
(

n2γµν + hTT
µν

)

dxµdxν , (3.1)

with the transverse-traceless (TT) gauge-fixing condi-
tions,

∇µhTT
µν = 0, hTTµ

µ = 0, (3.2)

where ∇µ is the covariant derivative associated with the
background induced metric gµν = n2γµν . Using this TT
perturbed metric (3.1), we obtain the perturbed bulk
field equation from Eq.(2.3),

n2hTT ′′
µν − 2H2hTT

µν − 4n2µ2hTT
µν

= −
(

�− 2H2
)

hTT
µν , (3.3)

where the d’Alembertian is defined by � = γµν∇µ∇ν ,
and the prime denotes a partial derivative with respect
to y. However, if we choose the TT gauge for the metric
perturbations as in Eq.(3.1), the brane position cannot
be fixed at y = 0 but will in general reside at y = ξ(xµ)
deviating slightly from the unperturbed position.
For the calculation of the perturbed junction condition,

it is more convenient to introduce the Gaussian normal
coordinate adapted to the brane hypersurface,

ds2 = dȳ2 +
(

n2γµν + h̄µν

)

dx̄µdx̄ν , (3.4)

where the brane is now chosen to be fixed at ȳ = 0.
The perturbed junction condition imposed at the brane is
then obtained by using this perturbed metric in Eq.(2.5),

(

1− 4αµ2
)

(

h̄′
µν − 2

√

H2 + µ2 h̄µν

)

= −κ2
5

(

Tµν − 1

3
γµνT

)

+ 2
(

γrc − 4α
√

H2 + µ2
)

(

Xµν − 1

3
γµνX

)

, (3.5)

where the energy-momentum tensor Tµν is assumed to
be first order, and

Xµν = −1

2

(

�h̄µν −∇µ∇ρh̄
ρ
ν −∇ν∇ρh̄

ρ
µ +∇µ∇ν h̄

)

+
1

2
γµν

(

�h̄−∇ρ∇σh̄
ρσ
)

+H2

(

h̄µν +
1

2
γµν h̄

)

.

(3.6)

Now we have two perturbed equations expressed under
two different gauge-fixing conditions. The gauge trans-
formation between the metric written in the TT coor-
dinate (3.1) and that in the Gaussian normal coordinate
(3.4) can be carried out by the following coordinate trans-
formations:

y − ȳ = ξ̂y(xρ), (3.7)

xµ − x̄µ =

√

H2 + n2µ2

nH2
γµσ∂σ ξ̂

y(xρ) + ξ̂µ(xρ). (3.8)

Therefore, the transformation of the metric perturba-
tions between these two coordinates is obtained as fol-
lows:

h̄µν =hTT
µν +

2n
√

H2 + n2µ2

H2
∇µ∇ν ξ̂

y

+ 2n
√

H2 + n2µ2 γµν ξ̂
y + 2∇(µξ̂ν). (3.9)

Furthermore, we can fix the function ξ̂µ such that the
combination of the second and the last term in Eq.(3.9)
vanishes at the position of the brane. As a result, after

fixing the function ξ̂µ in this way, we have

h̄µν =hTT
µν +

2n

H2

(

√

H2 + n2µ2 − n
√

H2 + µ2
)

∇µ∇ν ξ̂
y

+ 2n
√

H2 + n2µ2 γµν ξ̂
y. (3.10)

Substituting the transformation (3.10) into the per-
turbed junction condition (3.5), we can decompose the
perturbed junction condition imposed at y = 0 into the
traceless part,

(

1− 4αµ2
)

(

hTT ′
µν − 2

√

H2 + µ2 hTT
µν

)

+
(

γrc

−4α
√

H2 + µ2
)

(

�− 2H2
)

hTT
µν = −κ2

5 Σµν , (3.11)

where

Σµν =

(

Tµν − 1

4
γµνT

)

− 2

κ2
5

[

1 + 4α
(

µ2 + 2H2
)

−2γrc
√

H2 + µ2
]

(

∇µ∇ν − 1

4
γµν�

)

ξ̂y, (3.12)

as well as the trace part,
(

�+ 4H2
)

ξ̂y

=
κ2
5

6
[

2γrc
√

H2 + µ2 − 1− 4α (µ2 + 2H2)
]T.

(3.13)

ξ̂y shows the position of the brane under TT gauge-
fixing condition, and thus this equation represents the
dynamics of the brane-bending mode. Moreover, it can
be shown that the traceless source Σµν also satisfies the
transverse condition, ∇µΣµν = 0, by using Eq.(3.13) and
the following identity holding for any 4D scalar F :

∇µ

(

∇µ∇ν −
1

4
γµν�

)

F =
3

4
n−2∇ν

(

�+ 4H2
)

F.

(3.14)
We now proceed to derive the equations for the KK

spin-2 modes and the brane-bending mode in the view-
point of the 4D effective theory. The complete field equa-
tion for hTT can be obtained by combining its bulk part
(3.3) and the junction condition imposed on it (3.11),

(

L̂+
�− 2H2

n2

)

hTT
µν = − 2

1− 4αµ2

[

κ2
5 Σµν +

(

γrc

−4α
√

H2 + µ2
)

(

�− 2H2
)

hTT
µν

]

δ(y), (3.15)
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where the operator L̂ is defined as

L̂ ≡ 1

n2
∂yn

4∂y
1

n2
. (3.16)

Eq.(3.15) can be further separated into an eigenvalue
problem through the KK decomposition of the metric
perturbations hTT ,

hTT
µν =

∫

dmhm
µν(x

µ)um(y), (3.17)

where “
∫

” denotes a summation over the discrete modes
and an integration over the continuous modes, and um is
the eigenfunction of the eigenvalue equation

−L̂ um =
m2

n2

[

1 +
2

1− 4αµ2

(

γrc − 4α

×
√

H2 + µ2
)

δ (y)
]

um, (3.18)

where m is the mass eigenvalue. Then, the field equation
(3.15), in terms of the KK decomposition (3.17), reduces
to the simpler form,

∫

dm
1

n2

{[

1 +
2

1− 4αµ2

(

γrc − 4α
√

H2 + µ2
)

δ(y)

]

×
(

�− 2H2 −m2
)

hm
µν um

}

= − 2 κ2
5

1− 4αµ2
Σµνδ(y).

(3.19)

In addition, it can be shown that the eigenmodes um in
Eq.(3.18) are mutually orthogonal with respect to the
scalar product

(um̃, um) ≡
∫ ∞

−∞

dy

n2

{

[

1− 4αµ2 + 2
(

γrc

−4α
√

H2 + µ2
)

δ(y)
]

um̃um

}

. (3.20)

This definition of the scalar product (3.20) will always
give rise to a positive number in the self-accelerating
branch [see Eqs.(2.7) and (2.11)]. Therefore, we will use
it here to normalize each eigenmode; i.e., the eigenmodes
um satisfy the condition (um̃, um) = δ (m̃,m), where the
delta function δ (m̃,m) is a Kronecker delta for the dis-
crete modes and a Dirac delta function for a continu-
ous spectrum. Notice that the scalar product defined in
Eq.(3.20) is the same as that given in Ref. [38] for the
self-accelerating branch, since the eigenmodes defined in
Ref. [38], Em, correspond to those defined here through
n2Em = um.

Given the scalar product constructed in Eq.(3.20), we
can further simplify Eq.(3.19) by operating

∫∞

−∞
dy ũm

on both sides of Eq.(3.19) and using the orthonormality
of the eigenmodes. The resulting equation is then given
by

(

�− 2H2 −m2
)

hm
µν = −2κ2

5Σµν um(0). (3.21)
From Eqs.(3.17) and (3.21), the solution for the metric
perturbation hTT

µν can be written as

hTT
µν = −2κ2

5

∫

dm
um(0)um(y)

�− 2H2 −m2
Σµν . (3.22)

Notice that hTT
µν is also sourced by the scalar mode ξ̂y [see

Eqs.(3.12) and (3.13)]. To obtain the full induced met-
ric perturbations on the brane, we substitute Eqs.(3.13)
and (3.22) back into Eq.(3.10) and evaluate the metric
perturbation h̄µν at y = 0. In addition, we note that
the gauge in the form of the Gaussian normal coordi-
nate (3.4) is not yet completely fixed, so we can further
fix this gauge freedom by eliminating the term propor-

tional to ∇µ∇ν ξ̂
y. Therefore, after neglecting the term

that can be erased by the gauge fixing, the induced met-
ric perturbations on the brane, h̄b

µν(x
µ) ≡ h̄µν(x

µ, 0), is
given by

h̄b
µν(x

µ) = −2κ2
5

∫

dmu2
m(0)

{

1

�− 2H2 −m2

[(

Tµν − 1

4
γµνT

)

+
1

3(m2 − 2H2)

(

∇µ∇ν −
1

4
γµν�

)

T

]

+
1

12(m2 − 2H2)
γµνT

}

+
κ2
5

6
γµν

[

2
√

H2 + µ2

2γrc
√

H2 + µ2 − 1− 4α(µ2 + 2H2)
+ 4H2

(
∫

dm
u2
m(0)

(m2 − 2H2)

)

]

1

�+ 4H2
T,

(3.23)

where we have already made use of the identity

1

�− 2H2 −m2

(

∇µ∇ν − 1

4
γµν �

)

F

=

(

∇µ∇ν −1

4
γµν �

)

1

�+ 6H2 −m2
F, (3.24)

holding for an arbitrary 4D scalar F . Furthermore, we

have also applied the operator decomposition as follows,

1

(� + 6H2 −m2)(�+ 4H2)
F

=
1

m2 − 2H2

(

1

�+ 6H2 −m2
− 1

�+ 4H2

)

F,

(3.25)
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as long as m2 6= 2H2. As can be seen from the result-
ing solution in Eq.(3.23), the physical degrees of free-
dom contained in the induced metric perturbations on
the brane are effectively composed not only of a KK tower
of massive spin-2 gravitons [cf. Eq.(A8)] but of a spin-0
excitation associated with the brane-bending mode, cor-
responding to the second term of Eq.(3.23). In addition,
we highlight that, if the trace of the energy-momentum
tensor is nonzero, T 6= 0, there is no pathology appearing
in this model whenm2 = 2H2, in contrast with the Fierz-
Pauli model for the spin-2 field (see Appendix A). In the
Fierz-Pauli model, if the graviton mass square reaches
the critical scale, 2H2, the constraint for the trace of
the field, Eq.(A6), implies that the trace of the energy-
momentum tensor is zero. However, the seemingly diver-
gent expression in Eq.(3.23) when m2 = 2H2 is simply
because we have decomposed the result into the spin-2
and the spin-0 sector through Eq.(3.25), which does not
hold if m2 = 2H2. In this sense, the spin-2 and the spin-
0 sector are degenerate at this critical scale. Moreover,
we can also check that there are no divergent expressions
in Eqs.(3.13) and (3.22) when m2 = 2H2 before arriving
at the final result (3.23).

IV. EFFECTIVE ACTION AND EXISTENCE OF

GHOSTS

To check explicitly the existence of ghosts in this
model, we need to construct the 4D effective action re-
sponsible for all the degrees of freedom included in the
solution (3.23). As we mentioned in the previous section,
the induced metric perturbations (3.23) in general con-
sist of a massive KK tower of spin-2 modes as well as a
spin-0 mode, which are denoted here by h̄m

µν and s, re-
spectively. Therefore, the induced metric perturbations
h̄b
µν can be expressed as

h̄b
µν =

∫

dm h̄m
µν +

1

4
γµνs. (4.1)

In terms of these notations, the lowest order action for
the coupling of the matter trapped on the brane to the
induced gravitons is then written as

Sm =
1

2

∫

d4x
√−γ h̄b

µν T
µν

=
1

2

∫

dm

∫

d4x
√−γ h̄m

µν T
µν +

1

8

∫

dx4√−γ s T.

(4.2)

Now we continue to deduce the kinetic part of the ef-
fective action, and we will deal with the spin-2 and the
spin-0 sector separately for convenience. For the spin-2
modes alone, we temporarily consider the traceless source
here for simplicity, i.e., T = 0, and so are the spin-2 fields
h̄m
µν (see Appendix A for the general case without this re-

striction). Then, the kinetic part of the effective action
for these TT spin-2 fields h̄m

µν takes the form

Sh =

∫

dmαm

∫

d4x
√−γ h̄mµν(� − 2H2 −m2)h̄m

µν ,

(4.3)
where the undetermined coefficients αm can be fixed by
comparing the equation of motion derived from the action
Sh + Sm with the one given in Eq.(3.23) as we consider
only the spin-2 part with T = 0. As a result, we have

αm =
1

8κ2
5u

2
m(0)

. (4.4)

On the other hand, for the spin-0 mode alone, its kinetic
part of the effective action is given by

Ss = βs

∫

d4x
√−γ s(�+ 4H2)s, (4.5)

where the coefficient βs can be fixed as well using the
same method, i.e., matching the field equation derived
from the action Ss + Sm (only taking into account the
second term of Sm here) with only the spin-0 part of
Eq.(3.23). Then, we end up with the result,

βs = − 3

64κ2
5

[

√

H2 + µ2

2γrc
√

H2 + µ2 − 1− 4α(µ2 + 2H2)
+ 2H2

(
∫

dm
u2
m(0)

(m2 − 2H2)

)

]−1

. (4.6)

For the massive KK modes in this framework, it can
be shown that the zero mode with m = 0 satisfying the
eigenvalue equation (3.18) is not normalizable with re-
spect to the scalar product (3.20). Therefore, as in the
DGP model, there is no physically admissible zero mode
in the self-accelerating branch here. However, it has
been shown that, as mentioned in the Introduction, the
helicity-0 component of the spin-2 field becomes a ghost
if its mass is in the range 0 < m2 < 2H2 [16]. Thus, if
the lightest massive KK mode in this model has a mass

in this forbidden range, this system will contain a spin-2
ghost. On the contrary, if the mass of the lightest KK
mode is higher than the critical scale, i.e., 2H2 < m2, the
spin-2 perturbations become healthy; however, whether
the spin-0 mode is healthy in this case has yet to be
checked.

We now turn to the spin-0 mode in the case where
the mass of the lightest KK mode satisfies 2H2 < m2.
The coefficient of the action for the spin-0 mode, βs, is
explicitly given in Eq.(4.6), in which the second term
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inside the bracket is always positive in this case. Besides,
it is known that, from Fig. 1, the self-accelerating branch
of this model is restricted to the parameter space

γrc −
√

γ2r2c − 8α(1 − 4αµ2)

8α
<

√

H2 + µ2

<
γrc +

√

γ2r2c − 8α(1− 4αµ2)

8α
, (4.7)

where the upper and lower bounds come from the tran-
sition to the GB branch and the normal branch but with
ǫ = +1, respectively. Out of the range (4.7) with ǫ = +1,
since the Hubble parameter is a decreasing function of
the energy density, it cannot describe our Universe [36–
38]. Within the region of the above parameter space, the
first term in the bracket of Eq.(4.6) turns out to be a
positive value. As a result, the coefficient βs is always
negative as long as the mass of the lowest mode is larger
than the critical scale, i.e., 2H2 < m2, indicating the
presence of a spin-0 ghost. Consequently, similarly to
the DGP model, there always exists a ghost in the self-
accelerating branch of this model, which implies that the
ghost instability present in the DGP model still cannot
be removed by invoking a GB term in the bulk action.
The surprising fact is that the sign flip of the first term

in the bracket of Eq.(4.6) always happens with the tran-
sition of branches, that is, they are mysteriously related.
The lower bound of the inequality (4.7) has been already
found in the original DGP model, while the upper bound
the inequality (4.7) is shown here for the first time. Then,
although the GB branch (with ǫ = +1) is a theoretical
object and can never describe our Universe, it is inter-
esting that this branch can be ghost-free. Indeed, the
GB branch despite having both modes (helicity-0 of the
spin-2 sector and the brane bending mode) can be ghost
free, unlike the self-accelerating branch where either the
brane bending or the helicity-0 of the spin-2 is a ghost.
The normal branch has a similar behaviour to that of
the GB branch. In summary, it might be possible to
construct a viable cosmological model where despite the
existence of the brane bending and the helicity-0 modes,
there is no ghost. This may imply the possibility of a
ghost-free interesting solution for ǫ = +1 with a nontriv-
ial modification of the DGP model.

V. SUMMARY

In this paper, we looked into a generalized DGP brane-
world scenario with a GB term as well as a cosmologi-
cal constant both incorporated in the bulk action. To
check whether this framework can possibly provide a way
out of the DGP ghost instability, we have studied the
linear perturbations around a de Sitter self-accelerating
brane embedded in an AdS5 bulk space-time. Having
the linear perturbations analyzed in this system, we end
up with the effective induced metric perturbations on
the brane, Eq.(3.23), the physical degrees of freedom in

which, as long as none of the KK modes has a critical
mass, m2 6= 2H2, can be effectively described in terms of
the massive KK tower of the spin-2 gravitons as well as
the spin-0 excitation associated with the brane-bending
mode. Moreover, in contrast with the Fierz-Pauli model
for the spin-2 field, gravity in this system can couple to
matter with nonzero trace of the energy-momentum ten-
sor when m2 = 2H2, at which the spin-2 and the spin-
0 perturbations are degenerate. Therefore, one can no
longer divide the degrees of freedom into the spin-2 and
the spin-0 sector at this critical scale.
It has been shown that the massive spin-2 field con-

tains a ghost excitation in its helicity-0 component if the
mass is in the range 0 < m2 < 2H2 [16]. Thus, from the
massive gravity theory viewpoint, if the mass of the light-
est KK mode here is within this forbidden range, there
will be a spin-2 ghost excitation present in this system.
On the other hand, provided that the mass of the lightest
mode becomes larger than the critical scale, 2H2 < m2,
although the spin-2 sector becomes healthy in this case,
the spin-0 mode is shown to be a ghost instead, similarly
to the DGP model. For the specific case where the light-
est mass is equal to the critical scale, m2 = 2H2, whether
or not a ghost exists in this model cannot be verified rig-
orously through the method we used here. Presumably,
this model still contains a ghost in this marginal case as
happens in the DGP model [13]. However, this specific
fine-tuning condition, i.e., m2 = 2H2, is easily broken
provided that we consider physical matter fields on the
brane, in which case the Hubble parameter in general
varies with time. As a result, the DGP ghost instability
at the level of linear perturbations still cannot be elimi-
nated by invoking the GB term in the bulk action.
Our result shows that in the self-accelerating branch

the ghost mode always appears, while in the other
branches (with ǫ = +1) we have the ghost-free parameter
range, although these branches cannot describe our Uni-
verse. This is because the sign of the kinetic term of the
brane bending mode not only depends on the mass of the
lightest KK graviton but also seems to be related to the
branches. We can see it from Eq.(4.6). The sign of the
first term in the bracket of Eq.(4.6) is positive for the
self accelerating branch and negative for the other two
branches. Therefore, the brane bending mode has both
informations of the branch and the value of the lightest
KK mass. This relation might be important for the fu-
ture understanding of the origin of the ghost. Finally,
could other generalizations of the DGP model along the
line of Refs. [57, 58] appease the ghost problem? We
leave this question to a future work.
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Appendix A: SPIN-2 FIELD ON THE DE SITTER

BACKGROUND

The Lagrangian for the spin-2 field with the Fierz-Pauli
mass term on the de Sitter background up to the second
order is given by [16]:

LFP =
1

2κ2
4

√−g

[

− 1

4
∇µhνλ∇µhνλ +

1

2
∇µh

µλ∇νhνλ

+
1

4
(∇µh− 2∇νh

µν)∇µh− H2

2

(

hµνh
µν +

1

2
h2

)

− m2

4

(

hµνh
µν − h2

)

]

. (A1)

The lowest-order Lagrangian for the coupling of gravity
to matter on this background can be described by

Lm =
1

2

√−g T µνhµν . (A2)

From Eqs.(A1) and (A2), the equation of motion for the
spin-2 field, hµν , is then obtained by varying the La-
grangian L = LFP + Lm,

Xµν − m2

2
(hµν − gµνh) + κ2

4Tµν = 0, (A3)

where

Xµν =
1

2
(�hµν −∇µ∇σhσν −∇ν∇σhσµ +∇µ∇νh)

+
1

2
gµν

(

∇α∇βh
αβ −�h

)

−H2

(

hµν +
1

2
gµνh

)

.

(A4)

One can simply check that Xµν satisfies the transverse
condition, ∇µXµν = 0. With this transverse condition as
well as the conservation condition, ∇µTµν = 0, we obtain
the following constraints [see Eq.(A3)]:

∇µhµν = ∇νh. (A5)

Substituting these constraints (A5) back into the equa-
tion of motion (A3), we have another constraint for the
trace of the field:

h = − 2κ2
4

3(m2 − 2H2)
T. (A6)

Notice that if m2 = 2H2 here, the constraint (A6) im-
plies that T = 0. As a result, having imposed all the con-
straints (A5) and (A6) in the equation of motion (A3),
we finally have

(

�− 2H2 −m2
)

hµν =− 2κ2
4Tµν +

[

∇µ∇ν

−
(

m2 −H2
)

gµν
]

h. (A7)

More clearly the field hµν in Eq.(A7) can be further ex-
pressed in a form separated into a traceless and a trace
part,

hµν =− 2κ2
4

{

1

�− 2H2 −m2

[(

Tµν − 1

4
gµνT

)

+
1

3(m2 − 2H2)

(

∇µ∇ν −
1

4
gµν�

)

T

]

+
1

12(m2 − 2H2)
gµνT

}

. (A8)
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