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José R. Espinosaa,b, Gian F. Giudicec,

Enrico Morganted, Antonio Riottod, Leonardo Senatoree,

Alessandro Strumiaf,g, Nikolaos Tetradish

a IFAE, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona
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Abstract

The Standard Model Higgs potential becomes unstable at large

field values. After clarifying the issue of gauge dependence of

the effective potential, we study the cosmological evolution of

the Higgs field in presence of this instability throughout inflation,

reheating and the present epoch. We conclude that anti-de Sitter

patches in which the Higgs field lies at its true vacuum are lethal

for our universe. From this result, we derive upper bounds on the

Hubble constant during inflation, which depend on the reheating

temperature and on the Higgs coupling to the scalar curvature or

to the inflaton. Finally we study how a speculative link between

Higgs meta-stability and consistence of quantum gravity leads

to a sharp prediction for the Higgs and top masses, which is

consistent with measured values.
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1 Introduction

The measurements of the Higgs-boson and top-quark masses imply the surprising fact

that, in the context of the Standard Model (SM) with no additional physics, our universe

lies at the edge between stability and instability of the electroweak vacuum [1] (see [2]

for earlier analyses). For the present best fit values of the SM parameters, the Higgs

potential develops an instability well below the Planck scale, but the proximity to the

stability region insures that the electroweak vacuum lifetime can be exceedingly longer

than the age of the universe.

This intriguing result offers a testing ground for phenomena occurring in the early

universe. Indeed, the presence of a minimum of the SM potential deeper than the elec-

troweak vacuum raises many cosmological issues: how did the Higgs field end up today in

the false vacuum? Why didn’t the primordial dynamics destabilise the Higgs field? How

did patches of the universe with large Higgs values evolve in time without swallowing all

space? Addressing these questions leads to interesting constraints on early-time phenom-

ena and inflationary dynamics. These constraints are the subject of this paper. Several

aspects about electroweak-vacuum decay from thermal or inflationary Higgs fluctuations

have already been studied in the literature [3–6], but here we give a comprehensive de-

scription of the phenomenon and reach new conclusions.

The effects of the thermal bath during the radiation-dominated phase of the universe

are twofold. On one side, thermal fluctuations can trigger nucleation of bubbles that probe

Higgs-field values beyond the instability barrier. On the other side, thermal corrections to

the Higgs potential tend to stabilise low field values, creating an effective barrier. For the

observed values of the SM parameters, the latter effect is dominant and thermal corrections

do not destabilise the electroweak vacuum, even when the reheating temperature is close

to the Planck scale [3].

More subtle is the issue of the Higgs-field fluctuations generated during inflation. In the

case in which the Higgs has no direct coupling to the inflaton and is minimally coupled to

gravity (and hence is effectively massless during inflation), the field develops fluctuations

with amplitude proportional to H, the Hubble rate during inflation. These fluctuations

pose a threat to vacuum stability. For values of H smaller than the height of the potential

barrier, the Higgs field can tunnel into anti-de Sitter (AdS), according to the Coleman-de

Luccia bubble nucleation process [7]. When H becomes comparable to the barrier height,

the transition is well described by the Hawking-Moss instanton [8], which corresponds to

a thermal overcoming of the barrier due to the effective Gibbons-Hawking temperature

T = H/2π [9] associated with the causal horizon of de Sitter (dS) space. However, a

more convenient way to compute the evolution of the Higgs fluctuations during inflation

is through a stochastic approach based on a Fokker-Planck equation that describes the

probability to find the Higgs field at a given value h and time t [10]. This approach was

followed in [3, 6] to derive the probability distribution of Higgs patches in the universe.
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In this paper, we describe the long-wavelength modes of the Higgs field using a Langevin

equation sourced by a Gaussian random noise that mimics quantum fluctuations during

inflation. This method has the advantage of bypassing the problem of choosing boundary

conditions and it is shown to agree with the results from the Fokker-Planck approach with

appropriate boundary conditions.

Quantifying the probability for the existence of a patch of the Higgs field in the SM

vacuum sufficiently large to encompass our observable universe is a subtle issue, which re-

quires an understanding of how AdS bubbles (with large Higgs-field configurations) evolve

in a dS background, during inflation, and in a Minkowski background, after inflation. As

correctly pointed out in [6], patches in which the Higgs probes field values beyond the bar-

rier do not necessarily end up in the AdS vacuum, as long as their evolution is driven by

the stochastic quantum term. Only when classical evolution takes over, the field falls into

its deep minimum. In [6] it was assumed that these AdS patches rapidly evolve into relic

defects that are not necessarily dangerous, hence arguing that large Higgs fluctuations do

not pose a cosmological threat. In our analysis, we reach opposite conclusions.

The evolution of AdS bubbles in an inflationary dS background depends on their size,

internal energy, surface tension, and initial wall velocity. Depending on the characteristics

of the bubbles, we find a variety of possible evolutions. Bubbles shrink, if they start with

small radius and low velocity; expand but remain hidden inside the Schwarzschild horizon,

if the gravitational self-energy of their surface overwhelms the difference between the

vacuum energy in the exterior and interior; and expand at the expense of exterior space,

otherwise. The seemingly paradoxical situation of an expanding bubble of crunching AdS

space is resolved by understanding the difference in space-time coordinates on the two

sides of the wall. While an observer inside the bubbles will experience space contracting

because of the negative cosmological constant, an external observer will see the surface

of large bubbles expand. Although we expect that the process of inflation with large H

will generate a distribution of AdS expanding bubbles, we conclude that such bubbles will

never take over all dS space. The inflationary space expansion always beats the causal

expansion of bubbles, efficiently diluting them.

At this stage, it may seem that the remnant AdS bubbles can be compatible with

the presently observed universe. The problem starts when we consider post-inflationary

evolution of the AdS patches in a flat background. The bubble wall keeps on expanding

at the speed of light and an AdS patch eventually engulfs all space. This means that

a necessary requirement for our present universe to exist is that the probability to find

an expanding AdS bubble in our past light-cone must be negligible. Unfortunately, we

cannot make firm statements about the formation of expanding AdS Higgs bubbles during

inflation because the answer depends on energy considerations based on the Higgs poten-

tial in the Planckian region. However, our study suggests that it would be very difficult to

imagine a situation in which all large-field Higgs patches shrink and none expands. There-

fore, barring the presence of AdS Higgs bubbles in our past light-cone is a well-justified
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requirement for a viable cosmology. This line of reasoning leads to an interesting bound

on H, the Hubble constant during inflation, which we compute not only in the case of a

minimally-coupled Higgs, but also in the presence of a gravitational interaction between

the Higgs bilinear and the scalar curvature.

Having established the dangers of patches in which the Higgs field falls into the trans-

Planckian region, we consider the fate of patches in which, at the end of inflation, the

Higgs field has fluctuated beyond the potential barrier, but has not yet experienced the

classical evolution that wants to drive it towards very large values. The eventual fate of

such bubbles is determined by the subsequent thermal evolution of the universe. Thermal

effects can rescue such patches of the universe by effectively pushing the potential barrier

to larger field values, allowing the Higgs field to relax into its SM vacuum. We study this

phenomenon during the preheating and reheating stages of the universe, when the energy

stored in the inflaton oscillating around its minimum is released into thermal energy

carried by SM particles. In this way we can express the constraint on H as a function of

the reheating temperature after inflation.

Finally, in a more speculative vein, we explore the consequences of a conjecture put

forward in the context of quantum theories of gravity. It has been argued that no for-

mulation of quantum mechanics in dS spaces can be consistent. On the other hand, we

observe today a positive cosmological constant. The resolution of this conflict between a

conceptual obstruction and an empirical fact can be found by assuming that the asymp-

totic state of our universe is not dS. In other words, we are only living in a transitory

situation and today’s dS space will soon terminate. Of course, there are many ways in

which the universe could escape the allegedly dreadful dS condition, but it is tempting to

speculate that the instability of the electroweak vacuum is the emergency exit chosen by

nature. If we take this hypothesis seriously, we obtain a rather precise prediction for a

combination of the Higgs and top masses in the SM, in good agreement with experimental

measurements. The predicted strip in parameter space can be narrowed further by the

hypothesis that the universe must have been sufficiently hot in the past (for instance, for

allowing some high-temperature mechanism of baryogenesis).

The paper is organised as follows. In section 2 we address the preliminary technical

issue of the gauge dependence of the effective potential. The generation and evolution of

Higgs fluctuations during inflation is studied in section 3, while the subsequent evolution

after inflation is the subject of section 4. Our speculations on the quantum-gravity pre-

diction of the Higgs mass are discussed in section 5, and our results are summarised in

section 6. The details of the general-relativity calculation of the evolution of AdS bubbles

in dS or Minkowski backgrounds are contained in the appendix.
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2 Gauge dependence of the SM effective potential

The critical Higgs mass below which the SM Higgs potential becomes unstable is gauge-

independent; however the instability scale of the SM potential, e.g. hmax, defined as the

Higgs field value at which Veff(h) is maximal, is gauge-dependent (as recently emphasised

in [11,12]). Therefore, one has to be cautious in extracting from the potential a physically

meaningful scale associated to the instability.

There is a number of ways in which one can try to identify scales that track the poten-

tial instability and are gauge-invariant because expressed in terms of extrema.1 However,

our cosmological computations will employ the full SM effective potential also away from

its extrema, so we are confronted with the issue of the gauge-dependence of the effective

potential shape, an old topic much debated in the literature.2 In dealing with this issue we

follow a pragmatic approach. First, we insist on calculating physical quantities, that can

be proven to be gauge independent. Second, we make sure that the approximations we

use in those calculations are consistent, in the sense that any residual gauge dependence

is smaller than the precision of our approximations.

The gauge-independence of our results is ultimately based on the Nielsen identity that

describes how the effective action depends on the gauge-fixing parameters and how to

extract out of it gauge independent quantities. Let us briefly discuss how this works.

The fact that the Higgs effective potential V (h) depends on the gauge parameters

(generically denoted as ξ) follows from the fact that the effective action Seff itself is a

gauge-dependent object. In spite of this, as is well known, both the potential and the

effective action are extremely useful and physical quantities extracted from them (like

particle masses, S-matrix elements, the vacuum energy density, tunnelling rates in the

case of metastable vacua, etc.) turn out to be gauge-independent, as they should.

1For example, this could be done through the scale of a higher-dimensional operator hn (with n > 4)

that, added to the SM, cures its instability.
2We summarise some of the main approaches here. Nielsen [13] proved that the gauge dependence of

the effective potential can be reabsorbed by a re-definition of the fields. Tye [14] found that the effective

potential and the effective kinetic terms are separately gauge-invariant if the perturbative expansion is

performed by decomposing the Higgs doublet into the physical Higgs field h and the 3 angular coordinates

π, such that the Goldstone fields π are massless at any value of h, not only at the extrema of the potential.

The results then agree with the unitary gauge. Buchmuller et al. [15] computed the effective potential

in terms of the gauge-invariant combination Φ†HΦH claiming a gauge-invariant effective potential; again

this selects the radial mode of the Higgs doublet such that Goldstone are always massless. Schwartz et

al. [12] argue that finding a gauge-invariant definition of the effective potential is a misguided enterprise

and that the contribution of Goldstone bosons should be neglected (at leading order) in a consistent

perturbative expansion around the field value at which λ = 0.
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2.1 Gauge (in)dependence of the effective action

The Nielsen identities [16] tell us that the gauge dependence of the effective action can

be compensated by a local field redefinition. In other words, different gauges describe the

same physics in terms of different coordinates in field space (leading to different potentials

but also to different kinetic terms). Particularising to cases with Higgs background only,

one has

ξ
∂Seff

∂ξ
= −

∫
d4x K[h(x)]

δSeff

δh(x)
, (1)

where K[h(x)] is a functional of h that can be found in [16].

One immediate consequence of the Nielsen identity is that the action evaluated on a

solution of the equation of motion for h, δSeff/δh = 0, is gauge-independent. We also

see that the gauge-independence of the extremal values of the effective potential follows

directly by applying the previous general fact to constant field configurations.

Writing the effective action in a derivative expansion

Seff [h] =
∫
d4x

[
−V (h) +

1

2
Z(h)(∂µh)2 +O(∂4)

]
, (2)

we can find a series of Nielsen identities for the coefficients of this expansion [17, 18] by

expanding in the same way K[h] and δSeff/δh in (1), as

K[h] = C(h) +D(h)(∂µh)2 − ∂µ[D̃(h)∂µh] +O(∂4) , (3)

δSeff

δh
= −V ′ + 1

2
Z ′(∂µh)2 − ∂µ[Z(h)∂µh] +O(∂4) , (4)

where primes denote h-derivatives. The higher-order derivative terms are expected to

be suppressed by an energy scale, which can be as low as the value of the Higgs field,

and by a one-loop factor, which is the same for any order in derivatives. Therefore, our

derivative expansion is valid only when the gradient of the Higgs field is smaller than the

homogeneous value of the field under consideration.

At the lowest order in the derivative expansion, we find the expression for the gauge-

dependence of the effective potential

ξ
∂V

∂ξ
+ C(h)V ′ = 0 , (5)

which, as anticipated, ensures the gauge-independence of the values of the potential at its

extremal points. This Nielsen identity also tells us that the explicit ξ-dependence of the

potential can be compensated by an implicit ξ-dependence of the field as:

ξ
dh

dξ
= C(h) , (6)

so that dV/dξ = 0. At order O(∂2) we get

ξ
∂Z

∂ξ
= −CZ ′ − 2ZC ′ + 2DV ′ + 2D̃V ′′ , (7)
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where we suppressed the h dependence of all functions.

It is useful to consider the order in weak gauge couplings (denoted generically by g in

this paragraph) of the different functions that appear in the previous identities [17]. As we

will be interested in the potential region where the Higgs quartic coupling gets negative,

eventually inducing a new minimum radiatively, we will use the counting λ ∼ g4. The

function C(h) starts at one loop and is O(g2). The Nielsen identity (5) then implies

that the ξ dependence of V starts at O(g6). On the other hand, the Nielsen identity (7)

implies that the ξ dependence of Z starts at O(g2), with the terms involving D and D̃

being of higher order in g. As we will see in the next subsection, it will be sufficient for

our purposes to deal with the dominant ξ dependence of the potential so that we will

neglect the effect of the subleading D and D̃ terms in what follows, as in [17].

Let us next consider the ξ-dependence of the equation of motion for h which we write

using

EoM[h] ≡
√
Z∂2h+

1

2
√
Z
Z ′(∂µh)2 +

1√
Z
V ′ , (8)

and its solutions h̄(x), which satisfy EoM[h̄] = 0. It is straightforward to show that

ξ
d

dξ
EoM[h]

∣∣∣∣∣
h=h̄

= 0 , (9)

up to O(∂4) corrections, provided we use ξdh̄/dξ = C. In principle, one can continue

the check of the gauge invariance of the equations of motion iteratively up to infinite

order in the number of derivatives.3 This means that, if some h̄ξ(x) solves the equation of

motion for some choice of ξ and we shift ξ → ξ+dξ, the shifted solution is h̄ξ(x) +dh̄ξ(x)

with dh̄ξ(x) = C(h̄ξ)dξ/ξ. In other words, the field rescaling that can balance the effect of

changing ξ in the effective potential is the same field rescaling that applies to the solutions

of the equation of motion for different ξ.

The same rescaling works for the Fokker-Planck and Langevin equations that we will

use later on to describe the Higgs fluctuations during inflation. These equations take the

form, Langevin[hL] = 0 and FokkerPlanck[P (h, t)] = 0, with

Langevin[h] ≡
√
Z
dh

dt
+

1

3H
√
Z
V ′ − η , (10)

and

FokkerPlanck[P (h, t)] ≡ 1√
Z

∂

∂h

{
1√
Z

[
∂

∂h

(
H3

8π2

P√
Z

)
+

1

3H

PV ′√
Z

]}
− 1√

Z

∂P

∂t
.

(11)

3Using the previous identities one can also check, to all orders, the ξ-independence of the scalar

physical mass M2
h ≡ V ′′/Z|min, evaluated at the minimum of the potential, as indicated.
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Here P (h, t) dh is the probability for finding the Higgs field in the infinitesimal interval

between h and h+ dh at time t during inflation. The fact that P is a probability density

explains why P enters in eq. (11) through the ratio P/
√
Z.

Using these expressions and the ξ-dependence of V (h), Z(h), and h as described in

eqs. (5)–(7), we get

d

dξ
Langevin[h]

∣∣∣∣∣
h=hL

= 0 ,
d

dξ
FokkerPlanck[P (h, t)]

∣∣∣∣∣
P=P̄

= 0 , (12)

(where hL and P̄ are solutions of the Langevin and Fokker-Planck equations, respectively)

up to corrections that can be shown to be subleading.4,5 This shows once again that if we

have a solution of the Langevin equation for a given value of ξ, we automatically obtain

a solution for ξ + dξ by the shift h(ξ) + C(h(ξ))dξ/ξ. For the Fokker-Planck equation, a

solution for general Z is formally related to a solution for Z = 1 again by a field rescaling,

with P (h, t)/
√
Z(h) = Pc(hc(h)), where the relation between h and the canonical field hc

follows from dhc/dh =
√
Z(h). As a result, the integrated probability is independent of

the field rescaling:∫ hc,f

hc,i
Pc(hc)dhc =

∫ hf

hi
Pc(hc(h))

√
Z(h)dh =

∫ hf

hi
P (h)dh . (13)

This implies that the probability of finding the field beyond hmax after a given number

of e-folds is a gauge invariant quantity: although the value of hmax depends on ξ, the ξ-

change of the ratio P (h, t)/
√
Z(h) corresponds to the same field-rescaling h(ξ)→ h(ξ) +

C(h(ξ))dξ/ξ and leaves the integrated probabilities unchanged.

To sum up, the key idea is that a change in a given gauge parameter ξ is equivalent to a

redefinition of the Higgs field, which should leave physics invariant. The effective potential,

the equations of motion for the Higgs field and the Fokker-Planck and Langevin equations

enjoy a sort of “covariance” under changes of the gauge parameters. The equations are

4Here we are explicitly using the derivative expansion previously introduced to derive the gauge

transformation properties of V, Z and h. Indeed, the Langevin and Fokker-Planck formalism represent

a truncation of the theory at the lowest order in derivatives, where the approximation is justified by the

smallness of the gradient of the field with respect to the Hubble parameter. In the rest of the paper, we

will be using these equations to describe evolutions of the Higgs field for values of the Hubble parameters

even quite larger than the Higgs vev itself. For this reason, we cannot naively apply the zeroth order

truncation in derivatives of the effective action, because, as we discussed, the derivative expansion is

suppressed only by the Higgs vev. However, since the higher derivative corrections are suppressed by

at least a one-loop factor and are not log-enhanced (at one-loop), a consistent truncation is to use the

Langevin and Fokker-Planck equations as derived from an effective action where the only corrections

that are included are the non-derivative, leading log-enhanced, ones. This will be how we will use the

Langevin and Fokker-Planck equations in the rest of the paper.
5 Note also that, concerning the dependence on the renormalisation scale µ, one can show the µ-

independence of M2
h , EoM[h], Langevin[h] and FokkerPlanck[P (h, t)] just making use of dV/dµ = 0,

dh/d logµ = γh, d(∂V/∂h)/d logµ = −γ(∂V/∂h), dZ/d logµ = −2γZ, etc.
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changed in such a way that the change induced in their solutions is just a common field

redefinition dictated by the Nielsen identity.

2.2 Effective potential including only log-enhanced corrections

For the previous appealing properties to hold, the interplay between the effective potential

and the kinetic term in the effective action is crucial. For the SM case at very large field

values we write

Leff = Z(h, ξ)
(∂µh)2

2
− λeff(h, ξ)

h4

4
+ · · · (14)

where the ellipsis denotes higher derivative terms and both Z(h, ξ) and λeff(h, ξ) include

radiative corrections and depend on ξ. As usual, it proves convenient to use a canoni-

cally normalised Higgs field hcan(h, ξ) as dhcan/dh = Z1/2 and to re-express the effective

Lagrangian in terms of hcan, obtaining

Leff =
(∂µhcan)2

2
− λcan(hcan, ξ)

h4
can

4
+ · · · (15)

In terms of the canonical field all the equations become simpler as we do not have to

drag the Z factor around. An additional bonus is that the residual ξ dependence in our

approximations will be significantly reduced. Let us see how this works examining the

gauge dependence of the effective potential. The coloured dashed curves in fig. 1 show

λeff(h, ξ), which tracks the large field behaviour of the SM effective potential, as computed

at next-to-leading order (NLO) accuracy in the Fermi ξ gauges [11]6 further improved by

performing a resummation of IR-divergent Goldstone loops [19]7. We take into account

the running of ξ1 and ξ2 (gauge-fixing parameters for hypercharge and SU(2)L), assuming

a common value ξ renormalised at Mt. We confirm that λeff(h, ξ) significantly depends on

the gauge-parameter ξ. The black curves in fig. 1 show λcan(hcan, ξ), again computed at

NLO in Fermi ξ gauges: we see that the dependence on ξ almost completely disappeared

— all black curves almost merged into a single curve.

One can explain analytically why the gauge dependence approximately cancels out by

looking at the dominant corrections enhanced by large logarithms, which are resumed by

solving the RG equations and setting the RG scale µ̄ around the field value of interest:

λeff(h, ξ) ≈ e4Γ(µ̄≈h,ξ)λ(µ̄ ≈ h), Zeff(h, ξ) ≈ e2Γ(µ̄≈h,ξ) , (16)

where Γ =
∫ µ̄
Mt
γ d ln µ̄, γ is the gauge-dependent anomalous dimension of the Higgs field,

and λ(µ̄) =
∫ µ̄
Mt
βλ d ln µ̄ is the running quartic coupling, where βλ is gauge-independent.

6At this level of approximation the potential has a residual dependence on the RG scale µ̄ comparable

to the gauge dependence. We here adopted the choice µ̄ = heΓ that minimises the error.
7Around the minimum of the potential, this resummation becomes equivalent to the expansion of [12],

which makes the truncation of the potential compatible with the Nielsen identity.
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Figure 1: The dashed curves show the effective quartic coupling (left) and effective SM

potential (right) computed at next-to-leading order in a generic Fermi ξ-gauge. The thick

red dashed curve corresponds to the Landau gauge, ξ = 0. The right handed panel shows

that the height of the potential barrier is only approximately gauge-independent (a measure

of the residual gauge dependence). The black continuous curves show the same potential

expressed in terms of the canonical field hcan: the gauge dependence in the potential gets

compensated by the gauge-dependence of the kinetic term, such that the continuous curves

nearly overlap.

In this leading-order (LO) approximation one has

hcan ≈ heΓ(µ̄≈h), λcan(hcan) ≈ λ(µ̄ ≈ h) , (17)

which is gauge-independent because the RGE for λ and all other couplings of the theory

are gauge-independent. The order-of-magnitude gauge dependence of hmax found in [11]

disappears because it is almost entirely due to the RG factor Γ.

Such LO cancellation has been noticed before, see e.g. [20, 21]. Note however that

the field redefinition dictated by the Nielsen identity we discussed earlier and the field

redefinition required to make the field canonical are the same only at LO. Moreover,

the field redefinition from the Nielsen identity becomes considerably more complicated

at NLO [13]. Its use to define a “gauge-independent” potential is in fact equivalent to

choosing a particular gauge and therefore does not solve the problem of how to extract

gauge-invariant quantities out of the effective action. For this reason we refrain from

attempting to use it as a way of defining a gauge-invariant potential and simply use the

canonical field as a way of reducing the residual gauge dependence of our results.

The previous discussion has been carried out in Fermi gauge at NLO to help us clarify

the issues related to gauge invariance. Having understood them, we can now use the

state-of-the-art computation of the effective potential in the Landau gauge (ξ = 0) with
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NNLO accuracy (2 loop finite corrections and 3 loop RGE corrections) [1] combined with

the use of a field redefinition to make the field canonical (taking into account the effect

of potentially large logarithms in Z). Using that canonically normalised Higgs field h,

in the region around the top of the barrier, the SM Higgs potential can be analytically

approximated as

Veff(h) ≈ −b ln

(
h2

h2
max

√
e

)
h4

4
, (18)

where hmax is the field value at which Veff(h) takes its maximal gauge-invariant value

Veff(hmax) = bh4
max/8. Using the value b ≈ 0.16/(4π)2 for the β function of λ around hmax,

we find hmax = 5× 1010 GeV for the present best-fit values of Mt, Mh and α3. Although

this value of hmax is computed in Landau gauge and it would be slightly different in other

gauges, the reader should keep in mind that the results we present in the following sections

are gauge-invariant even if for convenience we express them in terms of hmax.8

3 Higgs fluctuations during inflation

The instability of the Higgs potential leads to an interesting dynamics during inflation.

We focus on the relevant radial mode h =
√

2|ΦH |2 of the Higgs doublet. If the Hubble

constantH is large enough, h fluctuates beyond the potential barrier. If the true vacuum is

deep enough, inflation stops in the regions where the Higgs falls, while inflation continues

in the (possibly rare) regions where accidentally h < hmax. In this section we compute

the probability of the possible outcomes at the end of inflation, while in the next section

we will discuss what happens after inflation.

In the absence of a large Higgs mass term, the evolution of the long wavelength modes

of the h field is controlled by the Langevin equation [22]

dh

dt
+

1

3H

dV (h)

dh
= η(t), (19)

where η is a Gaussian random noise with

〈η(t)η(t′)〉 =
H3

4π2
δ(t− t′). (20)

It is important to realise that eq. (19) is valid only if the positive effective mass squared

V ′′(h) of the Higgs field is light enough compared to H2. Only under these circumstances

the long wavelength super-Hubble fluctuations of the Higgs field are generated. On the

8Alternatively, we could choose other scales associated (more indirectly) to the instability which are

explicitly gauge invariant. One could be the renormalisation scale µ0 at which the quartic Higgs coupling

λ crosses zero; another choice is the scale µX at which the one-loop radiatively corrected Goldstone

mass is zero (as used in [12]). For the same central values above we get µ0 = 1 × 1010 GeV and

µX = 4.5× 1010 GeV.
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contrary, if V ′′(h) > 9H2/4, the resulting power spectrum of Higgs fluctuations is both

suppressed by exp(−2V ′′(h)/H2) and by the fact that the spectrum is strongly tilted on

the blue side [23]9.

3.1 Higgs fluctuations during inflation for ξH = 0

It is convenient to rewrite eq. (19) replacing time t with the number of e-folds N = Ht,

and to normalise the Higgs field and its potential in units of the Higgs value h = hmax at

which V (hmax) = Vmax is maximal,

h =
h

hmax

and V (h̄) ≡ V

h4
max

≈ −b ln

(
h̄2

√
e

)
h̄4

4
. (21)

After these redefinitions, the Langevin equation in eq. (19) becomes

dh

dN
+
h2

max

3H2

dV (h)

dh
= η(N) (22)

where the noise η(N) obeys

〈η(N)η(N ′)〉 =
(

H

2πhmax

)2

δ(N −N ′). (23)

One can now numerically generate random realisations of the Higgs evolution in N ,

in steps of dN , as

h̄(N + dN) = h̄(N)− h2
max

3H2
V̄ ′(h̄) dN + r (24)

where r are random numbers extracted from a Gaussian distribution with zero mean and

standard deviation σ = H
√
dN/(2πhmax).

Indeed, for h � σ, the same result is reproduced by the analytic solution to the

Fokker-Planck equation for the probability P (h,N) of finding the Higgs field at the value

h after N e-folds of inflation,

∂P

∂N
=

∂2

∂h2

(
H2

8π2
P
)

+
∂

∂h

(
V ′

3H2
P
)
, (25)

taking V = 0 and boundary conditions at h = ±∞.

Figure 2 shows the resulting probability density of the value of h after N = 60 e-

foldings, starting from h̄ = 0 at the beginning of inflation. The result, a quasi-Gaussian

distribution, has a simple interpretation. Given that the quartic Higgs coupling vanishes

around the instability scale, for a large range of Higgs values around the instability scale

the classical evolution (sourced by the gradient of the potential) is negligible with respect

9Indeed, the solution of the Klein-Gordon equation for a spin 0 particle with mass m in de Sitter goes

like exp(−πµ/2)(−τ)3/2Hiµ(−kτ), where µ =
√
m2/H2 − 9/4 and τ is the conformal time.
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Figure 2: Random distribution of the Higgs field h̄ = h/hmax after N = 60 e-folds of

inflation with Hubble constant equal to the Higgs instability scale, H = hmax. The blue

dashed curve is the V = 0 Gaussian approximation of eq. (26). The red curve is the SM

Higgs potential V̄ (h̄), in arbitrary units.

to the quantum evolution (sourced by the random noise η). As a consequence, even

assuming that the Higgs starts from h = 0, the field h acquires a Gaussian distribution

with zero mean and variance that grows with N :

P (h,N) =
1√

2π〈h2〉
exp

(
− h2

2〈h2〉

)
,

√
〈h2〉 =

H

2π

√
N. (26)

The distribution shown in fig. 2 maintains its quasi-Gaussian shape also for values of

the Higgs field well above hmax. Therefore, during inflation, the Higgs field can fluctuate

above the barrier without being sucked into the negative-energy (AdS) true vacuum. The

only regions where the Higgs falls into the true minimum are those where h fluctuates to

field values so large that the potential slope can no longer be neglected.

Regions that fluctuate above the potential barrier

The minimal probability that the Higgs ends up beyond the top of its potential barrier

after N e-folds is

p(|h| > hmax) ≈ 1− erf
(√

2πhmax√
NH

)
. (27)

This probability, obtained by integrating the Gaussian distribution for |h| > hmax, is

minimal because it corresponds to the initial condition h = 0. Shifting the peak of the
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Figure 3: Minimal probability that, after N = 60 e-folds of inflation, the Higgs fluctu-

ated above the SM potential barrier (orange curve), or fall down to the true minimum

(red curve). The continuous curves are the numerical results; the dashed curves are the

analytical approximations presented in the text.

distribution to a non-vanishing value of h will only increase p(|h| > hmax). The solid

orange curve in fig. 3 shows our numerical result for this probability as a function of the

Hubble constant during inflation, in units of the Higgs instability scale H/hmax. The

dashed orange curve corresponds to the analytic expression in eq. (27), which is evidently

an excellent approximation.

No constraints arise if, after inflation, the regions with |h| > hmax fall back to the SM

minimum, pushed by thermal effects (see section 4). If instead, after inflation, the regions

with |h| > hmax fall down into the true AdS minimum, then their probability should be

smaller than e−3N , so that it is unlikely to find the Higgs away from its EW vacuum in

any of the ∼ e3N causally independent regions that are formed during inflation and that

constitute the observable universe today. Using 1 − erf(x) ' e−x
2
/
√
πx for large x, this

condition implies

H

hmax

<

√
2

3

π

N
≈ 0.04 . (28)

Regions that fall to the true minimum during inflation

The approximation of neglecting the scalar potential V , which led to the quasi-Gaussian

distribution of the Higgs field values, breaks down at large h. There, the gradient of the

potential dominates over quantum fluctuations, and h falls down to its true minimum

already during inflation. The solid red curve in fig. 3 shows our numerical result for such
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probability.

We can analytically estimate the probability for h to fall into its true vacuum after N

e-folds of inflation. We first consider a potential V = λh4/4 with constant λ and assume

that the bulk of the Higgs field probability distribution is still given by the Gaussian in

eq. (26), cut at large field values. The location of the cut is estimated by demanding that

the classical evolution becomes more important than the quantum fluctuations [6]. This

can be quantified by requiring that the second term in the right-hand side of eq. (25)

dominates over the first one,∣∣∣∣∣ ∂∂h
(
V ′

3H2
P
)∣∣∣∣∣ > k

∣∣∣∣∣ ∂2

∂h2

(
H2

8π2
P
)∣∣∣∣∣ , (29)

where k is a fudge factor and P is given in eq. (26). Equation (29) implies that the

Gaussian distribution must be cut for h2 > 3kH2/(2|λ|N), and values of h that satisfy

this inequality are sucked into the true minimum.

Therefore, the probability of falling to infinity is exponentially suppressed for small

|λ|:

p(|h| → ∞) ≈ 1− erf

 π
√

3k

N
√
|λ|

 . (30)

Such probability satisfies p(|h| → ∞) < e−3N for |λ| < kπ2/N3.

Considering now the more realistic case of the SM potential with a running coupling

λ(h) = −b ln(h2/h2
max

√
e), we find

p(|h| → ∞) ≈ 1− erf

(
π
√

3k

N
√
bB

)
, where B = PL

(
3kH2

2bNh2
max

)
(31)

where PL is the ProductLog function. This analytic approximation of p(|h| → ∞) is

shown in fig. 3 as the dashed red line and agrees well with the numerical computation,

once we fit the fudge factor to be k = 2.6. Next, we need to extrapolate the analytic

approximation to probabilities much smaller than those that can be computed numerically.

The probability p(|h| → ∞) is smaller than e−3N for

H

hmax

<
π

N

√
2

3
eπ

2k/2bN3 ≈ 0.045 . (32)

3.2 Higgs fluctuations during inflation for ξH 6= 0

Higgs fluctuations during inflation can get damped if the Higgs doublet ΦH during inflation

acquires an effective mass m. Various effects can contribute to such mass:

1. a quartic term λhφ|ΦH |2φ2 in the potential, which describes a coupling between

the Higgs ΦH and the inflaton φ, generates during inflation an extra contribution

m2 = λhφφ
2 to the Higgs mass;
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Figure 4: Running of the Higgs coupling to gravity ξH as a function of the renormalisation

scale in the SM, for different initial conditions at the Planck scale. The dashed horizontal

lines correspond to the special values ξH = −1/6 and ξH = 0.

2. a decay of the inflaton into SM particles can generate a non-vanishing temperature

during inflation. Such decay are kinematically blocked when SM particles acquire

a thermal mass larger than the inflaton mass, of order H. Thereby the Higgs can

acquire a mass m2 ≈ H2;

3. a non-minimal Higgs coupling to gravity, −ξH |ΦH |2R contributes as m2 = ξHR =

−12ξHH
2.

These contributions to m2 would have qualitatively similar effects. In our quantitative

analysis we focus on the latter effect because the presence of the ξH term is unavoidable:

even if ξH = 0 at some energy scale, SM quantum corrections generate a non-vanishing

value of ξH at any other energy scale. Indeed, ignoring gravity, the one-loop running of

ξH is given by

dξH
d ln µ̄

=
ξH + 1/6

m2

dm2

d ln µ̄
=
ξH + 1/6

(4π)2

(
6y2

t −
9

2
g2

2 −
9

10
g2

1 + 12λH

)
+ · · · (33)

where µ̄ is the renormalisation scale. The RGE for the Higgs mass parameter m2 is known

up to 3 loops in the MS scheme (as summarised in [1]), and we have shown here only

the leading term. The SM couplings are such that d ln |m2|/d ln µ̄ is positive (negative)

at energy roughy below (above) 1010 GeV. The evolution of ξH for different boundary

conditions at MPl is shown in fig. 4; it has a fixed point at the conformal value ξH = −1/6.

Notice that this value is not special for our analysis because it does not recover conformal

invariance, which is broken at the level of the SM Higgs effective potential.
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Figure 5: Random distribution of the Higgs field h̄ = h/hmax after N = 60 e-folds of

inflation with Hubble constant equal to the Higgs instability scale, H = hmax, and for

ξH = −0.01. The blue dashed line is the Gaussian approximation of eq. (37). The red

curve is the Higgs potential VSM(h)− 12ξHH
2h2/2, in arbitrary units.

We consider the following action

S =
∫
d4x
√
g
[
− M̄2

Pl

2
R− ξH |ΦH |2R + |DµΦH |2 − V + · · ·

]
(34)

where V ' V (φ) + λ|ΦH |4 is the scalar potential of the Higgs and of the inflation φ and

M̄Pl is the reduced Planck mass. We use the approximation that, during inflation, the

inflaton potential is constant V (φ) ' VI .
10

The ξH coupling of the Higgs to gravity affects the scalar potential during inflation by

inducing an effective Higgs mass term m2 = ξHR = −12ξHH
2 ' −4ξHVI/M̄

2
Pl which can

stabilise the Higgs potential and suppress Higgs fluctuations. As explained after eq. (19),

Higgs fluctuations are damped if ξH < −3/16. For −3/16 < ξH < 0, Higgs fluctuations

are still present, but become less dangerous than in the case of vanishing ξH .

10Of course, one could also envisage other operators coupling the Higgs field with gravity, e.g.

|ΦH |2R2/M2
Pl. However, in most models of inflation, the Hubble parameter squared decreases linearly

with the number of e-folds Ne till the end of inflation. Therefore, for ξH >∼ (H2
I /M

2
Pl)(Ne/NI), where

HI is the initial value of the Hubble rate when inflation starts and NI is the total number of e-folds, the

higher-order operator becomes negligible. This condition becomes easier and easier to satisfy as inflation

proceeds.
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Figure 6: As a function of ξH and the Hubble constant in units of the instability scale hmax

(and for N = 60 e-folds of inflation), we show the three regions where: the probability for

the Higgs field to end up in the negative-energy true minimum is larger than e−3N (red);

the probability for the Higgs field to fluctuate beyond the potential barrier is larger than

e−3N (orange); the latter probability is smaller than e−3N (green). Higgs fluctuations are

damped for ξH < −3/16. The uncertainty on the orange/red boundary corresponds to a

fudge factor 1/3 < k < 3.

Neglecting the small Higgs quartic coupling, adding the effective Higgs mass term

m2 = −12ξHH
2, and assuming the ansatz of a Gaussian distribution with variance 〈h2〉,

P (h,N) =
1√

2π〈h2〉
exp

(
− h2

2〈h2〉

)
, (35)

the evolution of 〈h2〉 is obtained from the Fokker-Planck equation (25) and becomes, at

h2 � 〈h2〉,

∂〈h2〉
∂N

= −2m2

3H2
〈h2〉+

H2

4π2
⇒

√
〈h2〉 =

√
3

2

H2

2πm

√√√√1− exp

(
−2m2N

3H2

)
. (36)

If m2 < 0, the variance grows exponentially with N . If m2 > 0, the Higgs probability

distribution approaches, after a few e-folds, the limiting distribution given by11

√
〈h2〉 =

H

4π
√
−2ξH

. (37)

This is to be compared with eq. (26), which holds for ξH = 0. Figure 5 shows a numerical

example: already for ξH = −0.01 the variance is significantly reduced.

11This is larger than what is obtained by naively assuming a Hawking temperature T = H/2π.
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Using eq. (37), we obtain the following bounds on H from the request that the prob-

abilities of the Higgs fluctuating beyond the barrier (|h| > hmax) or falling into the true

minimum (|h| → ∞) are less than e−3N :

p(|h| > hmax) < e−3N ⇒ H

hmax

< 4π

√
−ξH
3N

, (38)

p(|h| → ∞) < e−3N ⇒ H

hmax

< 4π

√
−ξH
3N

e32π2ξ2H/bN . (39)

These bounds are the analogues of eqs. (28) and (32), which are valid for ξH = 0. An

order-one fudge factor k can be similarly introduced such that eq. (39) closely agrees with

the numerical result; however k depends on ξH and thereby differs from what we previously

discussed in the limit ξH = 0. Taking into account how ξH stabilises the potential results

in a more complicated, but numerically similar, analytic expression. Furthermore these

approximations needs to be extrapolated down to probabilities smaller than those that

can be compared to the numerical result. Conservatively estimating the uncertainty by

varying 1/3 < k < 3, in fig. 6 we summarise the situation by showing the regions of ξH
and H/hmax where the bounds in eq.s (38) and (39) are satisfied for N = 60.

In the presence of a λhφ|ΦH |2φ2 potential coupling between the Higgs ΦH and the

inflaton φ, during inflation one has an extra contribution to the Higgs mass, m2 = λhφφ
2.

This term has a similar effect as the inflationary mass discussed above. The Higgs h has

no inflationary fluctuations as long as m > 3H/2. However, in general m2 changes during

inflation in a model-dependent way. Considering, for example, large-field inflation with

a quadratic potential, one has φ = 2M̄Pl

√
NI −N during inflation, where NI >∼ 60 is the

total number of e-folds. Inserting m2 = 4λhφM̄
2
Pl(NI −N) into eq. (36) one finds that the

maximal Higgs fluctuation is achieved at the end of inflation and is Planck suppressed:

〈h2〉 =

√
3

πλhφ

H3

16πM̄Pl

. (40)

3.3 Bubble evolution in de Sitter spacetime

After having computed the probability for inflationary fluctuations to form regions where

the Higgs field lies at its true minimum, the next question we have to address is how these

regions evolve. In the literature one finds conflicting statements about the evolution

of AdS regions in an inflationary background. One point of view, based on flat-space

intuition, is that AdS regions should expand because their interior has lower energy than

the exterior. A different point of view is that, since AdS space eventually contracts,

regions in which the Higgs lies at its true minimum will shrink, possibly leaving some

almost point-like relics, which are nevertheless efficiently diluted, and thus made harmless,

by the inflationary expansion of space. We will show that addressing the question about
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the fate of AdS regions involves a number of non-trivial and counter-intuitive issues raised

by general relativity.

First, gravitational energy contributes to the total energy budget. Second, an AdS

region might expand, while remaining hidden behind a black-hole horizon. Third, the

interior AdS space is dynamically unstable [7]: when described in cosmological FRW

coordinates it reaches a ‘big-crunch’ singularity in a finite amount of internal time of

order (GVin)−1/2, where −Vin < 0 is the internal cosmological constant. If space is empty,

this is just a coordinate singularity (AdS can be continued using better coordinates); if

space is filled by a background field (for example the Higgs field), its fluctuations grow

until the energy density becomes infinite and a physical singularity appears. Furthermore,

the AdS geometry has a timelike boundary, such that the evolution cannot be predicted

after the bubble wall reaches the boundary, unless additional boundary conditions are

imposed there (in other words, information must flow in from infinity). As a result, a

Cauchy horizon appears in the interior of the bubble. It is expected that, within the full

theory beyond the thin-wall limit, a physical spacelike singularity must develop before

the Cauchy horizon [24]. This confirms the expectation that the AdS bubble is unstable.

In order to clarify all these issues we performed a careful (and somewhat lengthy)

general-relativistic computation, described in appendix A. Here we summarise the main

points.

In order to make the problem tractable analytically, we assume a spherical AdS region

(that we thereby call ‘bubble’), separated from the outside space by a thin wall with

constant surface tension σ. The matching of the external and internal geometries requires

the presence of such a wall with nonzero energy density. The fate of the AdS bubble is

then determined by computing the motion of the wall separating the AdS interior from the

external space (de Sitter during inflation and Minkowski after inflation). In the thin-wall

approximation, the motion of the wall is determined by junction conditions that relate

the extrinsic curvature on each of its sides [25]. The bubbles that we now compute are

more general than those that arise from vacuum decay with zero total energy, already

studied in [7]. The basic elements of our calculation are the following.

1. The space inside the bubble is assumed to be an empty spherical region of AdS

space with metric

ds2 = −fin(r) dη2 +
dr2

fin(r)
+ r2dΩ2

2, r < R, (41)

expressed in global coordinates. Here fin(r) = 1 + r2/`2
in is the usual AdS solution,

with vacuum energy −Vin corresponding to the length scale 1/`2
in = 8πGVin/3.

2. The space outside the bubble is described by the metric

ds2 = −fout(r) dt
2 +

dr2

fout(r)
+ r2dΩ2

2, r > R, (42)
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where fout(r) = 1 − r2/`2
out − 2GM/r describes a Schwarzschild-de Sitter (SdS)

spacetime, with G = 1/(8πM̄2
Pl). Here M is the mass of the bubble as seen by

an outside observer, living in an asymptotically de Sitter space described by the

length scale 1/`2
out = 8πGVout/3 = H2. As discussed later, the metric in eq. (42)

also describes the case of the asymptotically flat spacetime produced after inflation,

which is obtained in the limit Vout → 0, so that fout(r) = 1− 2GM/r.

Note that, for `out � GM , the SdS spacetime contains two horizons, corresponding

to the zeros of fout(r): the inner (Schwarzschild) horizon at r ≈ 2GM and the outer

(de Sitter) horizon at r ≈ `out. The corresponding Penrose diagram is depicted in the

right panel of fig. 7. It is a combination of the diagrams for the Schwarzschild and

de Sitter spacetimes [9]. Thick blue lines denote curvature singularities, the dashed

lines horizons and the dotted lines conformal infinities. The two thin vertical lines at

the ends of the diagram indicate that the pattern is repeated indefinitely on either

side.

3. The two regions are separated by a domain wall with constant surface tension σ.

The metric on the domain wall can be written as

ds2 = −dτ 2 +R2(τ)dΩ2
2, (43)

where R(τ) denotes the location of the wall in both coordinate systems (41) and

(42). The evolution is expressed in terms of the proper time τ on the wall. In the

full problem, σ is given by the kinetic and potential energy of the Higgs field, and is

different for each Higgs configuration. Within our approximation, all energy stored

in the Higgs potential goes into the motion of the wall, leaving the AdS interior

empty.

The detailed calculation described in appendix A shows that the (naively positive) differ-

ence between the energy in the exterior (`−2
out) and the interior (−`−2

in ) of the bubble that

controls whether the bubble expands or contracts receives a gravitational correction −κ2,

so that the relevant parameter is the quantity:

∆ =
1

`2
in

+
1

`2
out

− κ2, κ ≡ 4πGσ. (44)

As discussed after eq. (90), the contribution ∼ κ2 can be interpreted, from a Newtonian

point of view, as the gravitational self-energy of the wall. The motion of the wall can be

described as the Newtonian motion of a point particle(
dR̃

dτ̃

)2

+ V (R̃) = E, (45)

in an effective ‘potential’ given by

V (R̃) = −
(

1 + εR̃3

R̃2

)2

− γ2

R̃
− δ2R̃2, (46)
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Figure 7: Penrose diagram describing an AdS bubble that expands in a dS

space. The black curve denotes the thin wall separating the two phases; the true space

is obtained by patching the region in white in the left panel (AdS interior of the bubble)

with the region in white in the right panel (Schwarzschild-dS exterior of the bubble). The

dashed lines denote the various horizons, while the thick blue line in the left panel denotes

the AdS singularity (‘crunch’).

where R̃ = ρR is a rescaled dimensionless coordinate that describes the position of the

wall as a function of a rescaled dimensionless proper time τ̃ = 2κτ/γ2. The various

constants are given by

δ2 =
4κ2

`2
out∆2

, ρ3 =
|∆|

2GM
, ε ≡ sign∆, γ =

2κ√
|∆|

, E = − κ2

G2M2ρ4
. (47)

The possible types of bubble evolution are discussed in detail in appendix A. The com-

plete analysis is performed for an asymptotically flat exterior spacetime, for which there

are fewer cases. The evolution within an asymptotically dS spacetime does not display

any novel characteristics, and is discussed more briefly. The study of the ‘potential’ shows

that there are two cases in which bubbles do not expand: either they start small enough,

or their expansion is hidden behind a black-hole horizon (this possibility corresponds to

∆ < 0). We will discuss in section 4.3 if any of these possibilities is realised in the simpler

case of Higgs bubbles in an external flat spacetime, after the end of inflation.

The standard evolution of sufficiently large bubbles is characterised by expansion, with

their wall crossing the outer (dS) horizon. A typical example is presented in the Penrose

diagram of fig. 7: the wall starts below the inner horizon and subsequently expands, pass-

ing through both horizons and eventually reaching a speed close to that of light. The

bubble grows in size and takes over part of the dS spacetime. The crucial question is
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whether the bubble can engulf the total exterior spacetime, thus ending inflation. It is

apparent from fig. 7 that this does not happen. Asymptotically the AdS bubble replaces

only part of the spacelike surface r = ∞, with the remaining dS space remaining unaf-

fected. In other words, expanding bubbles are inflated away. Inflation precisely has the

purpose of splitting the expanding universe into causally disjoint regions, and this limits

the effect of the bubble growth: bubbles expand, but the dS space between them also

grows. In the limit of infinite inflation, both the bubbles and the exterior de Sitter phase

acquire infinite extent.

We can estimate the asymptotic bubble size through the use of dS planar coordinates,

commonly employed in the study of inflation. The metric has the form

ds2 = −dt2p + e2Htp
(
dr2

p + r2
pdΩ2

2

)
. (48)

Assuming that the wall follows an almost null trajectory, we find that its location is given

by

rp = rp0 +
1

H

(
1− e−Htp

)
. (49)

Bubbles are created within the causally connected region, which extends up to 1/H at

tp = 0. This means that its typical radius rp0 is of order 1/H. Its subsequent growth

extends this radius by 1/H.12 It is reasonable then to expect that during inflation a typical

bubble can be created with a certain probability within a causally connected region and

then will roughly follow the general expansion of this region outside the horizon. It

cannot, however, engulf the whole spacetime. The picture is completely different for an

asymptotically flat exterior. As we shall see in the next section, in that case an expanding

bubble can take over the whole spacetime.

Another important question concerns the consequences for an outside observer of the

AdS ‘crunch’ in the bubble interior. We discuss this issue in detail in appendix A.5. From

the point of view of an observer deep inside the bubble, the coordinates in which the

bubble appears as homogenous are those of an expanding and subsequently contracting

open FRW universe with constant negative energy density. The bubble wall can be roughly

identified with the t̂ = 0 surface in this slicing (see fig. 19 in the appendix). After a finite

(and short) time t̂, of order the AdS radius, a singularity forms in the bubble interior.

However, this singularity never reaches the wall, as the latter expands with the speed of

light. On the other hand, from the point of view of an external observer the bubble just

expands forever (within either de Sitter or Minkowski spacetime).

12Note, however, that the physical bubble radius is obtained after multiplication by the divergent factor

exp(Htp).
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Figure 8: Left: An example of how the dynamical evolution during pre-heating can bring

back the Higgs field into the stable region before the instability takes over. The coloured

lines show the potential at successive intervals of time, and the black line shows the tra-

jectory of the Higgs field. Right: Maximal value of the Higgs field at the end of inflation

(hend) that is brought back by a non-minimal gravitational coupling ξH into the stable

region, h < hmax, shown as a function of the Hubble constant during inflation and for

different values of ξH .

4 Higgs evolution after inflation

In this section we study the evolution of the Higgs field after inflation, considering that

inflation ends with a matter-dominated phase, characterised by inflaton oscillations, fol-

lowed by the reheating process, which ignites the usual thermal phase characterised by a

gas of SM particles.

4.1 Higgs evolution during pre-heating

We start by considering the pre-heating phase, during which the energy density of the

universe is dominated by the inflaton oscillations around its minimum. The interest of

this phase lies in the case in which the Higgs potential has an extra mass term 1
2
m2h2

induced either by a non-minimal coupling to gravity (m2 = −12ξHH
2) or by a coupling to

the inflaton φ (m2 = λhφφ
2). In either case, the mass term rapidly shuts off after inflation.

However, we will show that the induced m2 can still have an important stabilising effect

during the pre-heating phase.

25



Let us suppose that, at the end of inflation, the universe enters a matter-dominated

phase, where the equation of state is that of a pressure-less gas, which is a good approx-

imation when the inflaton field is oscillating before reheating. In this case the effective

mass of the Higgs field is m2 = −3ξHH
2
m and the Hubble rate scales as Hm = H/a3/2

where we have set the value of the scale factor a at the end of inflation to unity.13

We consider a region in which, once inflation ends, the Higgs field has the value hend.

If the Higgs mass term during inflation (m2 = −12ξHH
2) is larger than (9/4)H2 (i.e.

if ξH < −3/16), then the Higgs field is anchored at the origin and hend = 0. We are

interested here in the opposite regime, when −3/16 < ξH < 0 and quantum fluctuations

of the Higgs are generated during inflation; in this case, hend is generally not zero. The

subsequent evolution of the Higgs field is governed by the equation

d2h

dt2
+ 3Hm(t)

dh

dt
+
∂V

∂h
= 0 ⇒ d2h

da2
+

5

2a

dh

da
+

a

H2

∂V

∂h
= 0. (50)

Keeping only the mass term in V and neglecting the quartic term, we find (a/H2)∂V/∂h =

−3ξHh/a
2 and then the solution of eq. (50) is

h(a) = hend a
− 3

4

(
1−
√

1+ 16
3
ξH

)
|ξH |→0
≈ hend a

2ξH , (51)

where we have neglected the solution with h ∝ a−3/2, which is rapidly damped with

respect to eq. (51), and where the last approximation is valid only for |ξH | � 3/16.

As the amplitude of the Higgs field and the contribution to the potential from the

m2 term are both decreasing in time, we need to investigate if the Higgs field has time

enough to roll down to the safe region h < hmax before the instability starts to become

more important than the fading m2 term, reverting the evolution of h. An example of the

Higgs field behaviour is shown in fig. 8a. The time at which the instability starts driving

the Higgs dynamics can be estimated by requiring that the quartic term in the scalar

potential (λh4/4 with λ = −b lnh2/h2
max

√
e) is comparable with the mass term (m2h2/2

with m2 = −3ξHH
2/a3) at hmax, which corresponds to

a3 = a3
max ≈ −

12ξHH
2

bh2
max

. (52)

Thereby, the instability is avoided if

hend<∼hmaxa
−2ξH
max . (53)

This estimate is confirmed by the result of a numerical computation illustrated in fig. 8b,

in which eq. (50) is solved using the full SM potential.

13We recall that the Ricci scalar is given by R = −6(ä/a+ ȧ2/a2) for a spatially flat universe. During

inflation a = exp(Ht) with H constant, hence R = −12H2. In a matter-dominated phase (a ∝ t2/3) we

have R = −3H2
m with Hm = ȧ/a ∝ a−3/2, while R = 0 in the radiation-dominated phase (a ∝ t1/2).
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The qualitative conclusion, whenever ξH 6= 0, is the following. Higgs field values that,

at the end of inflation, are even a factor of O(2) above the instability scale hmax are

brought back into the metastability region (h < hmax) and saved from collapse into the

AdS vacuum by the non-minimal gravitational coupling ξH during pre-heating dynamics.

The bound on the Hubble scale during inflation in eqs. (38) and (39) are correspondingly

weakened by an O(2) factor. On the other hand, in regions where the Higgs remains in

the instability region h(amax)>∼hmax during pre-heating, the field quickly falls down into

its deep minimum, in a time t ∼ 4π/hmax, unless a large enough temperature prevents

the collapse, as we discuss in the following section.

The dynamics discussed above is similar to the one in which the Higgs field is coupled

to the inflaton field by a coupling of the form λφhφ
2h2/2 that generates a contribution

m2 = λφhφ
2 to the Higgs mass. As discussed in section 3.1, if during inflation m > 3H/2

Higgs inflationary perturbations are suppressed and the Higgs is efficiently anchored at

h = 0. If instead m < 3H/2, Higgs fluctuations are generated as in eq. (40) and they may

pose a threat. After the end of inflation, when the inflaton field oscillates and its amplitude

is redshifted away as φ ∼ a−3/2, the effective mass squared of the Higgs, m2 = λhφφ
2,

decreases as a−3, exactly as the m2 induced by the ξH coupling (m2 = −3ξHH
2
m). One can

therefore deduce the dynamics upon identifying the two m2. Of course, if the coupling of

the inflaton field with the Higgs field is of a different nature, e.g. a non-renormalisable

coupling of the form φ4h2/M2
Pl, one needs to account for the different behaviour of the

Higgs effective mass.

4.2 Higgs evolution during reheating

In this section we study how the reheating process affects the bounds on the Hubble

constant H during inflation. Indeed, the dynamical evolution during the thermal phase

can bring back the Higgs field towards the EW vacuum, even in regions where h has

fluctuated beyond the instability barrier (h>∼hmax) at the end of inflation. As a result,

the bounds on H derived in section 3 are effectively relaxed.

At the end of inflation, the energy density of the universe is dominated by the coherent

oscillations of the inflaton field φ with energy density ρφ(t). The oscillations of φ, started

at time t ∼ 1/H, give a matter-dominated stage that gradually ends at t ∼ 1/Γφ, where

Γφ is the inflaton decay width. The decay of the inflaton field into light degrees of

freedom, which quickly thermalise via SM interactions giving rise to an energy density

ρR(t), initiates the radiation-dominated era of the universe. The process is described by

the equations 
dρφ
dt

= −3Hrρφ − Γφρφ ,

dρR
dt

= −4HrρR + Γφρφ ,

(54)
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Figure 9: Maximal value of the Higgs field at the end of inflation hend that is brought back

to the stable region, h < hmax, as a function of the Hubble constant during inflation, for

different values of Tmax and ξH . This result, presented only in terms of ratios, negligibly

depends on the absolute value of the instability scale hmax, which suffers from large uncer-

tainties mainly due to the top quark mass. In the red region the inflationary fluctuations

typically drive the Higgs to its negative-energy minimum, and therefore the corresponding

values of hend and H are a highly unlikely outcome of inflation. In the parameter region

below the dashed line, the field h rolls towards the SM vacuum, even in the absence of any

thermal effect.

where Hr = ȧ/a =
√

8π(ρφ + ρR)/(3M2
Pl) is the time-dependent Hubble constant during

reheating.

The solution for the time evolution of ρφ is

ρφ(t) =
ρφ(0)

a3(t)
e−Γφt, ρφ(0) =

3H2M2
Pl

8π
(55)

where the initial condition ρφ(0) is given by the total energy density at the end of inflation.

The second equation in the system (54) can be more conveniently written as

dR

da
=

γa3/2Φ√
Φ +R/a

, R ≡ ρRa
4 , Φ ≡ ρφa

3 , γ ≡
√
π2g∗
30

T 2
RH , (56)

where g∗ is the number of degrees of freedom in the thermal bath (g∗ = 106.75 in the SM)

and TRH is the temperature of the system once all the inflaton energy is converted into
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thermal energy at the decay time,

TRH =

(
45

4π3g∗

)1/4

M
1/2
Pl Γ

1/2
φ . (57)

Equation (56) can be approximately solved at the early stage of reheating (t � Γ−1
φ ),

by taking e−Γφt ≈ 1 in eq. (55) and neglecting the thermal-energy contribution to Hr

(R/a� Φ). Once we express ρR in terms of the effective temperature T ,

ρR(t) ≡ π2g∗
30

T 4(t), (58)

the solution of eq. (56), at early times, gives the evolution of the temperature T (valid

till the universe enters the radiation-dominated phase)

T ≈ k1 Tmax a
−3/8(1− a−5/2)1/4 , Tmax = k2

(
HMPlT

2
RH

g
1/2
∗

)1/4

, (59)

where k1 = 26/53−3/205−1/4 = 1.3 and k2 = (3/8)2/5(5/π3)1/8 = 0.54.

The temperature T of the SM-particle gas raises from 0 to the maximum value Tmax as

long as, soon after inflation, the scale factor of the universe a grows by an order-one factor

in a time t ∼ 1/H. After reaching Tmax, the temperature decreases as a−3/8, signalling

the continuous release of entropy from the decay of the inflaton field. When this energy

release ends, at time t ∼ 1/Γφ, the temperature is equal to TRH, which is called the

reheating temperature, and then radiation cools in the standard way, T ∝ 1/a, due to

space expansion. Note that the entire reheating process can be described by only two

parameters, which we choose to be H and TRH. The decay of the Higgs condensate at the

end of inflation has been discussed in ref. [26].

Let us now consider the evolution of the Higgs field throughout the thermal phase.

Because of thermal corrections, the Higgs potential receives an extra mass term 1
2
m2
Th

2,

where mT ∼ gT and g represents the relevant combination of coupling constants. This

expression for the thermal mass holds up to field values h<∼ 2πT . The thermal corrections

to the potential can be approximated as [27]

VT ≈
(

0.21− 0.0071 log10

T

GeV

)
T 2h

2

2
e
− h2

(2πT )2 , (60)

where we added an exponential cut-off at high values of h. VT helps in stabilising the

Higgs potential by shifting the instability to higher scales, in much the same way as the

mass term due to the coupling ξH does.

Figure 9 shows the maximum allowed value of hend in order for the Higgs not to fall

into its true vacuum at (or above) Planckian field values. A direct comparison with the

right panel of fig. 8 shows that, for high enough reheating temperatures, thermal effects

are indeed of extreme relevance.
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Figure 10: Minimal reheating temperature TRH needed to prevent the fall of the Higgs down

into its deep true vacuum, assuming two different values for the instability scale hmax of

the Higgs potential.

It is not difficult to understand the behaviour of the maximum allowed value of hend

as a function of the Hubble rate. Let us consider for simplicity the case ξH = 0 (left panel

in fig. 9). From eq. (50) one can see that in a time scale of the order of the Hubble time,

when the scale factor changes by order unity and the maximum temperature has been

reached, the Higgs field changes by an amount (we neglect factors of order unity)

h− hend ' −
1

H2
V ′(hend) ' −m

2
T (Tmax)hend

H2
− λh3

end

H2
, (61)

where we have approximated the zero temperature potential as λh4/4 and one has to re-

member we are considering the region where λ < 0. Therefore, we obtain the approximate

expression, valid soon after inflation,

h ' hend

(
1− T 2

max

H2
− λh

2
end

H2

)
. (62)

For h to roll towards the origin, a necessary condition is that the right-hand side of eq. (62)

is smaller than one, which implies hend <∼Tmax/|λ|1/2. This explains the approximate

flatness of the curves in the right panel of fig. 9 for small H. For H � Tmax, the

approximate scaling of the bound on hend as H−1/3T 4/3
max can be understood in the following

way. Being the Hubble rate large, the term (a/H2)∂V/∂h in eq. (50) can be neglected

up to the moment when the second time derivative term or the first time derivative term
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become of the order of the potential term. This means that the Higgs field does not move

much from its initial condition hend up to the moment when

5

2a

dh

da
∼ a

H2
m2
T (T )h =

a

H2
T 2

maxa
−3/4h. (63)

This implies that the Higgs field starts moving away from hend when

a ∼ a∗ =

(
45H2

8T 2
max

)4/9

. (64)

Imposing that at this value of a the finite temperature term in the potential dominates

over the negative quartic term gives

hend <∼
(

8

45

)1/6 H−1/3 T 4/3
max√

|λ|
, (65)

which reproduces the right scaling shown in fig. 9.

In fig. 9 we let hend and H vary independently. However, the inflationary dynamics

correlates the two variables, assigning a certain probability to hend for any given H.

Although we have not used any relation between the two variables, in fig. 9 we have

indicated in red the region in which the field h has overwhelming probability to slide

towards large values and thus the corresponding parameters essentially cannot be the

outcome of inflation.

Figure 10 shows the minimal value of TRH for which the thermal corrections prevent

the fall of h down to its deep minimum. In other words, it shows how the limit on the

Hubble constant H corresponding to the orange area of fig. 6 can be relaxed, depending on

the reheating temperature TRH. For sufficiently large TRH, regions in which the Higgs field

fluctuates around its instability scale hmax can be recovered by post-inflationary thermal

effects. On the other hand, the thermal phase cannot save regions in which the Higgs fell

down into its deep negative-energy minimum during inflation. In the next section we will

show that most of these regions eventually expand and hence a viable cosmology require

that no such regions are produced during inflation. This excludes the red area in fig. 6.

4.3 Bubble evolution in Minkowski spacetime

The discussion of bubble evolution in an external Minkowski spacetime is analogous to

the de Sitter discussion of section 3.3. A first difference is that the effective potential of

eq. (46), which dictates the evolution of the bubble, is simplified when we set `out = ∞
(i.e. δ = 0). A second key difference is that the external Minkowski space has no causal

horizons: if, after inflation ends, bubbles expand at the speed of light, they engulf the

whole space.
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Figure 11: Penrose diagram describing an AdS bubble that expands in exter-

nal Minkowski. Left: The wall trajectory corresponding to line C of fig. 15, in AdS

space. Right: The wall trajectory corresponding to line C of fig. 15, in the Schwarzschild

geometry.

An important task is to determine whether Higgs bubbles expand or shrink. The

complete analysis is presented in appendix A, where all the possible wall trajectories are

determined. In summary, there are two scenarios in which bubbles do not take over the

whole space: either they start small enough so that they shrink, or they expand but

remain hidden behind a black-hole horizon (a possibility that corresponds to ∆ < 0).

In the following we examine if either of these possibilities is realised for Higgs bubbles,

making them benign.

We first consider bubbles with positive

∆ ≡ 1/`2
in − (4πGσ)2 > 0, (66)

which are bigger than their Schwarzschild radius and thereby can expand in the naive

Newtonian way. This is the case depicted in the Penrose diagram in fig. 11, to be compared

with fig. 7 for external dS. The black continuous curve denotes the trajectory of the wall:

the bubble starts small and expands indefinitely within the asymptotically flat spacetime.

The total space is constructed by patching the part of the diagram on the right of the

wall with the part of the left diagram on the left of the wall. The shaded areas correspond

to the parts that must be eliminated in order to join the remaining parts along the wall

trajectory. From the point of view of an external observer, the bubble asymptotically

expands at the speed of light and asymptotically reaches null infinity, filling all space.
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Bubbles may also shrink because of their surface tension, if they are small enough

(R < Rcr), and start with a small wall velocity. The critical radius, separating the two

types of evolution, can be computed from the potential of eq. (46), but the resulting

expression is not very illuminating. We present the complete discussion in appendix

A.6. The result can be simplified by assuming Ṙ = 0, and the Newtonian limit κ � 1

(such that ∆ > 0). In this case, the critical radius is obtained by extremising the sum

of the surface and volume energy (4πR2σ − 4πR3Vin/3) with respect to R, thus finding

Rcr = 2σ/Vin and a bubble mass M = 16πσ3/3V 2
in. The exact result, valid even beyond

the Newtonian approximation, is shown in fig. 12. In the ultra-relativistic limit the critical

radius becomes Rcr = 3GM , slightly larger than the Schwarzschild radius 2GM .

Figure 12 also shows the estimated M(R) corresponding to Higgs bubbles for different

values of hin, the unknown Higgs value at its deep minimum. We use Vin ∼ |λ|h4
in and

estimate the surface tension from the Newtonian expression

σ ≈
∫
dr
[
1

2

(
∂h

∂r

)2

+ V (h)− V (hin)
]
∼ h2

in

∆r
+ ∆r|λ|h4

in
>∼
√
|λ|h3

in (67)

minimised for a bubble thickness ∆r ∼ 1/(hin

√
|λ|).

The estimate for σ is inserted in the full expression for M , eq. (90). The meaning of

negative values ofM is discussed in the appendix, in sections A.4 and A.6: they correspond

to bubbles for which the negative volume contribution to the total energy budget is

dominant. For our present purposes, the conclusion is that inflationary fluctuations create

a number of bubbles with a variety of values of R and σ, including bubbles with R >

Rcr, which expand. Bubbles produced by inflationary fluctuations tend to appear with

characteristic size R ∼ 1/H = `out and with negligible Ṙ. If the Higgs value is near the

deep minimum of the potential, such bubbles are expected to have small or negative mass

(because of the negative volume contribution to the energy) and, therefore, expand.

Bubbles with sufficiently large surface tension σ have ∆ < 0 and their expansion is

energetically disfavoured from a Newtonian point of view. However, there exist expanding

solutions for such bubbles within general relativity. They are discussed in appendix A

(see fig. 18). The crucial characteristic is that the expanding region is not accessible to an

observer in the asymptotically flat space. In other words, an observer outside the bubble

only sees a black-hole horizon, that protects him from its expansion. While such bubbles

would be benign, ∆ < 0 represents an extreme case: for the quartic Higgs potential, the

surface tension gives a Planck-suppressed correction, such that

∆ ∼ |λ|
M2

Pl

[
h4

in −
h6

in

M2
Pl

]
(68)

is negative only when the deep minimum of the SM potential is super-Planckian, hin>∼MPl.

It is then impossible to make firm predictions; strong gravitational effects may induce

various dangerous effects. As long as the deep minimum is in the calculable sub-Planckian
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region (hin <∼MPl), bubbles have super-Planckian tension only for extreme Higgs field

configurations, e.g. if the variation of h between the two minima happens within a sub-

Planckian length. Inflationary fluctuations tend to create bubbles with bigger thickness

and smaller surface tension. Furthermore, even if the condition ∆ < 0 were initially

satisfied, the bubble would evolve towards a smoother configuration with smaller surface

tension by reconfiguring the Higgs field profile.

Figure 12: The boundary in the (R,M)

plane that separates expanding bubbles from

shrinking bubbles. The curves are the esti-

mated masses of Higgs bubbles, as functions

of their radius, for different values of hin, the

unknown Higgs field value at the deep mini-

mum.

Our study has been carried out within

the thin-wall limit, because this is the only

setup for which an analytical treatment is

possible. As we pointed out above, the re-

alistic situation is more likely to involve

configurations with a smooth transition re-

gion from the interior AdS space to the

false-vacuum exterior. For these, the fun-

damental dynamics is mainly determined

through the interplay between the nega-

tive energy density in the interior and the

positive contribution from the transition

region. We expect that our analysis cap-

tures the essential features of the evolution

of such configurations as well.

The important conclusion that we draw

from our study is the following. No

robust general-relativistic effect prevents

large-field Higgs bubbles from expanding

and engulfing all Minkowski space. As a

result, a viable cosmology requires that no

expanding bubbles are present in our past

light-cone. In other words, the condition

p(h→∞) < e−3N for N ≈ 60 e-folds must hold and the red region in fig. 6 is excluded.

4.4 The Higgs potential for ξH 6= 0 at zero temperature

We conclude our study of the Higgs evolution after inflation with a remark concerning the

non-minimal gravitational coupling ξH . As previously discussed, a coupling ξH helps to

stabilise the Higgs field during inflation. However, long after inflation, at zero temperature

and H ≈ 0, it could have an opposite effect in the classical potential, in presence of a Higgs

instability generated by SM interactions (λeff < 0). In this setup an additional source of

instability is generated by ξH at Planckian values of the Higgs field, with no effect on our

discussion of the Higgs dynamics during the inflationary and post-inflationary phase.
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Figure 13: The SM Higgs potential VE ≡ λEeff(hE)h4
E/4 in the presence of a negative ξH

coupling, written in the Einstein frame in terms of the canonical Higgs field hE.

In order to investigate the phenomenon, we focus on the real component h of the Higgs

doublet ΦH = (0, h/
√

2) and perform a Weyl rescaling to the Einstein frame gEµν = gµν×f
with f = 1+ξHh

2/M̄2
Pl. Then, the Einstein-Hilbert term becomes canonical and the action

is

LE =
√

det gE

[
− M̄2

Pl

2
RE + Z

(∂µh)2

2
− VE(h)

]
+ · · · (69)

Z =
1

f
+ M̄2

Pl

3f ′2

2f 2
, VE(h) =

V (h)

f 2
. (70)

We are studying the theory long after inflation, and therefore V (h) = λeff(h)h4/4.14 It is

convenient to define a canonically normalised Einstein-frame Higgs field hE through the

equation dhE/dh =
√
Z, where Z is given in eq. (70). The field hE is such that hE ' h

for h� M̄Pl and hE →∞ for h→ M̄Pl/
√
−ξH (hence f → 0).

The Einstein-frame scalar potential becomes

VE(hE) =
λeff(h)h4

4(1 + ξHh2/M̄2
Pl)

2

∣∣∣∣∣
h=h(hE)

. (71)

14During inflation V contains an extra constant term Vφ, which dominates the energy density, and

H2 = Vφ/(3M̄
2
Pl) is the Hubble constant during inflation. By expanding VE at leading order in h2/M̄2

Pl

for Vφ 6= 0, we recover the Higgs mass term considered in the previous sections, m2 = −4ξHVφ/M̄
2
Pl =

−12ξHH
2. The higher order terms were not relevant for our previous discussion.
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In the limit of large hE (which corresponds to h → M̄Pl/
√
−ξH), the denominator in

eq. (71) nearly vanishes, while λeff is negative. In that regime of field configurations, we

find h(hE)− M̄Pl/
√
−ξH ∝ M̄Pl exp(−

√
2/3hE/M̄Pl) and the potential becomes

VE(hE)

M̄4
Pl

∝ λeff exp

√8

3

hE
M̄Pl

 , for hE →∞ . (72)

Here λeff is evaluated at h = M̄Pl/
√
−ξH) and is negative. The exponential behaviour

in eq. (72) contributes to amplify the source of instability already present. The effect

is shown in fig. 13, where we plot the effective coupling λEeff , defined in analogy with

previous effective quartic couplings by rewriting the potential in the Einstein frame as

VE(hE) ≡ λEeff(hE)h4
E/4. Negative values of ξH appear to trigger a deep instability at

Planckian field values h ∼ M̄Pl/
√
−ξH . However, for nonzero ξH , the ultraviolet cutoff

of the SM is no longer M̄Pl, but M̄Pl/|ξH | [28]. Hence, the instability just described

takes place above that cutoff, where one is losing control of the theory [29]. It has been

pointed out that small primordial black holes can seed Higgs-vacuum decay and enhance

its rate [30]. However, this process crucially depends on the number density of black holes

at a given epoch.

5 The quantum gravity prediction for the Higgs mass

In this section we explore how a speculative conjecture that has been put forward in

the context of quantum mechanical completions of gravity can lead to a sharp correlated

prediction for the Higgs and top-quark masses. The intriguing result is that this prediction

agrees quite well with the measured values of these masses. The reasoning is essentially

based on two points.

1. The empirical observation that we live in an accelerating universe.

2. The theoretical conjecture that quantum gravity is ill-defined in de Sitter space [31,

32].

The difficulties with dS quantum gravity have been argued from various perspectives [31,

32]. We summarise here in a very schematic way some of the arguments against a stable

dS space, reviewed in [33], extending them in light of some more recent developments.

There is no positive conserved energy in dS (and, as a consequence, there cannot be unbro-

ken supersymmetry). There is no classical compactification of ten- or eleven-dimensional

supergravity to dS space, and stable dS space cannot be obtained from any string or

M-theory. Even in the general setting of quantum gravity, beyond the particular UV

completion offered by string theory, other problems arise. It has been suggested that the

quantum Hilbert space in dS is of finite dimension, limiting the variations of complex
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constructions. Given that the Gibbons-Hawking temperature sets a minimum temper-

ature, the finite dimensionality of the Hilbert space sets a maximum time scale, the

so-called recurrence time [32]. In particular, this leads to the problem of the so-called

Boltzmann brains [34], and it has been suggested that its resolution calls for an unstable

universe [34]. More generally, a rigorous definition of the Hilbert space in dS seems to be

problematic [31]. In quantum gravity, it is difficult to define precisely local observables

and one can rely only on asymptotic quantities, such as the S-matrix in Minkowski space

and the boundary correlators in AdS. However, in dS, where asymptotic states fall behind

the horizon, no such precisely defined observables seem to be present.

In addition to these problems that have been known for some time, it has been found

in [35–37] that there is a sharp universal bound on how much reheating volume slow-roll

inflation is capable to create without being eternal. This is given by eSdS/2, where SdS

is the entropy of the would be de Sitter space with Hubble rate evaluated at the time

of reheating. Larger overall expansion is possible only by making space infinite. This

generalises at the quantum level the bound on the duration of inflation found in [38],

and determines the universality of such a bound under the number of fields involved,

higher derivative corrections, number of space time dimensions and slow roll parameters.

The same phenomenon, i.e. not being able to produce arbitrarily large finite volumes, is

shared by false vacuum inflation. These results seem to suggest that there are bounds on

the kind of global spacetime structures that local quantum field theory can generate. This

is related to, and somewhat supporting, the argument against de Sitter space in nature

that we follow here.

Though none of these arguments raise to the level of a proof of the inconsistency of dS

space, they clearly give an idea of the conceptual difficulties that arise when considering

quantum mechanics in dS space.

It could well be that the problems of asymptotic dS space are circumvented by Planck-

ian dynamics, which can for example open channels for vacuum tunnelling to a ‘landscape’

of other minima with zero or negative vacuum energy. This is certainly a possibility.

However, it is interesting to note that, even without any special hypothesis about the

gravitational sector, the SM Higgs offers an easy way out to the problem. A solution is

automatically found if the present dS space is only metastable.

As soon as the decay rate per unit space time volume Γ of the false vacuum is non

zero, the asymptotic space is not dS. True vacuum bubbles are nucleated and expand at

the speed of light. There are two critical values of the decay rate [39], both valued around

H4
Λ, with HΛ being the Hubble rate of the would-be de Sitter region.

If Γ is larger than the largest critical point, bubbles percolate, fill the whole space,

inflation ends globally, and the asymptotic spacetime is the one of the true vacuum (if

this is AdS, the instability grows and leads to a singularity in about one Hubble time).

The value of this critical point is Γ2/H
4
Λ = 9/4π ' 0.71 [33].
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The precise value of the second critical point is unknown, but is bounded to be in the

range [39] 1.1 × 10−6 ≤ Γ1/H
4
Λ ≤ 0.24. If the decay rate lies between these two critical

points, then bubbles percolate and long chains of bubbles form, connecting arbitrarily

distant point in the otherwise dS space. Finally, when the decay rate is even slower than

the second critical point, then bubbles do not percolate, and the asymptotic spacetime is

the one called ‘false vacuum eternal inflation’. In this phase, there is an infinite amount of

space that keeps inflating, but each single point decays at some time into the true vacuum

through the nucleation of a bubble.15

On the other hand, there is no question that AdS and Minkowski are well-defined

spaces from the point of view of quantum gravity, although we have a non-perturbative

formulation of quantum gravity only for AdS. So, it is possible that quantum gravity

allows for an eternally inflating false-vacuum space-time, but not for dS space. We will

show that the opportunity of circumventing dS space through the Higgs field is given to

nature only for a narrow range of Higgs boson masses. Interestingly, it seems that nature

did not miss the opportunity because the measured Higgs boson mass lies exactly within

this range.

Let us for a moment accept the quantum-gravity arguments against stable dS space,

and let us assume that our universe, which we observe to be today in a dS phase, escapes

the problems through a future decay of the Higgs vacuum. This implies the bound on the

Higgs boson mass [1]

Mh

GeV
< 129.6 + 2.0

(
Mt

GeV
− 173.34

)
− 0.5

(
α3(MZ)− 0.1184

0.0007

)
± 0.3 . (73)

The vacuum decay rate induced by the SM Higgs instability, exponentially suppressed

by the action of its bounce solution, S ≈ 8π2/(3|λ|) ∼ 103, is always faster, and typically

much faster, than what is needed to avoid the dS problems. Indeed, for comparison, the

de Sitter entropy is SdS ∼ πM2
Pl/H

2
Λ ∼ 10120. In general, the action of any Coleman-de

Luccia instanton out of a false vacuum with positive energy density is never larger than

SdS, no matter how high we make the false vacuum barrier (see the discussion of [33]

for a review).16 Therefore, when the Coleman-de Luccia instanton is present and can

be reliably computed, the lifetime is bound by the Poincaré recurrence time of de Sitter

space, of order eSdS/H, up to logarithmic factors. It is expected that this lower bound on

the decay rate is a property shared by all theories with a de Sitter false vacuum within

field theory and perturbative gravity.

15Bubbles continuously form and collide an infinite number of times among each other but they do so in

relatively smaller and smaller regions: there are points in the inflationary space for which the probability

that they are connected by a stream of bubbles is zero. When bubbles collide in our past light cone, a

very sharply defined disk shape is impressed in the CMB [40]. The optimal analysis to search for such a

signal in the WMAP data has been recently performed, with no evidence found [41].
16One can check this by taking the limit in which the wall energy density goes to infinity in eq. (3.16)

of the paper by Coleman and de Luccia [7].
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There are also lower bounds on the Higgs mass. A first bound is obtained by requir-

ing that the tunnelling rate away from the EW breaking state with small and positive

cosmological constant is not faster than the age of the universe. In the current universe,

the volume of our past light cone at the current time TU is

Vol4(TU) = 0.08H4
Λ , (74)

where H2
Λ = Λ4/3M̄2

Pl is the Hubble rate produced by the observed vacuum energy Λ4.

Imposing that the probability p = e−Vol4(TU ) Γ that our universe experienced vacuum decay

in the past is small enough, implies an upper bound on the vacuum decay density rate Γ

Γ <
1

Vol4(TU)
log

(
1

p

)
(75)

and, within the SM, a lower bound on the Higgs mass [1]

Mh

GeV
> 111 + 2.8

(
Mt

GeV
− 173.34

)
− 0.9

(
αs(MZ)− 0.1184

0.0007

)
± 1. (76)

A stronger lower bound is obtained from the requirement that the universe underwent

a hot phase. There are good reasons to believe that the universe has been very hot

at an early epoch. Indeed, processes such as inflation and leptogenesis suggest that

the primordial universe reached high temperatures. We have seen in section 4.2 how

a large reheating temperature helps in forcing the Higgs to its weak scale meta-stable

minimum. However, such high temperatures could have prematurely destabilised the

Higgs metastable vacuum. The requirement that this did not happen implies

Mh

GeV
> 124.2− 190

log2
10

TRH

GeV

+ 2.0
(
Mt

GeV
− 173.34

)
− 0.6

(
αs(MZ)− 0.1184

0.0007

)
± 1. (77)

Equations (73) and (77) define a fairly narrow range of possible Higgs masses (see fig. 14).

Loosely speaking, one might claim that quantum-gravity favours

122 GeV < Mh < 129.4 GeV for Mt = 173.34 GeV. (78)

Given that the Higgs mass is now precisely measured, one can better use Mh as input and

predict the top mass in the range

171 GeV < Mt < 175 GeV. (79)

The coincidence that the Higgs and top masses are within the predicted range can be

viewed as an indirect indication that nature took the opportunity offered by the Higgs to

avoid the problem of an asymptotic dS space.
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Figure 14: The allowed meta-stability window of the Higgs mass. The ellipse indicates the

measured values of Mh and Mt. The orange region is excluded by assuming that “stable

dS” is unacceptable. The red region is excluded by vacuum decay at zero temperature.

The pale-red region is excluded by the requirement that the universe must have been hot

in the past (the dashed red curves show boundaries for different values of the reheating

temperature). The bottom panel shows the same result in the full range of a-priori possible

Higgs masses, in order to emphasise the smallness of the surviving meta-stability region.

6 Conclusions

Assuming that the SM holds up to large energies, we studied under which conditions the

cosmological evolution does not disrupt the electroweak vacuum, in spite of the presence

of an instability of the SM effective Higgs potential V (h) at field values h > hmax.

As a preliminary step, in section 2 we clarified the gauge-dependence of the effective

potential. The Nielsen identities show that the gauge-dependence of the effective action

corresponds to different ways of parameterising the same physics in field space: the phys-

ical content of the effective action is gauge-independent. We have shown how this implies

that the classical equation of motion (as well as the related Langevin and Fokker-Planck

equations used later) are gauge-independent, because the gauge-dependence of the effec-

tive potential is compensated by the gauge-dependence of the kinetic term. Furthermore,

we showed how, in the basis in which the kinetic term is canonical, the full effective po-

tential becomes gauge-independent in the limit in which only the leading-log corrections
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are retained (which, for our purposes, is a very good approximation, see fig. 1). For the

present best-fit values of the SM parameters one has hmax ≈ 5× 1010 GeV, but hmax can

vary by orders of magnitude if the top mass Mt is varied within its uncertainty band.

Next, in section 3 we studied Higgs fluctuations during inflation. In our study, we

also took into account the effect of a Higgs mass m2 induced, during inflation, either by

a mixed quartic coupling between the Higgs and the inflaton, or by a non-minimal Higgs

coupling to gravity ξH . Not being radiatively stable, such a coupling is expected to be

generally present and leads to m2 = −12ξHH
2, where H is the Hubble constant during

inflation, given by H ≈ 8×1013 GeV
√
r/0.1. Present cosmological data constrain r <∼ 0.1,

but future measurements will have greater sensitivity.

If m2 < 9H2/4 the Higgs undergoes inflationary quantum fluctuations, which we com-

puted via a Langevin equation that bypasses the need of imposing appropriate boundary

conditions encountered in the Fokker-Planck equation used in previous works. We find

that the parameter space in the plane H/hmax vs ξH splits into 3 regions (see fig. 6):

• ‘green’ region, where the Higgs remains below its instability scale at the end of infla-

tion, and thus inflationary fluctuations do not destabilise the electroweak vacuum.

• ‘orange’ region, where the Higgs can probe field values above the instability scale

(|h| > hmax), but quantum fluctuations dominate over classical evolution and pre-

vent the Higgs from falling into its true AdS minimum; the ultimate fate of the

Higgs is determined by post-inflationary dynamics.

• ‘red’ region, where the Higgs fluctuates above the instability scale and falls down

into its true minimum, presumably ending inflation in that patch of space.

In section 4 we followed the evolution of the Higgs field through the reheating process, in

order to assess the viability of parameters corresponding to the ‘orange’ region. Thermal

effects can rescue the Higgs field, letting it slide towards the origin of the SM potential,

if the reheating temperature after inflation TRH is sufficiently large. We derived upper

bounds on H/hmax, for given TRH, as shown in fig. 10. The result is that thermal effects

can easily make the ‘orange’ region cosmologically acceptable.

On the contrary, we found that the ‘red’ region is problematic. By approximating

the large-field Higgs patches as spherical bubbles with small thickness, we could perform

a general relativistic computation in order to determine whether such bubbles shrink or

expand. The computation addresses several relevant counter-intuitive phenomena. While

we identified mechanisms that can make some of the bubbles innocuous (small bubbles

with low wall velocity shrink, bubbles with large tension expand hidden behind a black-

hole horizon), we find that inflation produces Higgs ‘bubbles’ that expand, at least as long

as they are in the computable sub-Planckian regime. During inflation these bubbles are

not lethal, as they remain behind a de Sitter horizon and are diluted by space expansion.
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However, after inflation they keep on growing at the speed of light, eventually swallowing

all space. Therefore, we must require that inflationary fluctuations do not produce any

of these regions in our past light-cone.

This leads us to our final result: the ‘red’ region of fig. 6 is excluded. If |ξH | < 0.01 one

needs a Hubble constant smaller than 0.045 hmax. This constraint gets weaker (stronger)

for negative (positive) ξH : e.g. H < 104 hmax for ξH ≈ −0.03. A small negative ξH
however leads to a new, super-Planckian instability of the SM potential in the Einstein

frame, see fig. 13. In a similar way, a direct coupling of the inflaton to the Higgs could also

relax the limits on H but, contrary to the case of ξH , it does not lead to any instabilities

at large field values.

Finally, in section 5 we explore a new speculative idea. Assuming that the present

acceleration of the universe is due to a small cosmological constant, and accepting the

conjecture that quantum gravity is ill-defined in a de Sitter space, we argue that vacuum

decay is a necessary way out for the universe. We show that vacuum decay triggered by

the Higgs instability is fast enough to resolve this conceptual problem.

Basically the SM phase diagram in the (Mt,Mh) plane is reinterpreted: the instability

region remains ‘bad’, the stability region becomes ‘bad’, and the only ‘good’ region is the

narrow meta-stability strip of parameter space. As discussed in section 4.2 a large enough

reheating temperature may play an important role in the universe, and the requirement

that thermal effects do not induce an excessively fast vacuum decay provides a further

restriction in the Higgs and top masses, as shown in fig. 14. One could view this restriction

as a remarkably precise post-diction for the Higgs or top masses.
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A Evolution of bubbles

In this appendix we study the evolution of a region of true vacuum with negative vacuum

energy density, which lies within the false-vacuum asymptotically flat or de Sitter space. The

basic question is whether this region, which we call a bubble (assuming spherical symmetry),

expands or contracts. For an outside observer, the presence of the bubble has a gravitational

effect equivalent to the presence of a central mass. As a result, the exterior metric is of the

Schwarzschild or Schwarzschild-de Sitter (SdS) type. We study an idealised configuration with

constant vacuum energy density in the interior and exterior of the bubble, as well as constant

surface tension. The study of a realistic bubble, corresponding to a space-time dependent Higgs

configuration, is not possible analytically. However, we believe that our treatment captures the

main aspects of the problem, determined essentially by the difference in the local energy density

of the Higgs field on either side of the bubble wall.

We employ the thin-wall approximation and parameterise the wall and the inner and outer

space as described in section 3.3. The interior of the bubble is assumed to be a part of anti-de

Sitter spacetime, described by the metric (41). The exterior of the bubble is described by the

metric (42). The case Vout 6= 0 corresponds to the SdS spacetime, while the case Vout = 0 to an

exterior Schwarzschild metric. The metric on the wall is given by eq. (43).

A.1 Matching the geometries

The metric must be continuous over the whole space. This means that

fin(R) η̇ = ε1
(
Ṙ2 + fin(R)

)1/2
, (80)

fout(R) ṫ = ε2
(
Ṙ2 + fout(R)

)1/2
, (81)

where ε1 = ±1, ε2 = ±1 are possible sign choices and a dot denotes a derivative with respect to

τ . Since fin ≥ 1, the value of ε1 determines the relative flow of the two timelike coordinates η and

τ . It is natural to make the choice ε1 = 1, which is also the only consistent choice (see below).

We consider only this value in the following. The relation between t and τ is more complicated

because fout can be negative. We follow the convention of [42], according to which the flow of

proper time is such that future-directed world lines correspond to a growing Kruskal-Szekeres

coordinate V (so that V̇ > 0).

The matching of the two regions can be done following [42]. The four-velocity of a point

on the wall is Uµin = (η̇, Ṙ,~0) and Uµout = (ṫ, Ṙ,~0) in each of the frames. A spacelike vector

ξµ perpendicular to the wall must be orthogonal to Uµ. In order to determine it uniquely, we

have to specify whether it points towards the interior or the exterior. For spaces with horizons,

such as the exterior space, we adopt the convention of [42]. We assume that ξµ points towards

increasing values of the Kruskal-Szekeres coordinate U . We also assume that the exterior lies

on the ‘right’ of the wall in the Penrose diagram. For the AdS space in the interior, we assume

that ξµ points towards increasing values of the global coordinate r. With these conventions ξµ

43



points from the interior towards the exterior. It is given by

ξµin =

(
Ṙ

fin
, fin η̇,~0

)
=

(
Ṙ

fin
, (fin + Ṙ2)1/2,~0

)
(82)

ξµout =

(
Ṙ

fout
, fout ṫ,~0

)
=

(
Ṙ

fout
, ε2(fout + Ṙ2)1/2,~0

)
, (83)

in each of the frames. It has been normalized to −1.

The junction conditions connect the discontinuity in the extrinsic curvature to the surface

tension:

(Kout)
i
j − (Kin)ij = −4πσGδij . (84)

We match the θθ component of the extrinsic curvature (the other components give equivalent

relations), which is Kθθ = ξµ∂µr
2/2. Evaluated on either side of the wall, it is given by

(Kin)θθ = (fin + Ṙ2)1/2R ≡ βinR, (85)

(Kout)θθ = ε2(fout + Ṙ2)1/2R ≡ βoutR. (86)

Thereby, the θθ matching condition is

ε2(fout + Ṙ2)1/2 − (fin + Ṙ2)1/2 = βout − βin = −4πGσR. (87)

A.2 Bubbles in asymptotically flat spacetime

We consider first the case Vout = 0, which corresponds to an exterior Schwarzschild metric. We

shall discuss later the case Vout 6= 0, corresponding to a SdS spacetime.

The square of eq. (87) can be put in the form:

2GM =

(
κ2 − 1

`2in

)
R3 + 2ε2κR

2
(

1− 2GM

R
+ Ṙ2

)1/2

. (88)

For large R and non-relativistic wall velocity, the last parenthesis becomes equal to 1. The

resulting expression indicates that the mass M of a large-radius bubble is dominated by a

volume contribution proportional to κ2 − 1/`2in. The total volume effect can be negative or

positive, depending on the value of

ε ≡ sign

(
1

`2in
− κ2

)
. (89)

As a result, it is possible for the total mass M to become negative.

Solving eq. (87) for M one finds a result that, for ε2 = 1, has a simple Newtonian interpre-

tation:

2GM = −
(

1

`2in
+ κ2

)
R3 + 2κR2

(
1 +

R2

`2in
+ Ṙ2

)1/2

, (90)

with κ ≡ 4πGσ. For small R, the mass M attributed to the bubble of AdS by an outside observer

contains a volume term proportional to −1/`2in−κ2. The contribution −1/`2in corresponds to the
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vacuum energy density, while −κ2 reproduces correctly the gravitational self-energy of the wall.

The second term in eq. (90) can be expanded for small R and Ṙ. One recovers the surface energy

of the bubble, with nonrelativistic correction, and the surface-volume binding energy [39]. The

leading term for small R is the positive surface energy ∼ κR2, which indicates that small bubbles

tend to collapse in order to minimise their energy. The case ε2 = −1 does not lead to solutions

with a simple Newtonian interpretation, even though it contains acceptable configurations for

the global geometry.

By squaring eq. (87) a second time, we can express the ‘kinetic energy’ Ṙ2 in terms of a

conserved ‘energy’ E and an effective ‘potential energy’. We express the result as the equation

for the one-dimensional motion of a particle in a ‘potential’ V(
dR̃

dτ̃

)2

+ V (R̃) = E, (91)

where

V (R̃) = −
(
εm + εR̃3

R̃2

)2

− εm
γ2

R̃
, E = − κ2

G2M2ρ4
(92)

and

εm = sign(M). (93)

The dimensionless ‘coordinate’ variable R̃ and the ‘time’ variable τ̃ are defined as

R̃ = ρR, τ̃ =
2κ

γ2
τ. (94)

The parameter ρ, defined as

ρ3 =
1

2G|M |

∣∣∣∣∣ 1

`2in
− κ2

∣∣∣∣∣ , (95)

sets a characteristic inverse length-scale, while γ parameterises the surface-energy term in V :

γ =
2κ∣∣∣`−2

in − κ2
∣∣∣1/2 , i.e. κ2 =

1

`2in

γ2

γ2 + 4ε
. (96)

The form of the solutions of eq. (91) can be revealed more easily through the following

observations:

• The sign ε2 disappeared when performing the second squaring, so that eq. (91) describes

the solutions of eq. (87) with both values of ε2. We can rewrite eq. (87) in terms of the

new parameters as

βin = βout + 4πGσR =
G|M |ρ2

κ

1

R̃2

(
εm + εR̃3 +

γ2

2
R̃3

)
, (97)

where we have used eq. (90). For positive-mass bubbles (εm = 1) we have βin > 0. This is

obvious for ε = 1. It also holds for ε = −1 , because γ2 > 4 in this case. We conclude that

the only consistent value for ε1 for positive-mass bubbles is ε1 = 1 (the value we assumed).
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• We can also write

βout =
G|M |ρ2

κ

1

R̃2

(
εm + εR̃3

)
, (98)

from which it is apparent that, for positive-mass bubbles, βout is positive and ε2 = 1 for

ε = 1, while βout changes sign at R̃ = 1 for ε = −1.

• For negative-mass bubbles (M < 0 or εm = −1) the variable t is always timelike. The

value of ε2 determines the relative flow of t and τ . It is natural to make the choice ε2 = 1

in this case. The possibility ε2 = −1 does not lead to a physical solution, as we discuss in

subsection A.4.

• It is apparent from eqs. (92), (95) that, for fixed `in and κ, the total energy E is a function

of M . As a result, the nature of the various solutions of eq. (91) is directly related to the

mass of the bubble.

• The ‘potential’ is maximal at R̃ = R̃max, given by

2R̃3
max = εm

(
ε+

γ2

2

)
+

√(
ε+

γ2

2

)2

+ 8. (99)

The value of the ‘potential’ at its maximum is

V (R̃max) = −3
R̃6

max − 1

R̃4
max

. (100)

For positive-mass bubbles (εm = 1) we have R̃max > 1.

• The Schwarzschild radius of a bubble with positive mass M is rH = 2GM , which, in terms

of the variable R̃, becomes

E = − γ2

R̃H
. (101)

This relation determines the location of the horizon on a solution of eq. (91) with given

E. Making use of the definition (92) of the ‘potential’, we can write

E = V (R̃H) +

(
1 + ε R̃3

H

R̃2
H

)2

. (102)

For ε = −1 the curve −γ2/R̃H , depicting the location of the horizon, is tangent to the

curve V = V (R̃) at R̃ = 1. For ε = 1 the curve for the horizon is always located above

the curve for the ‘potential’.

The above features are depicted graphically in fig. 15. The solid black curve depicts the

‘potential’ V (R̃), which has a maximum at R̃ = R̃max. The dashed blue curve indicates the

location of the horizon. For ε = 1 (i.e. 1/`2in > κ2) the curve for the horizon is always located

above the ‘potential’. For ε = −1 (i.e. 1/`2in < κ2) the curve for the horizon is tangent to the

‘potential’ at R̃ = 1. The function βout changes sign at this point. In the centre plot we have

separated with a red vertical dashed line the regions in which ε (and βout) has opposite signs.
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Figure 15: The ‘potential’ of eq. (92) for γ = 3 and ε = 1, εm = 1 (left), for ε = −1,

εm = 1 (middle), and for ε = 1, εm = −1 (right).

The various types of trajectories can be deduced from these plots. We plot a few lines with

constant E that stop when E = V : at this point Ṙ = 0 and the motion of the wall is reversed.

There are various types of trajectories for which the bubble expands indefinitely. If ε = −1,

such evolution can be obtained only for ε2 = −1.

A.3 Evolution of positive-mass bubbles

We consider first the case M > 0, or, equivalently, εm = 1. The evolution of the wall is

best depicted using Penrose diagrams. The diagrams for the most characteristic types of wall

evolution are presented in figs. 16, 11, 18. Each figure contains a pair of diagrams. In each

pair, the left diagram depicts AdS space, which has the simple structure of a cylinder, with the

line marked r = 0 corresponding to its centre and the line r = ∞ to conformal infinity. The

right diagram represents the complete Schwarzschild geometry, which includes two singularities,

marked r = 0, and the corresponding horizons. The black continuous curve in each diagram

denotes the trajectory of the wall. Thick black lines denote singularities, dashed lines horizons

and dotted lines denote conformal infinities. The total space is constructed by patching the part

of the left diagram on the left of the wall with the part of the right diagram on the right of the

wall. The shaded areas correspond to the parts that must be eliminated in order to join the

remaining parts along the wall trajectory.

The crucial relation for the fate of space is between the gravitational self-energy of the wall

κ2 and the vacuum energy −1/`2in. Naively, one expects that, if 1/`2in > κ2 (i.e. ε = 1), large

bubbles will grow indefinitely because the system gains energy in the process. In the opposite

case with 1/`2in < κ2 (i.e. ε = −1), the bubbles will shrink for similar energetic reasons. These

simple expectations, which are based on Newtonian intuition, are only partly fulfilled in the

complete analysis. More complicated scenarios are realised as well.
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Figure 16: Small bubbles with small initial wall velocity do not expand. Left:

The wall trajectory corresponding to line A of fig. 15, in AdS space. Right: The wall

trajectory corresponding to line A of fig. 15, in the Schwarzschild geometry.

Case ε = 1

Small bubbles with small initial wall velocity do not expand

Line A of fig. 15 describes the evolution of a bubble whose volume energy receives its largest

contribution from the negative vacuum energy density (1/`2in > κ2). However, the surface

contribution to the energy, arising from the wall tension, is the dominant factor and tends to

make the bubble shrink. The bubble has small initial wall velocity, which prevents it from

evolving to a size sufficiently large for the volume contribution to the energy to dominate. As a

result the surface tension wins: the bubble reaches a maximum size and subsequently collapses

falling within its own horizon.

The space corresponding to this solution is depicted in fig. 16. It results from eliminating

the shaded areas in each of the two Penrose diagrams and patching the remaining parts along

the wall trajectory.

Small bubbles with large initial wall velocity expand

Line C of fig. 15 corresponds to a bubble with similar characteristics as in the previous case, but

with much larger wall ‘kinetic energy’. This is is apparent by the fact that the total energy is

less negative. We can consider a bubble that starts very small (with almost vanishing r or R̃).

Even though the surface contribution to the ‘potential energy’ dominates, the initial velocity is

sufficiently large for the bubble to expand. Eventually the bubble develops a size for which the

volume contribution to the ‘potential energy’ becomes dominant over the surface contribution.

From this point on, the bubble expands indefinitely, with its wall approaching asymptotically
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Figure 17: The evolution of negative-mass bubbles. Left: The wall trajectory cor-

responding to line H of fig. 15, in AdS space. Right: The wall trajectory corresponding to

line H of fig. 15, in the negative-mass Schwarzschild geometry.

the speed of light.

The corresponding evolution of space is depicted in fig. 11. After a finite time η the wall

reaches the boundary of AdS space. As the AdS boundary is timelike, there is a Cauchy horizon,

beyond which the spacetime cannot be determined without additional boundary conditions. It is

expected that, within the full theory beyond the thin-wall limit, a spacelike singularity develops

before the Cauchy horizon [24]. This is depicted by a thick blue line in the left diagram of fig. 11.

From a mathematical point of view, the solution also describes the reverse process.

Large bubbles expand

Line B of fig. 15 describes the evolution of a bubble so large that its surface tension is irrelevant.

The bubble starts with infinite radius, shrinks to finite size and then re-expands. There are

two singularities in the Penrose diagram of AdS space, starting from the points at which the

wall trajectory reaches the boundary [24]. The whole trajectory lies with the region I of the

Schwarzschild geometry.

Case ε = −1

Small bubbles with small initial wall velocity do not expand

Line D of fig. 15 describes evolution very similar to that for line A. The contribution from the

surface tension dominates the ‘potential energy’, while the ‘kinetic energy’ is small. The bubble

expands up to a certain size, and subsequently recollapses. The space is described by Penrose
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Figure 18: Large bubbles with 1/`2
in < κ2 expand behind the horizon. Left: The

wall trajectory corresponding to Line G of fig. 15, in AdS space. Right: The wall trajectory

corresponding to Line G of fig. 15, in the Schwarzschild geometry.

diagrams very similar to those of fig. 16.

Line E of fig. 15 describes a similar scenario, but now the extrinsic curvature βout (or,

equivalently ε2) changes sign during the evolution. This implies that the wall trajectory crosses

regions IV, III and II of the Schwarzschild geometry instead of the regions IV, I, II (see fig. 16).

Small bubbles with large initial wall velocity expand behind the horizon

As we have seen already, the case ε = −1 may lead to evolution that cannot be deduced through a

purely Newtonian approach. For 1/`2in < κ2 the wall self-energy dominates the negative vacuum

energy, so that the growth of the bubble seems energetically unfavourable. The Newtonian

intuition suggests that such bubbles cannot expand. However, there is a relativistic solution

described by line G of fig. 15. The corresponding space evolution is depicted in fig. 18. The

crucial difference with respect to the case ε = 1, depicted in fig. 11, is that the wall trajectory

is located within the regions IV and III, instead of the regions IV and I of the Schwarzschild

space-time: in simpler words the bubble expands inside its Schwarzschild radius. The extrinsic

curvature βoutR of eq. (86) changes sign along the trajectory G of the wall, while it stays positive

for the trajectory C, as can be seen in fig. 15 [42]. Asymptotic regions of flat space-time survive:

the growth of the AdS region and its singularity are hidden behind the horizon and do not affect

an observer located in region I.17

17A pictorial representation of an analogous situation for a dS bubble is given in fig. 13 of [42], in which

case the AdS singularity is absent.
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Large bubbles expand behind the horizon

Line F of fig. 15 describes a large bubble that initially shrinks, reaches a minimal size and

subsequently expands. The whole evolution lies entirely within the region III of the Schwarzschild

space-time and is hidden behind a horizon for an observer located in region I.

A.4 Evolution of negative-mass bubbles

We next turn to the solutions with negative mass M , or, equivalently, εm = −1. The metric

(42), with Vout = 0, has a naked timelike singularity at r = 0 in this case. However, this metric

is relevant only for the bubble exterior, while the interior is described by the AdS metric (41).

As long as the bubble expands and the wall moves to increasing values of R, the global geometry

is free of singularities.

The form of the ‘potential’ for 1/`2 > κ2, M < 0, depicted in the right plot of fig. 15, allows

for such a solution. For ε = 1, εm = −1, the ‘potential’ has a positive maximal value. On the

other hand, the ‘energy’ E of eq. (92) is always negative. This allows for only one possible type

of solutions, the one corresponding to line H of fig. 15. It represents a bubble that starts with

infinite radius, shrinks to a finite value of R, and subsequently re-expands. Its mass is negative,

because the radius is always sufficiently large for the negative volume contribution to the energy

content to be dominant. The Penrose diagram for this solution is depicted in fig. 17. There are

two singularities in the Penrose diagram of AdS space, starting from the points at which the

wall trajectory reaches the boundary. The Schwarzschild metric with negative mass has a naked

singularity at r = 0, depicted by the vertical solid line in the right plot of fig. 17. However, this

singularity is irrelevant for our problem because it is eliminated when the white areas of the two

plots are joined along the wall trajectory.

It must be pointed out that it is not possible to construct negative-mass solutions corre-

sponding to horizontal lines extending from R̃ = 0 to the ‘potential’ in fig. 15. As can be seen

from eq. (98) such lines would require βout < 0, or, equivalently ε2 = −1. As we have already

remarked, this choice would require the timelike coordinates τ and t to increase in opposite

directions. For positive mass, the Schwarzschild geometry has sufficient structure to permit

solutions with both signs of βout, such as the one corresponding to line G of fig. 15, which is

depicted in fig. 18. However, for negative mass, the Penrose diagram cannot be extended beyond

that depicted in fig. 17, unless completely disjointed regions are introduced. For this reason, the

only meaningful solution is the one of fig. 17.

A.5 The AdS ‘crunch’

As we have seen, the particular structure of AdS implies that the evolution of the bubble must

lead to a singularity. This is apparent in fig. 11: the form of spacetime, after the finite time

η at which the wall reaches the timelike boundary, cannot be determined without additional

boundary conditions. It is expected that, for a physical system that realises an approximation

of the idealised bubble evolution that we consider, a spacelike singularity must develop in the

interior of the bubble [24].
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Figure 19: The AdS interior of

the bubble in conformal coordinates,

showing the crunch and (in color) a

patch in FRW coordinates.

For the problem at hand, the nature of this singu-

larity can be understood through the picture of the AdS

‘crunch’ presented in [7]. As shown there, a part of AdS

space can be viewed as an open Friedmann-Robertson-

Walker (FRW) universe with negative energy density.

The coordinate change [43]

r = `in sin
t̂

`in
sinhψ

cos
t̂

`in
=

(
1 +

r2

`2in

)1/2

cos
η

`in
(103)

puts the AdS metric (41) in the form

ds2 = −dt̂2 + `2in sin2 t̂

`in

(
dψ2 + sinh2 ψ dΩ2

2

)
. (104)

This metric describes an homogeneous FRW universe

that is born with a big ‘bang’ at t̂ = 0 and collapses

in a big ‘crunch’ at t̂ = `inπ. The coordinates t̂, ψ do

not cover the whole AdS space, but only a triangular

patch of its Penrose diagram. This is bounded by the

dot-dashed null lines in fig. 19. Even though these lines

represent only a coordinate singularity in the idealized

picture of a pure AdS bubble interior, the big ‘crunch’

becomes a true physical singularity in the presence of a

fluctuating Higgs field, as argued in [7]. From continuity

it is apparent that the Higgs fluctuations become very large in the neighbourhood of the null

line.

The connection of the AdS ‘crunch’ to the bubble evolution can be obtained by establishing

the relative position of the FRW ‘triangle’ and the wall trajectory on the Penrose diagram. As

the FRW observer views a homogeneous universe, the AdS patch to which he has access must

be located sufficiently deep inside the bubble for the Higgs field to have a constant value. At

late times, the wall moves with approximately the speed of light. It is expected that the wall

trajectory and the lower side of the FRW ‘triangle’ will converge asymptotically as the AdS

boundary is approached, as depicted in fig. 19. The singularity developing below the Cauchy

horizon appears on a spacelike curve emanating from the point at which the wall reaches the AdS

boundary. The homogeneity of space viewed by the FRW observer indicates that this singularity

should correspond to a constant-t̂ surface. In fig. 19 we depict the slicing of the FRW ‘triangle’

with such surfaces. The thick solid line represents the possible location of the ‘crunch’, very

close to the upper side of the FRW ‘triangle’.

The most important consequence of the above picture is that the ‘crunch’ never reaches the

bubble wall. This is apparent in fig. 19, as the black solid line, representing the wall trajectory,

and the blue solid line, representing the ‘crunch’, never cross. They seem to merge on the AdS

boundary. However, this is an illusion created by the Penrose diagram. The bubble wall lies
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always slightly outside the FRW ‘triangle’, as its speed never becomes exactly equal to that of

light.

A final observation relevant for the asymptotic wall expansion concerns the corresponding

time scales in the various frames. Let us consider a very large bubble with ε1 = ε2 = 1, see

eqs. (80)–(81), expanding almost at the speed of light, such that R � `in, 2GM and Ṙ � 1.

The evolution of the wall in terms of the three time coordinates of the systems (43), (41), (42)

is given by

R = R0e
c1τ =

R0

1− c2η
= R0 + t, (105)

with c1 ' 1/(2`2inκ), c2 ' R0/`
2
in for 1/`2in � κ2. It is apparent that the wall reaches the AdS

boundary within a finite amount of the time coordinate η, while it requires an infinite amount

of time τ or t. In particular, an observer in the asymptotically flat spacetime infinitely far from

the bubble is reached by the wall only after an infinite amount of time t.

A.6 Critical bubbles

For given `in and κ, corresponding to given interior vacuum energy and surface tension, there

is a critical bubble radius Rcr. Bubbles that start with negligible wall velocity and R > Rcr

follow trajectories with increasing R, while bubbles that start with R < Rcr have diminishing

R and eventually collapse to a black hole. The critical radius corresponds to the maximum of

the potential of fig. 15. One can imagine a horizontal line, tangent to the top of the potential.

The right part of the line is the limiting case of lines starting on the potential and describing

expanding bubbles, while its left part is the limiting case of similar lines describing collapsing

bubbles. As the ‘energy’ E is negative, while the potential has a maximum with a positive value

for εm = −1 (see the third plot of fig. 15), it is obvious that there are no critical bubbles with

negative mass.

The maximum of the potential and its value at this point are given by eqs. (99)–(100). The

value of the ‘energy’ can be obtained from eq. (91) with dR̃/dτ̃ = 0 and R̃ = R̃max. Expressions

for Rcr and the corresponding mass Mcr can then be obtained by combining eqs. (92)–(96). As

these expressions are not very illuminating we do not present them explicitly. The quantities

Rcr/`in, GMcr/`in are functions of the dimensionless combination κ`in. In fig. 20 we present the

functions Rcr(κ`in)/`in, GMcr(κ`in)/`in and [GMcr/`in](Rcr/`in).

The critical bubbles have certain characteristics:

• Their radius is always larger than the Schwarzschild radius. This can be deduced from

fig. 15, in which it is apparent that the location of the maximum of the potential is always

outside the horizon.

• There are two branches of critical bubbles, corresponding to 1/`2in > κ2 or ε = 1 (solid

lines), and 1/`2in < κ2 or ε = −1 (dashed lines).

• The radius diverges for κ → 1/`in, as the effective energy density in the interior of the

bubble vanishes in this limit.
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Figure 20: The radius and mass of critical bubbles as a function of κ`in for ∆ > 0 (blue

curves) and ∆ < 0 (red dashed).

• The branch with ε = 1 reproduces correctly for κ → 0 the Newtonian limit of nonrela-

tivistic bubbles with Rcr = 4`2inκ/3 and GMcr = 16`4inκ
3/27.

• The branch with ε = −1 is not visible to an observer located in region I of the Penrose

diagram.

• For given vacuum-energy scale `in and critical-bubble radius Rcr, the bubbles with ε = −1

are more massive than the ones with ε = 1. (Note that the two types of bubbles also have

different surface tension κ.)

The most interesting solutions are those that describe bubbles visible to an observer in the

asymptotically flat region. These are bubbles for which a Newtonian limit exists within their

parameter range. Their mass-to-radius relation is depicted in the third plot of fig. 20. The

critical bubbles correspond to the solid line. The parameter range above this line corresponds to

collapsing bubbles, while the range below to expanding bubbles. Expanding bubbles can have

negative mass, so their parameter range includes the region below the positive R-axis.

A.7 Bubbles in asymptotically de Sitter spacetime

The evolution of an AdS bubble within an asymptotically dS spacetime can be analysed in

complete analogy to the previous discussion for an asymptotically flat spacetime. The metric

of eq. (42) now contains the function fout(r) = 1 − r2/`2out − 2GM/r. There are two horizons,

corresponding to the zeros of fout(r). The Penrose diagram of the Schwarzschild-de Sitter (SdS)

spacetime is depicted in the right part of fig. 7. It is a combination of the diagrams for the

Schwarzschild and dS spacetimes [9]. Thick blue lines denote curvature singularities, the dashed

lines horizons and the dotted lines conformal infinities. The two thin vertical lines at the ends

of the diagram indicate that the pattern is repeated indefinitely on either side.

The matching across the domain wall, located at R(τ), proceeds as before. We do not analyse

the many possible cases, as the analysis is a straightforward generalisation of the discussion in
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the previous subsections. We focus instead on the novel aspects of the SdS case. For a positive

mass M , the motion of the wall is again determined by eq. (91), with R̃ = ρR. However, the

‘potential’ now has the form

V (R̃) = −
(

1 + εR̃3

R̃2

)2

− γ2

R̃
− δ2R̃2, (106)

with

ρ3 =
1

2GM
|∆| , ε ≡ sign ∆, γ =

2κ√
|∆|

, δ2 =
4κ2

`2out∆
2
, (107)

where

∆ =
1

`2in
+

1

`2out

− κ2. (108)

The form of the ‘potential’ is very similar to that in fig. 15. The horizon corresponds to a value

R̃H such that

E = − γ2

R̃H
− δ2R̃2

H . (109)

It is again determined by eq. (102), but now has a different shape. In fig. 21 we depict the

‘potential’ (solid black line) and the horizon (dashed blue line) for γ = 3, δ = 1, ε = 1.

Figure 21: The ‘potential’ of eq. (106) with

γ = 3, δ = 1, ε = 1, for AdS bubbles in

Schwarzschild-de Sitter space.

The various trajectories correspond to so-

lutions of constant E = −κ2/(G2M2ρ4), as

depicted in fig. 21. The two types of be-

haviour, characterised by ε = ±1, correspond

now to the gravitational self-energy κ2 of the

bubble being smaller or larger than the to-

tal difference in energy density 1/`2in + 1/`2out

between the dS and AdS spacetimes. We do

not analyse the form of all the possible trajec-

tories, as they are similar to those discussed

earlier. In fig. 21 we have depicted a few char-

acteristic cases for ε = 1.

Line A corresponds to a bubble that starts

below the inner horizon, crosses it, reaches a

maximal radius and collapses falling again be-

hind the horizon.

Line C corresponds to a large bubble that

stars with infinite radius, moves within the

outer horizon, reaches a minimal radius and

then re-expands moving again outside the outer horizon. One may consider also the scenario in

which the bubble is spontaneously created with vanishing wall velocity at a certain radius and

expands, with the wall moving outside the outer horizon. In this scenario, line C is covered only

once.

Line B corresponds to a bubble that starts with a very small radius and expands indefinitely,

with its wall crossing the inner and outer horizons successively. Its speed asymptotically ap-
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proaches the speed of light. The form of the wall trajectory on the Penrose diagram is depicted

in fig. 7. The total space is constructed by patching the white regions of the two plots in fig. 7.

Line D corresponds to the evolution of a bubble that does not cross any horizons. The reason

is that ‘energies’ that approach zero correspond to increasing values of the mass parameter M .

For sufficiently large M , the metric function fout(r) does not vanish at any r, but stays always

negative. The space has a naked spacelike singularity at r = 0. However, this part of spacetime

is eliminated and replaced by the interior of the AdS bubble.

There are many other possibilities for ε = −1 or for negative bubble mass. These can be

analysed in complete analogy to the trajectories depicted in the second and third plot of fig. 15.

They correspond to collapsing bubbles or bubbles expanding behind horizons, which are not

visible to an observer located in the asymptotic de Sitter space.

The crucial question pertinent to the scenario of Higgs fluctuations during inflation is whether

the expanding AdS bubbles can completely eliminate the surrounding dS space and thus termi-

nate inflation. It is apparent from fig. 7 that asymptotically the wall trajectory reaches spacelike

infinity. The wall location separates two spacelike regions: one of them is replaced by the interior

of the AdS bubble, while the other remains part of an external dS spacetime. Asymptotically

the total spacetime contains large AdS bubbles within large dS regions. This scenario is in con-

trast to the case of asymptotically flat spacetime, in which the wall asymptotically reaches null

infinity and the whole space is engulfed by the AdS bubbles. In other words, the inflationary

growth guarantees that, even when the size of the AdS regions grows with the speed of light,

the external regions grow even faster, so that they survive at late times.
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