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Abstract: Classical field configurations such as the Coulomb potential and Schwarzschild

solution are built from the t-channel exchange of many light degrees of freedom. We study

the CFT analog of this phenomenon, which we term the ‘eikonalization’ of conformal blocks.

We show that when an operator T appears in the OPE O(x)O(0), then the large spin Fock

space states [TT · · ·T ]` also appear in this OPE with a computable coefficient. The sum

over the exchange of these Fock space states in an 〈OOOO〉 correlator build the classical ‘T

field’ in the dual AdS description. In some limits the sum of all Fock space exchanges can be

represented as the exponential of a single T exchange in the 4-pt correlator of O. Our results

should be useful for systematizing 1/` perturbation theory in general CFTs and simplifying

the computation of large spin OPE coefficients. As examples we obtain the leading log `

dependence of Fock space conformal block coefficients, and we directly compute the OPE

coefficients of the simplest ‘triple-trace’ operators.
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1 Introduction and Summary

The correlation functions of local operators in Conformal Field Theories (CFTs) must satisfy

fundamental consistency conditions encoding conformal symmetry and quantum mechanical

unitarity. In the bootstrap approach, one attempts to constrain or compute the CFT correla-

tors, or equivalently, the CFT spectrum and operator product expansion (OPE) coefficients,

using only these fundamental principles as an input. The bootstrap, which was very success-

ful in two dimensions [1, 2], has recently yielded powerful numerical [3–29] and analytical

[30–42] results. It is natural to ask how far we can go using analytical techniques and only a

smattering of CFT data.

To address this question we need not grasp about in the dark, because the AdS/CFT cor-

respondence suggests specific expectations. Long-distance locality in AdS, and the existence

of universal long-range forces (such as gravity) both lead to predictions for the spectrum and

OPE coefficients of the CFT. In recent work [33–35] these predictions have been derived from

the bootstrap, without any reference to AdS, and for all unitary CFTs in d ≥ 3 dimensions,

with more intricate and powerful results in d = 2 at large central charge.

CFTs have a Fock space of states at large spin `, corresponding to a physical Fock space

of well-separated objects in AdS. Since the AdS Hamiltonian is the dilatation operator of

the CFT, the anomalous dimensions γ(`) of these states represent AdS interaction energies

between distant objects. The γ(`) are determined by OPE coefficients with low-twist opera-

tors, corresponding to couplings between AdS objects and light (or low mass) fields [35]. For

example, the exchange of the stress energy tensor Tµν in the CFT roughly corresponds with

the exchange of a virtual graviton in AdS, and the universality of Tµν OPE coefficients leads

to the equivalence principle in AdS.

We would like to study corrections to these results, specifically the summation1 or ‘eikon-

alization’ of multiple virtual exchanges into an effective classical background [43], as pictured

in figure 1. We will see that these effects are also essentially universal, but first we will run

into an obstruction. In the process of overcoming it we will make connections with Mellin

amplitude [44–48] asymptotics [49] and an elementary theorem of Darboux [50, 51], which

justify a simple and general procedure for extracting the OPE coefficient of any large spin

operator.

A CFT Sandbox

To discuss the details, we will be making extensive use of the idea of conformal blocks [52–

54], also known as conformal partial waves, and the CFT bootstrap equation. These were

briefly reviewed in a relevant context in [35] and in many other recent works. We seek to

understand if the conformal partial waves associated with the exchange of a full Fock space

can be resummed or ‘eikonalized’ into a simple closed form. Directly on the AdS side, these

1Although we use the word eikonalization, it should be noted that we are not studying the traditional
eikonal limit of high energy and large impact parameter, but of fixed energy and large impact parameter,
where impact parameter grows with spin.
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Figure 1. This figure indicates how one might sum over multiple virtual exchanges in order to
construct an effective classical background. We would like to understand this process directly in the
CFT, with minimal assumptions. When the first diagram determines the sum of the rest, we say that
the conformal blocks ‘eikonalize’.

issues have been explored [55–58] at high energy with fixed impact parameter, leading to an

AdS version of the eikonal limit. In the case of CFT2 the resummation of stress tensor [35]

and current exchange [43] have already been observed, but we will see that the general story

is more subtle.

For our purposes it will be sufficient to study just a few primary operators in a general

CFTd, which we refer to as

O1, O2, T with Oi(x)Oi(0) ⊃ T (1.1)

where by ⊃ we mean ‘is included in the OPE’. We use ∆1,∆2,∆T to refer to the dimensions

of these operators, and τi and τT to refer to their twists τ ≡ ∆ − `. We will be thinking of

T as a low dimension or ‘light’ operator, such as the stress tensor, and Oi as heavier sources.

The indicated OPE immediately implies that certain specific conformal partial waves must

contribute to correlators such as 〈O1O1TT 〉 and 〈O1O1O2O2〉, as pictured in figure 2.

The theorem [33–35, 59] referred to above states that in the OPE A(x)B(0) of any two

primary operators there exist new primaries [AB]n,` labeled by positive integers n, ` at large

`, with dimension τA + τB + 2n+ `+ γ(n, `), where the anomalous dimension γ(n, `)→ 0 as

`→∞ at a prescribed power-law rate. This immediately implies the existence of operators

[O1O2]n,`, [O1T ]n,`, [TT ]n,`, · · · , [[O1O1]n,`T ]n′,`′ , · · · (1.2)

for all possible combinations at large `. We will sometimes abuse AdS/CFT language and

refer to [AB]n,` as ‘double-trace’ operators, although all of our results are wholly independent

of large N .

Applying the theorem recursively leads to a Fock space with any number of O1,O2, and

T , which can be interpreted as a collection of any number of well-separated objects in AdS.

We would like to understand what predictions can be made for the OPE coefficients of these
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Figure 2. This figure indicates conformal partial waves that necessarily contribute to two different
4-pt CFT correlators, based on the assumed OPEs. We indicate the conformal block on the left as
O1T → O1 → O1T .

operators, because in particular, the OPE coefficients of

O1(x)O1(0) ⊃ T, [TT ]n,`, [TTT ]n,`, · · · (1.3)

determine how multiple T exchange generates an effective classical background in AdS. Phys-

ically, it seems reasonable to expect that large ` operators such as [TT ]n,` have universal OPE

coefficients determined by those of T , since we can interpret this operator as a pair of T states

that have been well-separated in AdS. We will see that via the process pictured in figure 3

these OPE coefficients are essentially universal, although there is a barrier to be overcome.

Throughout this paper, we will refer to the conformal block decomposition of a four-

point function of the general form 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 in the channel arising from

the O1 ×O2 OPE (or equivalently, the O3 ×O4 OPE) as the

O1O2 → O3O4 (1.4)

channel, and the conformal block for an exchange of an operator O in this channel as the

O1O2 → O → O3O4 (1.5)

conformal block.

Mellin Amplitude Asymptotics, Darboux’s Theorem, and the OPE

The single conformal block pictured on the left in figure 2 cannot be expanded as a sum

of conformal blocks in the cross-channel while satisfying unitarity constraints. Relatedly,

the OPE limit of T (z)T (0) in this conformal block will not be well-behaved. This presents

a problem because one might have used an expansion in this limit to compute the OPE
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Figure 3. Large ` Fock space operators should have a universal behavior. This figure indicates how
one might try to use known OPE coefficients to construct conformal blocks, and then take the OPE
limit in a different channel to obtain new information about general Fock space states. By making a
simple assumption about the CFT correlators in Mellin space, these OPE limits can to be shown to
exist, and give a universal result for OPE coefficients with Fock space states.

coefficients

〈O1O1[TT ]n,`〉 (1.6)

which must exist at large `. But this procedure will not be well-defined!

The problem is that the conformal block for the correlator

GO1(z) = 〈O1(∞)T (0)


 ∑

O1 desc

|α〉〈α|


O1(1)T (z)〉 (1.7)

has branch cuts in the limit that z → 0 that cannot be interpreted (in a unitary theory) as a

sum of operators in the T (z)T (0) OPE. However, let us write this conformal block in terms

of the toy Mellin integral

GO1(z) =

∫ i∞

−i∞
dδM(δ) (1− z)−δ. (1.8)

If we assume that M(δ) vanishes exponentially as δ → ±i∞ then GO1(z) will be analytic

around z = 0. The individual conformal blocks violate this assumption, and so they do not

have a good OPE limit in the cross-channel (where z → 0). However, if the full correlator

satisfies this exponential bound, then the OPE limit will exist. We can still account for

the individual contributions from specific conformal blocks by looking at their poles, whose

position and residue cannot be altered due to the constraints of conformal symmetry and

unitarity. This reasoning ties the Mellin amplitude asymptotics to the existence of the OPE
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and the universality of Fock space OPE coefficients.

The large spin OPE coefficients can be obtained2 by applying an elementary observation

of Darboux [50, 51], that the large order behavior of the series expansion of a function f(z) is

dominated by the singularities of f(z) on the circle bounding the region of convergence. In the

context of the correlator 〈O1(∞)O1(1)T (z)T (0)〉, this means that the large order expansion

of the T (z)T (0) OPE must be governed by the T (z)O1(1) OPE. Since the large spin operators

[TT ]n,` appear at high orders in the T (z)T (0) OPE, their OPE coefficients must be governed

by singularities in the z → 1 limit. These are encoded in the leading poles and residues

of the Mellin amplitude, which are independent of the contributions that fix its asymptotic

behavior.

Summary of Results

In this work we will mostly ‘follow our nose’, using only the assumptions in equation (1.1),

the OPE, the CFT bootstrap, and later on, some reasoning motivated by Darboux’s theorem.

But the analysis itself will become a bit technical, so for the casual reader we summarize our

results here:

• A universal part of the large ` OPE coefficients of operators like [TT ]n,`, [TTT ]ni,`, · · ·
are determined by the OPE coefficient of T with Oi(x)Oi(0). The exchange of these

operators between O1O1 → O2O2 can be rewritten in the exponentiated form ePT gT (u,v)

when ∆i � τT .

• The non-universal behavior of the [TT ]n,` OPE coefficients dictates the existence of

other operators in the O1(x)O2(0) OPE. Conversely, we can compute corrections to the

[TT ]n,` OPE coefficients based on the Oi(x)O′(0) ⊃ T OPE for τO′ ≤ τOi .

• The OPE coefficients of general large spin Fock space operators [TS]n,` with O(x)O(0)

can be obtained by applying differential operators or the conglomeration procedure

[46, 61] to the singular parts of 〈O(∞)O(1)T (z)S(0)〉 as z → 1. As an example, we

compute the leading OPE coefficients of minimal twist [TS]0,` from the OT → O′ → OS
conformal block in section 5.3.

• If one further assumes that the 〈OiOiT 〉 OPE coefficient is proportional to a pertur-

bative parameter ‘1/N ’, then one can show that it is the contribution of ‘double-trace’

[OT ]n,` operators [49] that render the T (z)T (0) OPE well-defined.

• At a technical level, we discuss and compare three distinct methods for extracting

large spin OPE coefficients in sections 3, 4, and 5, and we compute the [TTT ]` OPE

coefficients directly using differential operators in section 5.3.

2We should emphasize that specific OPE coefficients for individual ` cannot be rigorously determined; only
their large ` sums can be computed. But for simplicity we will talk about ‘OPE coefficients’ as if they take
values equal to their averages at large `. More rigorous bounds on integrated OPE coefficients can be obtained
using the Hardy-Littlewood Tauberian theorem [33, 35, 60].
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These results specifically hold in the limit `→∞ with the external dimensions ∆i fixed,

which has the AdS interpretation of the exchange of well-separated light mediators between

two objects with fixed energy. It is important to note that this setup is distinct from the

standard ‘eikonal limit’ of both large impact parameter and high energy. In the eikonal

limit, the large energy of the two objects allows the exchanged light field to be described

by a classical shock wave configuration, which can then be used to calculate AdS scattering

amplitudes and derive predictions for the associated CFT correlators [55–58, 62–65]. The

universal contributions to exchanged conformal blocks that we derive here arise instead from

the approximate Fock space structure of CFT operators at large spin. We refer to this

behavior as the ‘eikonalization’ of conformal blocks because of its exponentiated structure at

large ∆i, suggesting a similar interpretation in terms of classical background fields in AdS. It

would be interesting to explore this interpretation further and connect our results with the

standard eikonal limit more directly in future work.

We will conventionally write 4-pt correlators using the parametrization

〈Oi(∞)Oi(1)T (z, z̄)T (0)〉, 〈O1(∞)O1(1)O2(z, z̄)O2(0)〉 (1.9)

which we note for uniformity of presentation, so that it is clear which OPE limits are obtained

by z → 0 versus z → 1. We refer to z, z̄ → 0 or z, z̄ → 1 as OPE limits, while z̄ → 0 or

1 with fixed z is a lightcone OPE limit. The usual conformal cross-ratios are expressed as

u = zz̄ and v = (1 − z)(1 − z̄). In the 〈O1O1O2O2〉 correlator, we refer to conformal blocks

exchanged between O1O1 → O2O2, such as the T block, as the ‘t-channel’, while we refer to

O1O2 → O1O2 as the ‘s-channel’, which includes the [O1O2]n,` operators. As discussed in

appendix A, we will often make use of a 2d decomposition [34] of operators, which makes it

easy to handle operators with general spin at minimum twist.

The outline of this paper is as follows. In section 2 we discuss the setup of the bootstrap

equation in the lightcone OPE limit and review previous results on the large ` spectrum of

CFTs. In section 3 we show that subleading terms in 1/` demand the presence of opera-

tors like [TT ]n,` in the Oi(x)Oi(0) OPE. We then generalize this analysis to demonstrate the

‘eikonalization’ of conformal blocks in this kinematic limit, and use a bootstrap equation to

determine the [TT ]n,` OPE coefficients in section 4. We then attempt a direct derivation of

these OPE coefficients, and identify an obstruction in section 5. We show that this problem

can be bypassed using Darboux-type arguments, justifying a more direct method for the com-

putation of general large spin OPE coefficients. We compute general [TS]0,` OPE coefficients

and use them to verify the leading log(`) behavior of the [TTT ]0,` coefficients. We conclude

by discussing prospects for future work.

2 CFT Spectra from the Bottom Up

Using our basic ‘sandbox’ of primary operators, we would like to determine as much as

possible about the full set of CFT spectra allowed by crossing symmetry and unitarity. In
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this section, we briefly review previous results that demonstrate our general approach of

studying the conformal bootstrap in the lightcone limit, isolating the contributions of large

spin operators. In this way, we can use a limited collection of operators to discover universal

properties of the OPE structure of CFTs. Finally, we discuss results from 2d theories where

eikonalization can be directly demonstrated using the Virasoro algebra.

2.1 Review of Cluster Decomposition and Double-Trace Operators

Let’s first consider a general CFTd containing at least two primary operators, O1 and O2.

A natural question to ask is whether the presence of these two operators requires additional

primary operators in the spectrum. For unitary theories in d ≥ 3, it was recently proved

[33, 34, 59] that the OPE O1(x)O2(0) must contain an infinite number of large-spin primaries

[O1O2]n,` with scaling dimensions ∆n,` → ∆1 + ∆2 + 2n+ ` as `→∞.

This tower of integer-spaced scaling dimensions is reminiscent of the spectrum of ‘double-

trace’ operators familiar from theories with a perturbative 1/N expansion. This recent CFT

theorem therefore demonstrates that the Fock space structure of such theories is actually a

universal property of CFTs at large spin, consistent with the interpretation of these operators

as creating well-separated objects in AdS. Each primary operator then immediately introduces

a rich spectrum of large ` operators to any CFT≥3.

Though this theorem of ‘cluster decomposition’ in CFTs was inspired by the structure of

theories in AdS, it can be proven without ever appealing to AdS/CFT. While we will quickly

review the basic form of this proof here, interested readers should consult [33, 34] for a much

more detailed discussion.

Any correlation function constructed from the operators O1 and O2 can be written as a

sum over intermediate states, which can then be organized into irreducible representations of

the conformal group as

〈O1(∞)O1(1)O2(z, z̄)O2(0)〉 =
1

(zz̄)∆2

∑

τ,`

P
(11,22)
τ,` gτ,`(u, v). (2.1)

The individual conformal blocks gτ,`(u, v) are labeled by the spin ` and twist τ ≡ ∆ − ` of

the exchanged primary operators and depend only on the conformally invariant cross-ratios

u = zz̄ and v = (1− z)(1− z̄).
As is well-known (e.g. [3, 35]), there are multiple possible channels in which one can

decompose a single correlation function into conformal blocks. The equality of these distinct

expansions is referred to as the conformal bootstrap equation, which can be written as

u−
1
2

(∆1+∆2)
∑

τ,`

P
(11,22)
τ,` gτ,`(u, v) = v−

1
2

(∆1+∆2)u−
1
2

∆12
∑

τ,`

P
(12,12)
τ,` gτ,`(v, u). (2.2)

The individual conformal blocks in these series are completely fixed by conformal invariance.

More specifically, these blocks can be written as gτ,`(u, v) = u
τ
2 fτ,`(u, v), where fτ,` approaches
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a finite value as u→ 0. We therefore see that in the limit of small u, v these two expansions

are dominated by those primary operators with lowest twist.

Unitarity restricts the possible twists of primary operators, providing the d-dependent

lower bound

τ ≥
{

d−2
2 (` = 0),

d− 2 (` ≥ 1).
(2.3)

The one exception to this bound is the identity operator, with τ = 0. For d ≥ 3, unitarity

therefore separates the twist of the identity from those of other operators. We can then isolate

this universal contribution by taking the limit of small u, leading to the approximate relation

u−
1
2

(∆1+∆2) ≈ v− 1
2

(∆1+∆2)u−
1
2

∆12
∑

τ,`

P
(12,12)
τ,` gτ,`(v, u) (u→ 0), (2.4)

which is illustrated in figure 4. We can clearly see that the left side of the bootstrap equation,

which we shall refer to as the ‘t-channel’, possesses a manifest singularity as u→ 0. However,

each individual term on the right side, called the ‘s-channel’, is at most logarithmically diver-

gent at small u. There must therefore be an infinite number of s-channel conformal blocks,

such that the full sum possesses a stronger singularity than any finite combination of terms.

By carefully matching the u- and v-dependence of both sides, we can then show that

both the scaling dimensions and OPE coefficients of these conformal blocks approach those

of a generalized free theory as ` → ∞. Unitary CFTs therefore possess a universal ‘weakly-

coupled’ regime at large `.

2.2 Anomalous Dimensions from Minimal Twist Operators

Though the identity operator provides the dominant t-channel contribution at small u, there

are corrections from those operators with minimal nonzero twist. For the sake of simplicity,

we shall assume that there is only one such operator, though this discussion can easily be

generalized to any finite number of minimal twist operators.

Including the correction from the lowest twist operator T , the bootstrap equation at

small u now takes the approximate form

u−
1
2

(∆1+∆2)

(
1 + P

(11,22)
T gT (u, v)

)
≈ v− 1

2
(∆1+∆2)u−

1
2

∆12
∑

τ,`

P
(12,12)
τ,` gτ,`(v, u). (2.5)

This additional t-channel block greatly simplifies if we also take the limit v → 0,

gT (u, v) ≈ −u
τT
2

Γ(τT + 2`T )

Γ2( τT2 + `T )
log v (u� v � 1), (2.6)

where τT and `T are respectively the twist and spin of the minimal twist operator T . This

conformal block therefore introduces a logarithmic singularity at small v which must be
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Figure 4. This figure illustrates terms that contribute to the lightcone OPE limit of the CFT
bootstrap equation. The consequence of the first two terms on the left-hand side are reviewed in
section 2, while the third term and its generalizations are discussed using this bootstrap equation in
section 3.

replicated by the s-channel.

To see how this singularity is reproduced, note that the s-channel conformal blocks can

be written as gτ,`(v, u) = v
τ
2 fτ,`(v, u), where fτ,` is finite as v → 0. At large `, we know that

the spectrum of s-channel blocks approaches that of the double-trace operators [O1O2]n,`,

with the associated twists

τ(n, `) = ∆1 + ∆2 + 2n+ γ(n, `), (2.7)

where the anomalous dimensions γ(n, `)→ 0 as `→∞.

Given this asymptotic behavior, at large ` we can expand the s-channel conformal blocks

as a power series in γ(n, `), obtaining

gτ,`(v, u) ≈
(

1 +
γ(n, `)

2
log v

)
v
τn
2 fτn,`(v, u) (`� 1). (2.8)

The anomalous dimensions of double-trace operators therefore provide the logarithmic singu-

larities necessary to match the small v behavior of minimal twist conformal blocks.

As discussed more thoroughly in [33, 35, 41], we can carefully match the u- and v-

dependence of both sides to precisely fix the anomalous dimensions at large `. For example,

the resulting anomalous dimensions for n = 0 are

γ(0, `) ≈ − 2P
(11,22)
T Γ(∆1)Γ(∆2)Γ(τT + 2`T )

Γ(∆1 − τT
2 )Γ(∆2 − τT

2 )Γ2( τT2 + `T )

(
1

`τT

)
. (2.9)

The anomalous dimensions therefore vanish as ` → ∞ at a rate set by the twist of the

exchanged operator T . This behavior is consistent with the AdS interpretation of these

anomalous dimensions as interaction energies between distant objects.

We also see more explicitly the sense in which CFTs are weakly-coupled at large `. The

corrections to scaling dimensions and OPE coefficients which arise from the exchange of ‘light’

operators with low twist must vanish as ` → ∞, therefore introducing the new perturbative

parameter 1/`. By continuing the expansion of eq. (2.8) to higher orders, we can then begin
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to study subleading corrections due to operators with larger twist.

2.3 Semi-Classical Virasoro Blocks and Eikonalization

Our discussion so far has been limited to theories in d ≥ 3. Turning to d = 2, we see that the

unitarity bound no longer separates the identity operator from other minimal twist operators.

In the limit u → 0, we must therefore consider the contribution of not just the identity, but

every operator with τ = 0.

One obvious example of such operators is the stress-energy tensor Tµν , which provides a

universal contribution to our original correlation function in every CFT2. In fact, there is an

infinite collection of multi-trace operators constructed out of Tµν which have zero twist and

must therefore be included.

However, this significant increase in the number of minimal twist operators is compen-

sated for by the infinite-dimensional Virasoro symmetry of 2d CFTs. All multi-trace operators

built from Tµν are Virasoro descendants of the identity and therefore have fixed OPE coeffi-

cients. The contribution of these individual global conformal blocks can then be arranged into

irreducible representations of the full Virasoro conformal symmetry, referred to as Virasoro

blocks.

Even though the structure of Virasoro blocks is entirely fixed by symmetry, they currently

have no simple closed form expression that allows one to study their behavior at the edge z ∼ 1

of the radius of OPE convergence analytically (but see [66]). However, these blocks greatly

simplify in the semi-classical limit of large central charge c. In [35], the general structure of

semi-classical Virasoro blocks was studied in the specific limit of c → ∞ with arbitrary ∆1

and fixed ∆2. Though the focus of that work was the case ∆1 ∼ c, so as to study gravitational

phenomena associated with black holes in AdS3, it was also shown that for ∆1,∆2 � c the

identity Virasoro block takes the simple form

V(u, v) ≈ exp
[
P

(11,22)
T gT (u, v)

]
. (2.10)

In other words, the contribution of all multi-trace Tµν operators exponentiates! This form is

consistent with the eikonalization of AdS gravitational interactions in the small G limit. We

review and generalize these results, including the effects of graviton interactions, in appendix

D. We also comment on some interesting cancellations that occur in these calculations, which

we have seen persist to order 1/c2 at large central charge, involving mixing between one, two,

and three ‘graviton’ states.

Note that this eikonalization crucially depends on the ‘weak-coupling’ limit of c→∞ and

therefore receives corrections suppressed by 1/c. Regardless, an obvious question is whether

this behavior is universal, such that the exchange of other weakly-coupled primary operators

also exponentiates.
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3 Eikonalization at Large Spin

Motivated by the semi-classical results in 2d, we now consider multi-trace operators in more

general CFTs, in order to determine the generality of eikonalization. As we have seen, the

large ` spectrum of primary operators provides a universal perturbative regime in CFTs,

so we expect the OPE coefficients of large-` multi-trace operators to be computable. We

begin by considering the subleading corrections due to double-trace primaries constructed

from minimal twist operators. We then generalize to the full case of all large ` multi-trace

operators, whose contributions can be resummed as u → 0. Finally, we briefly compare our

CFT results to expectations from the eikonal limit of scattering in AdS.

3.1 Corrections Due to Large Spin Operators [TT · · ·T ]`

Let’s again consider the anomalous dimensions of the large spin double-trace operators [O1O2]n,`,

which arise due to the minimal twist operators present in the OPE of both O1(x)O1(0) and

O2(x)O2(0). The resulting shift in scaling dimension can then be written in the approximate

form

γ(n, `) ≈ γn
`τT

, (3.1)

where τT is the minimal twist of these exchanged operators. Using this form, it is clear that

at large ` we can expand the [O1O2]n,` conformal blocks as a perturbative series in γ(n, `),

gτn+γ(n,`),`(v, u) = v
1
2

(τn+γ(n,`))fτn+γ(n,`),`(v, u)

≈
(

1 +
γn

2`τT
log v +

γ2
n

8`2τT
log2 v + · · ·

)
gτn,`(v, u) (`� 1), (3.2)

where in addition to expanding at small γn, we have kept only the leading log-enhanced

terms in γn log v. As discussed above, the first term in this series reproduces the t-channel

contribution from the identity, while the second term contains a logarithmic singularity at

small v which matches that of the minimal twist conformal blocks. For the sake of simplicity,

we shall again assume that there is only one such minimal twist operator T .

Turning to the third term in this series, we see that it possesses a stronger singularity as

v → 0 than any single t-channel conformal block. There must therefore be an infinite tower

of additional operators to replicate this subleading correction. This was already suggested in

figure 4.

To determine the properties of this infinite set of t-channel conformal blocks, we first

need to determine the full form of the leading-log (LL) s-channel corrections by putting the

the large spin double-trace blocks (3.2) back into the RHS of the bootstrap equation (2.5)

at small u and summing. The explicit powers of vn in gτn+γ(n,`),`(v, u) ∝ vn+ 1
2

(∆1+∆2+γ(n,`))

implies that the dominant contribution to this sum is from the double-trace conformal blocks
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with n = 0:

v−
1
2

(∆1+∆2)u−
1
2

∆12
∑

`

P
(12,12)
[O1O2]0,`

gτ0+γ(0,`),`(v, u)

LL
=

∞∑

m=0

u−
1
2

(∆1+∆2−mτT )γ
m
0 Γ(∆1 − mτT

2 )Γ(∆2 − mτT
2 )

2mm!Γ(∆1)Γ(∆2)
logm v, (3.3)

where we have used asymptotic forms of the OPE coefficients and the blocks, and approx-

imated the sum over ` as an integral.3 Note that the divergent sums over ` produce very

specific singularities as u→ 0. By comparing this u-dependence to that of the t-channel, we

can then fix the twist of the operators that can reproduce the m-th term as τ = mτT . In

particular, we recognize the m = 0 and m = 1 terms in parentheses as the contributions due

to the identity and T from the t-channel, and we see that the subleading logm v corrections

must come from infinite towers of operators with τ → mτT as `→∞. This is a strong indi-

cation that the subleading log2 v corrections from anomalous dimensions correspond to the

large ` double-trace operators [TT ]n,`!
4

We can then determine the conformal block coefficients for these large ` operators by

matching the v-dependence of both sides. The dominant contribution is again from the n = 0

conformal blocks, with the resulting coefficients

P
(11,22)
[TT ]0,`

≈ γ2
0

√
π

22τT+2`

Γ(∆1 − τT )Γ(∆2 − τT )

Γ(∆1)Γ(∆2)
`−

3
2 . (3.5)

Experts may be interested to note that when we multiply this coefficient by the corresponding

conformal blocks and perform the sum over `, the double logarithm log2 v arises mainly from

the sum over the region 1� `2 � 1
u .

There are many primary operators with large spin ` and twist near mτT for m > 2.

We cannot distinguish among them; we can only obtain the sum of their conformal block

coefficients at large ` from our bootstrap argument. In fact, one can write a general formula

for the combined conformal block coefficients of all operators of the form [Tm]` with m ≥ 2:

P
(11,22)∑

[Tm]`
≈ (−γ0)m

√
π

2mτT+2`(m− 2)!

Γ(∆1 − mτT
2 )Γ(∆2 − mτT

2 )

Γ(∆1)Γ(∆2)
`−

3
2 logm−2 (`) . (3.6)

3Explicit expressions for the asymptotic forms of the OPE coefficients and the blocks in the lightcone limit
u� v � 1 at large ` can be found in [33, 35], which we reproduce here:

gτ,`(v, u) ≈ v
τ
2 u

1
2

∆122τ+2`

√
`

π
K∆12(2`

√
u) (u� v � 1),

P
(12,12)

[O1O2]n,`
≈ 4

√
π

Γ(∆1)Γ(∆2)2τn+2`
`∆1+∆2− 3

2 , (3.4)

where Kx(y) is a modified Bessel function.
4At this stage, one might wonder if the role of these infinite towers could be played by some other operators

with τ = mτT besides the [TT ]n,` double-trace operators. We will make the connection to the [TT ]n,` more
explicit in sections 4 and 5.
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This provides the leading logarithmic dependence of the summed conformal block coefficients

at large `. We wrote the coefficient in terms of (−γ0) because this quantity is positive,

ensuring the manifest positivity of the large spin conformal block coefficients when O1 = O2.

We will obtain the m = 3 case directly from an OPE limit in section 5.3.

3.2 Exponentiation of Large Spin Operators and AdS Field Theory

Next, let us consider the m > 2 terms in (3.3). Since these correspond to infinite towers of

operators with twist τ → mτT as `→∞, they are most naturally interpreted as multi-trace

operators constructed from T . We therefore find that in every CFT≥3, if a single minimal

twist operator T contributes to the correlation function 〈O1O1O2O2〉, then there must also

be a universal multi-trace contribution of the form

∞∑

m=0

P
(11,22)
[Tm]`

g[Tm]`(u, v) ≈
∞∑

m=0

1

m!

(γ0

2
u
τT
2 log v

)m Γ(∆1 −m τT
2 )Γ(∆2 −m τT

2 )

Γ(∆1)Γ(∆2)
, (3.7)

where we have specifically taken the limit u� v � 1.

This expression greatly simplifies if we consider the limit ∆1,∆2 � τT , such that two

‘heavy’ operators are exchanging a ‘light’ mediator. In this case, we obtain

∞∑

m=0

P
(11,22)
[Tm]`

g[Tm]`(u, v) ≈
∞∑

m=0

1

m!

(
−P (11,22)

T uτT
Γ(τT + 2`T )

Γ2( τT2 + `T )
log v

)m

≈ exp
[
P

(11,22)
T gT (u, v)

]
,

(3.8)

where we have used eq. (2.9) to rewrite the anomalous dimension coefficient γ0. Note that at

small u, v this behaves as v−α
′uτT with α′ ≡ P (11,22)

T
Γ(τT+2`T )

Γ2(
τT
2

+`T )
.

We see that the exchange of a minimal twist operator exponentiates in the lightcone

OPE limit. This universal eikonalization arises due to the fact that the kinematic limit

v → 0 isolates the large ` multi-trace operators, which form an approximate Fock space. The

exchange of these multi-trace operators in a CFT is therefore consistent with the exchange

of well-separated, weakly-interacting light mediators in AdS. These exchanges are what is

responsible for the fact that one can replace the ‘source’ with its effective classical background

field (see e.g. chapter 13 of [67]). A similar analysis can also be perfomed in the usual eikonal

limit in AdS [62]. In that case it can be shown that AdS/CFT correlators can be written as a

bulk integral over the exponential of an effective eikonal propagator [62] in a d−1 dimensional

hyperbolic space. Although we have not been studying the eikonal limit of large energy and

large impact parameter, but instead have focused on fixed energy and large impact parameter,

it would be interesting to connect to these AdS results more concretely in future work.

3.3 Explicit Construction of Large-` ‘Multi-Trace’ Modes

The result (3.8) generalizes those of [35], which focused on the case of the stress tensor

in d = 2. An advantage of the latter approach was that all [T . . . T ]` contributions could
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be constructed explicitly using generators of the Virasoro algebra, so that it was manifest

which modes were exponentiating. In this section, we will generalize the construction to an

arbitrary spin-L current J in d = 2. In this case, the commutators of modes Jn of the current

are simple to calculate as a result of holomorphicity. Conserved currents have zero twist in

d = 2, so according to (3.8), their contributions should exponentiate assuming the anomalous

dimensions can be treated perturbatively.

The singular terms in the OPE of a general spin-L current contain at a minimum

J(z)Oi(w) ∼ qi
L−1∑

a=0

1

(z − w)L−a
(L)a

a!(2hi)a
∂aOi(w), (3.9)

where qi is the charge of Oi. In what follows, for convenience of notation we assume these

are the only singular terms. Writing J(z) =
∑

n∈Z
Jn
zn+L , we can read off the commutators by

a standard contour integral,

[Jn,Oi(w)] =

∮
dz

z
zn+LJ(z)Oi(w) = qi

L−1∑

a=0

Γ(L+ n)(L)aw
a+n

Γ(L− a)(n+ a)!a!(2hi)a
∂aOi(w). (3.10)

The contribution of the modes Jn to the four-point function 〈O†1O1O2O†2〉 depends on the ma-

trix of inner products as well as the matrix elements 〈O†1O1J−n〉, 〈JnO2O†2〉. The derivatives

∂a acting on Oi(w) inside 〈OiO†i 〉 produces

wa+n∂a〈Oi(w)O†i (0)〉 → wn(−1)a(2hi)a〈Oi(w)O†i (0)〉, (3.11)

so we can simplify the action of Jn in such matrix elements to

〈JnOi(w)O†i (0)〉 = qiw
n
L−1∑

a=0

Γ(L+ n)(L)a(−1)a

Γ(L− a)(n+ a)!a!
〈Oi(w)O†i (0)〉

= qiw
n

(
n− 1

L− 1

)
〈Oi(w)O†i (0)〉. (3.12)

The algebra of higher-spin currents in general can be extremely complex; however, here we

are interested in the limit where the central charge of the current is large, so the dominant

term will be given by the 〈J(z)J(0)〉 two-point function:

〈J(z)J(0)〉 =
cJ
z2L

. (3.13)

To leading order, the algebra is therefore approximately

[Jn, Jm] ≈ cJ
Γ(L+ n)

Γ(2L)Γ(n− L+ 1)
δn,−m. (3.14)

The contribution from a single exchange immediately reproduces the standard conformal
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block:

∞∑

n=L

〈O†1(∞)O1(1)J−n〉〈JnO2(z)O†2(0)〉
〈JnJ−n〉

= 〈O†1(∞)O1(1)〉〈O2(z)O†2(0)〉q1q2

cJ
zL2F1(L,L, 2L, z).

(3.15)

In the limit of large cJ with q1q2
cJ

fixed, all Jn’s with positive n commute with each other

at leading order, and similarly for Jn’s with negative n, so as in [35] the contribution from

modes made of all products of Jn is just the exponentiation of the single-J contribution:

∞∑

s=0

∞∑

n1,n2,...ns=L

〈O†1(∞)O1(1)J−n1 . . . J−ns〉〈Jns . . . Jn1O2(z)O†2(0)〉
〈Jns . . . Jn1J−n1 . . . J−ns〉

= 〈O†1(∞)O1(1)〉〈O2(z)O†2(0)〉 exp

[
q1q2

cJ
zL2F1(L,L, 2L, z)

]
. (3.16)

4 Large Spin OPE Coefficients from a Boostrap Analysis

The eikonalization of conformal blocks indicates a connection between the Oi(x)Oi(0) OPE

coefficients for T and its multi-trace counterparts [T · · ·T ]`. In this section, we make this con-

nection manifest by deriving the large ` double-trace coefficients from the contribution of Oi
exchange to the correlator 〈OiOiTT 〉. By studying this single conformal block in the lightcone

OPE limit, we successfully reproduce the coefficients derived in section 3. We then consider

the exchange of additional conformal blocks, demonstrating the effect on eikonalization of

finite numbers of such potential corrections.

4.1 Exchange of Oi in the Lightcone OPE Limit

So far, we have obtained an indirect relation between the OPE coefficients of the single-trace

operator T and the multi-trace [T · · ·T ]` by using the bootstrap equation for the 〈O1O1O2O2〉.
However, as indicated in figure 3, we can instead derive this connection by considering corre-

lation functions involving multiple insertions of T .

For example, given a four-point function of the form 〈OiOiTT 〉, we can take the kinematic

limit z → 1, z̄ → 0 to determine the OPE coefficients for all of the double-trace operators

[TT ]n,`. While the precise form of this correlation function clearly depends on the dynamics of

the particular theory being studied, we are specifically interested in contributions associated

with the presence of T in the OPE Oi(x)Oi(0).

One universal such contribution is the exchange of theOi conformal block, shown schemat-

ically in figure 2, which is completely fixed by the corresponding OPE coefficient for T . A

natural question to ask is whether this conformal block gives rise to the universal double-trace

coefficients derived in the previous section. While we will specifically consider this calculation

for d = 2, as this is the simplest case technically, the results can easily be generalized to higher

dimensions.
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Our strategy will therefore be quite analogous to our method in section 3. In the limit

z → 1, the LHS of our bootstrap equation is dominated by those operators with lowest

holomorphic dimension h. We begin with singularities that arise from the exchange of a

single operator (or more generally later on, a finite number of operators), on one side of the

bootstrap equation, and ask what must appear on the other side in order to reproduce it.

For now, we will simply assume that this operator is Oi, but in the following section we’ll

consider corrections due to the presence of additional operators O′ in the OPE Oi(x)T (0).

Expanding the correlation function 〈OiOiTT 〉 in two independent channels, we can then

obtain the bootstrap equation in the limit z → 1:

P
(OiT,OiT )
Oi gOi(1− z, 1− z̄) ≈

(1− z)hi+hT (1− z̄)h̄i+h̄T
z2hT z̄2h̄T

∑

h,h̄

P
(OiOi,TT )

h,h̄
gh,h̄(z, z̄), (4.1)

which is much like eq. (2.5), except that now Oi and T are external operators and Oi is the

internal operator. Just as in the derivation of cluster decomposition reviewed in section 2,

the LHS cannot be reproduced at z ∼ 1 by any finite number of conformal blocks on the

RHS, implying the presence of an infinite number of conformal blocks in the cross-channel.

To make this more explicit, we again take limits. At z̄ → 0 and h → ∞ with fixed

h
√

1− z, eq. (4.1) approximates to5

P
(OiT,OiT )
Oi

Γ(2h̄i)Γ(2h̄i − 2h̄T )

Γ2(2h̄i − h̄T )
≈ (1− z)hT

z̄2h̄T

∑

h,h̄

P
(OiOi,TT )

h,h̄

(
z̄h̄22h−1

√
h

π
K0(2h

√
1− z) +O(z̄h̄+1)

)
.

(4.4)

Note that the z̄-dependence has greatly simplified, such that we can determine the antiholo-

morphic dimension h̄ of the operators which dominate at large h. More precisely, there must

be an infinite tower of operators with h̄→ 2h̄T as h→∞, in order to cancel the z̄-dependent

factor.

By matching the full z̄-dependence of both sides of the bootstrap equation, we can in fact

prove that there must be an infinite tower of such operators for every non-negative integer

n, with the corresponding dimensions h̄ → 2h̄T + n. These towers of operators precisely

correspond to the large spin double-trace operators [TT ]n,`, with

h→ 2hT + `, h̄→ 2h̄T + n. (4.5)

5 At z̄ → 0, the global conformal block associated with the exchange OiT → Oi → OiT takes the
approximate form

gOi(1− z, 1− z̄) ≈
Γ(2h̄i)Γ(2h̄i − 2h̄T )

Γ2(2h̄i − h̄T )
(1− z)hi (1− z � z̄ � 1), (4.2)

and the approximate conformal blocks for the large h contribution on the RHS are

gh,h̄(z, z̄) ≈ z̄h̄Γ(2h)

Γ2(h)
K0

(
2h
√

1− z
)

+O(z̄h̄+1) (h� 1, h
√

1− z fixed). (4.3)
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We can then use the z-dependence of this infinite sum to determine the asymptotic form of

their conformal block coefficients.

As a simple example, let’s consider the lowest-twist operators, with n = 0. Parametrizing

the large spin conformal block coefficients as

P
(OiOi,TT )
[TT ]0,`

≈ P0

24hT+2`
`α, (4.6)

we can approximate the sum over ` as an integral, obtaining

P0

2
√
π

∫
d` `α+ 1

2K0(2`
√

1− z) ≈ P0 Γ2(α2 + 3
4)

8
√
π

(1− z)−α2− 3
4 . (4.7)

The divergent sum over large ` operators therefore leads to a singularity in z not possessed

by any finite collection of conformal blocks. By matching the z-dependence of the bootstrap

equation, we then obtain the large ` conformal block coefficients

P
(OiOi,TT )
[TT ]0,`

≈
8
√
π P

(OiT,OiT )
Oi Γ(2h̄i)Γ(2h̄i − 2h̄T )

Γ2(hT )Γ2(2h̄i − h̄T )24hT+2`
`2hT−

3
2 . (4.8)

We therefore see that the [TT ]n,` coefficients are fixed in terms of the Oi conformal block

coefficient.

However, we still need to determine whether these conformal block coefficients are con-

sistent with the eikonal results derived in section 3. In order to compare conformal blocks

associated with different correlation functions, we need to first rewrite them in terms of the

more universal OPE coefficients. For example, these particular coefficients can be written as

the product

P
(OiOi,TT )
[TT ]0,`

= C
(OiOi)
[TT ]0,`

C
(TT )
[TT ]0,`

. (4.9)

We can therefore use the known OPE coefficients [61]

C
(TT )
[TT ]0,`

≈ 2(4π)
1
4

Γ(2hT )22hT+`
`2hT−

3
4 , (4.10)

to obtain

C
(OiOi)
[TT ]0,`

≈
2(4π)

1
4 P

(OiT,OiT )
Oi Γ(2hT )Γ(2h̄i)Γ(2h̄i − 2h̄T )

Γ2(hT )Γ2(2h̄i − h̄T )22hT+`
`−

3
4 . (4.11)

In section 3, we considered the contribution of these same large spin operators to the 4-pt
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Figure 5. This figure suggests other contributions to the 〈O1O1TT 〉 correlator from O′ conformal
blocks. These contributions affect the 〈O1O1[TT ]n,`〉 OPE coefficients, but they do not contaminate
eikonalization unless τO′ < τ1 and the two twists differ by an integer. Generically, they contribute to
[O′O′]n,` exchange at large ` in the cross-channel, as pictured, and also to [OiO′]n,`.

correlator 〈O1O1O2O2〉. As a reminder, those conformal block coefficients were found to be

P
(11,22)
[TT ]0,`

≈
8
√
π
(
P

(11,22)
T

)2
Γ2(2hT )Γ(2h̄1)Γ(2h̄2)

Γ4(2hT )Γ(2h̄1 − 2h̄T )Γ(2h̄2 − 2h̄T )24hT+2`
`−

3
2 . (4.12)

By noting the equivalence

(
P

(11,22)
T

)2
=
(
C

(11)
T C

(22)
T

)2
= P

(1T,1T )
1 P

(2T,2T )
2 , (4.13)

we can then confirm that our OPE coefficients precisely agree with the conformal block

coefficients derived in section 3, with the relation

P
(11,22)
[TT ]0,`

= C
(11)
[TT ]0,`

C
(22)
[TT ]0,`

∼
(
C

(11)
T C

(22)
T

)2
. (4.14)

We have a simple method for deriving the OPE coefficients of multi-trace operators di-

rectly from the coefficients of their constituent primary operators. For any operator T present

in the OPE Oi(x)Oi(0), the OPE coefficients for the double-trace operators [TT ]n,` can be

determined by considering the correlation function 〈OiOiTT 〉 in the lightcone OPE limit.

This method can easily be generalized to study higher-trace operators, with the resulting

OPE coefficients leading directly to the eikonalization of multi-trace operators at large spin.

4.2 Including O′ in the Oi(x)T (0) OPE

Now we will address what would seem to be a major oversight in the previous sections: do

other operators O′ contaminate and invalidate the eikonalization results?

For example, consider the addition of a single new operator O′ in the OPE Oi(x)T (0). Its

presence implies the existence of a conformal block of the form OiT → O′ → OiT contributing

to the 〈OiOiTT 〉 correlator, as pictured in figure 5. We are particularly interested in how

O′ affects the OPE coefficients of the double-trace operators [TT ]n,`. We can study the
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contribution from O′ by generalizing the bootstrap analysis of the previous section, comparing

O′ exchange in one channel to [TT ]n,` exchange in the cross-channel.

Including the contribution of a finite number of operators likeO′, we can write a bootstrap

equation similar to eq. (4.1),

∑

O′
P

(OiT,OiT )
O′ gO′(1− z, 1− z̄) =

(1− z)hi+hT (1− z̄)h̄i+h̄T
z2hT z̄2h̄T

∑

h,h̄

P
(OiOi,TT )

h,h̄
gh,h̄(z, z̄). (4.15)

In the lightcone OPE limit z → 1, z̄ → 0, the individual terms on the LHS have the leading

dependence

gO′(1− z, 1− z̄) ≈
Γ(2h̄i)Γ(2h̄i − 2h̄T )

Γ2(h̄i + h̄O′ − h̄T )
(1− z)hO′ (1− z � z̄ � 1), (4.16)

where the sub-leading terms have a series expansion in z̄ and 1 − z. Using an analysis

identical to that of the previous section, we can derive a contribution δC to the Oi(x)Oi(0)

OPE coefficients of [TT ]0,` of the form

δC
(OiOi)
[TT ]0,`

≈ 2(4π)
1
4 P

(OiT,OiT )
O′ Γ(2hT )Γ(2h̄i)Γ(2h̄i − 2h̄T )

Γ2(hT + hi − hO′)Γ2(h̄i + h̄O′ − h̄T )22hT+`
`hi−hO′−

3
4 . (4.17)

These results demonstrate that as z → 1, or equivalently as ` → ∞, the dominant O′ will

have minimum hO′ . In particular, any operator O′ with hO′ < hi will dominate over the

eikonal contribution to the [TT ]n,` OPE coefficients from Oi itself.

This does not invalidate the results of the previous sections, but it shows that there

are other important contributions to the OPE coefficients C
(OiOi)
[TT ]n,`

. Both the contributions

discussed in section 4.1 and here will be positive, since they are proportional to the square

of Oi(x)T (0) OPE coefficients. The sum of [TT ]n,` conformal blocks therefore contains two

physically distinct pieces. Only the contribution due to Oi exchange matches the exponentia-

tion of anomalous dimensions discussed in section 3. As we will see, the O′ contributions can

be matched to other effects. We will demonstrate how this works for an individual O′, and

the argument can be generalized as well to any finite number of O′. We expect the methods

of the section 5.3 to apply even to infinite towers of O′ with positive twist, although there

may be subtleties in that case that deserve a more thorough study.

Let us now argue that, as pictured on the right in figure 5, the O′ contributions to the

OPE coefficients COiOi[TT ]n,`
can be matched by the exchange of additional double-trace operators

[O′Oi]n,` and [O′O′]n` in the bootstrap. Returning to the correlation function 〈O1O1O2O2〉,
the conformal block coefficients associated with [TT ]n,` exchange are now

P
(11,22)
[TT ]n,`

=
(
C

(11)
[TT ]n,`

+ δC
(11)
[TT ]n,`

)(
C

(22)
[TT ]n,`

+ δC
(22)
[TT ]n,`

)
, (4.18)

so there are four terms that we can study. The original C × C term simply corresponds to
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the eikonal results of section 3, reproducing the exponentiated anomalous dimension in the

cross-channel. Turning to the δC× δC term, specifically for the minimal twist operators with

n = 0, we find that it contributes

∑

`

P
(11,22)
[TT ]0,`

g[TT ]0,`(z, z̄) ⊃
∑

`

`h1+h2−2hO′−
3
2

24hT+2`
g[TT ]0,`(z, z̄), (4.19)

where we have neglected to display the overall constant coefficient for simplicity. We can

approximate the sum using equations (4.3) and (4.7) with h = 2hT + ` and h̄ = 2h̄T . In the

limit that z̄, 1− z are small, the result is6

z̄2h̄T

2
√
π

∫
d` `h1+h2−2hO′−1K0(2`

√
1− z) ≈ Γ2(h1+h2

2 − hO′)
8
√
π

z̄2h̄T

(1− z)
h1+h2

2
−hO′

. (4.20)

We have obtained a new singularity structure in the limit z → 1, which is the lightcone

OPE limit of O1(1)O2(z). The power-law of this singularity encodes the presence of the new

double-trace operators [O′O′]n,` in the OPE.

Similarly, if we study the contribution of the C(11) × δC(22) cross term then we obtain a

power-law growth of `h2−hO′ . This growth at large ` introduces a new lightcone singularity

of (1− z)
h2−hO′

2 , corresponding to the contribution of [O1O′]n,` in the O1(1)O2(z) lightcone

OPE. The final C(22) × δC(11) term then leads to the contribution of [O2O′]n,`. The only

exception to these results is if hO′ = h1 or h2, or if they differ by an integer.

In summary, we can naturally account for the presence of OiT → O′ → OiT contributions

to the [TT ]n,` OPE coefficients. Rather than spoil the eikonalization of T exchange in the t-

channel of 〈O1O1O2O2〉, these contributions reproduce the exchange of [OiO′]n,` and [O′O′]n,`
in the s-channel, as suggested in figure 5. As a corollary, we see again that the behavior of the

[TT ]n,` OPE coefficients at large ` tells us about the dimensions of the large spin operators

in the O1(1)O2(z) OPE. Conversely, knowing the dimensions of operators in the O1(1)O2(z)

OPE gives a wealth of information about cross-channel OPE coefficients.

5 OPE Limits and Direct Extraction of Large Spin Operators

We have demonstrated that the leading large ` behavior of the OPE coefficients of multi-trace

operators such as [TT · · · ]` are fixed by the OPE coefficients of their single-trace constituents

(i.e. T ) through the leading singularities that they imply in the OiT → OiT channel. In this

section, we study this connection from a different perspective by considering the T (x)T (0)

OPE limit of the correlator 〈OiOiTT 〉. One might hope that the results in the previous

section could be derived more directly, by taking the T (x)T (0) OPE limit of conformal blocks

such as OiT → Oi → OiT . However, we encounter a well-known obstruction in section 5.1,

6This result holds in the limit h1 + h2 − 2hO′ > 0, where the integral is dominated by large ` as z → 1.
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as individual conformal blocks have non-analyticities in the cross-channel OPE limit that are

not consistent with unitarity.

This non-analyticity has a simple manifestation in Mellin space, as we discuss in section

5.2, where we find a direct connection between the cross-channel OPE limit and the asymp-

totic behavior of the Mellin amplitude. We use this connection to argue that the [TT ]n,` OPE

coefficients at large ` will always be determined by the operators in the Oi(x)T (0) OPE with

twist smaller than τi + τT . In particular, we confirm that there is a universal contribution

from the presence of Oi itself in this OPE. Then in section 5.3 we use Darboux-type argu-

ments to exploit this universality and compute Fock space OPE coefficients using differential

operators.

5.1 Conformal Blocks in Their Cross-Channel OPE Limit

In the previous sections, we used the conformal bootstrap to obtain constraints on the OPE

coefficients of multi-trace operators [T · · ·T ]`, fixing these contributions in terms of the coef-

ficients of T . We can instead try to derive this connection directly, by using the structure of

these large ` operators in the OPE limit.

For simplicity, let us focus on the double-trace operators with minimal twist, i.e. n = 0.

At large `, the structure of these operators approaches that of a generalized free theory, with

the schematic form

[TT ]0,` ∼ T∂µ1 · · · ∂µ`T, (5.1)

where their anomalous dimensions vanish as ` → 0. This structure suggests that we can

“build” double-trace correlation functions out of those containing two insertions of T . More

concretely, for a given ` there exists a differential operator D` such that

〈Oi(∞)Oi(1)|[TT ]0,`〉 ≈ lim
z,z̄→0

D`〈Oi(∞)Oi(1)T (z, z̄)T (0)〉, (5.2)

with the specific form of D` fixed by the requirement that [TT ]0,` is primary. Note that this

procedure can only be applied at large `. Only averages over [TT ]0,` OPE coefficients at large

spin are universal, as one can show using the Hardy-Littlewood Tauberian theorem [33, 35]

via a more rigorous analysis.

This “direct” approach provides an alternative means of deriving the OPE coefficients

for large spin [TT ]0,` from the four-point function 〈OiOiTT 〉. If the OPE limit z, z̄ → 0 of

the full correlator is well-defined, the OPE coefficients calculated in this way must agree with

those obtained in the previous section from a bootstrap analysis. To confirm this consistency,

we need to consider the action of our differential operator D` on the Oi conformal block.

We will confine ourselves to computations of leading twist OPE coefficients, so that

we can take advantage of the simplicity of 2d conformal blocks. We label operators using

holomorphic and antiholomorphic dimensions h, h̄ and write the leading twist part of the Oi
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conformal block as

gOi(z, z̄) = (1− z)hi(1− z̄)h̄i2F1 (hT , hT ; 2hi; 1− z) 2F1

(
h̄T , h̄T ; 2h̄i; 1− z̄

)
, (5.3)

The differential operator D` can be split into holomorphic and antiholomorphic pieces, such

that we have

D` = D`,z +D`,z̄. (5.4)

While the precise form of these differential operators is discussed in section 5.3, schematically,

they consist of ` derivatives D`,z ∼ ∂`z. To determine the action of D`, we need to evaluate

expressions of the form

∂`z

[
(1− z)hi2F1 (hT , hT ; 2hi; 1− z)

]
. (5.5)

We can simplify this analysis by using the hypergeometric identity

2F1(a, b; c; 1− z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b; 1 + a+ b− c; z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
zc−a−b2F1(c− a, c− b; 1 + c− a− b; z).

(5.6)

Acting with derivatives on the first term yields slightly modified hypergeometric functions,

which are well-behaved in the OPE limit z → 0. However, the second term arising from

eq. (5.6) will also have the prefactor z2hi−2hT , which is problematic.

The scaling dimensions hi, hT are independent and arbitrary. Even when they are integer

spaced, the hypergeometric relation degenerates and one obtains a log z factor. For ` <

2hi − 2hT this will not be a problem, but the action of a large number of derivatives will

eventually yield terms which are singular in the OPE limit. Since we are specifically interested

in the limit `→∞, we will always encounter such divergent terms.

We therefore find that this alternate “direct” approach for extracting the [TT ]0,` OPE

coefficients cannot be applied to the Oi conformal block alone, as its cross-channel OPE

limit is not well-defined [68–70]. For this correlation function to be well-behaved in the

OPE limit, there must be additional operators which eliminate the z → 0 branch cut in

this single conformal block. This is one reason that the bootstrap equation provides such

a non-trivial constraint on CFTs. More generally, in the OPE limit T (z, z̄)T (0) we obtain

an expasion in 1
zz̄ with arbitrary power-law singularities (not necessarily integers) multiplied

by an analytic function of z, z̄, whose powers depend on the spin of operators in the OPE.

Individual conformal blocks do not have such an expansion in their cross-channels.7

However, we know from the previous sections that the Oi conformal block does contain

enough information to determine the large ` behavior of the [TT ]0,` OPE coefficients. This

7This behavior can easily be seen to generalize to conformal blocks in higher dimensions. As shown in
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suggests that one should be able to see that after “adding in” the necessary conformal blocks

required to make the cross-channel well-defined, the direct approach is insensitive at leading

order in large ` to the details of how the extra conformal blocks were added. We will see that

Mellin space is well-suited for clarifying these issues.

5.2 Existence of the OPE and Boundedness of Mellin Amplitudes

We can obtain a new perspective on the cross-channel OPE limit by rewriting the correlation

function in Mellin space [44, 46–48]. The Mellin amplitude makes all OPE limits manifest,

enabling a unified treatment of different channels.

The Mellin amplitudeM(δij) associated with a particular correlation function is defined

by the relation

〈O1(x1) · · · On(xn)〉 =

∫ i∞

−i∞
[dδij ]

∏

i<j

(
Γ(δij)x

−2δij
ij

)
M(δij). (5.8)

The Mellin variables δij are constrained to the phase space

δij = δji, δii = 0,
∑

j 6=i
δij = ∆i, (5.9)

which can be viewed as analogous to momentum conservation constraints on Mandelstam

variables in scattering amplitudes. For our four-point correlator, there are only two inde-

pendent Mellin variables, which we can choose to be s = δ14, t = δ12. We then obtain the

simplified expression

〈Oi(∞)Oi(1)T (z, z̄)T (0)〉 = (zz̄)∆i−∆T

∫ i∞

−i∞

ds dt

(2πi)2

M(s, t)
∏
i<j Γ(δij)

(zz̄)t((1− z)(1− z̄))s . (5.10)

An advantage of Mellin amplitudes is that their poles correspond to the scaling dimensions

of exchanged operators. More specifically, the residue of a simple pole is the OPE coefficient

of the associated operator, while double poles give perturbative anomalous dimensions. We

can use the tools of complex analysis to study the contributions to the correlation function.

We see immediately that in the limit from section 4.1 where z → 1, z̄ → 0, the leading

z, z̄ dependence is

(1− z)−s z̄∆i−∆T−t. (5.11)

appendix B, in d dimensions the conformal block for a scalar primary Oi has the OPE limit

gOi(v, u) ≈ Γ(∆i)Γ(∆i −∆T )

Γ2(∆i − ∆T
2

)
(1− z)

∆i
2 2F1

(
∆T

2
,

∆T

2
; ∆i −

d

2
+ 1; 1− z

)
, (5.7)

where we have specifically taken the limit z̄ → 0 with fixed z. We can then use eq. (5.6) to rewrite the hyper-

geometric function, obtaining a term proportional to z∆i−∆T− d2 +1. Individual conformal blocks in arbitrary
dimensions therefore possess a z → 0 branch cut which renders the cross-channel OPE limit ill-defined.
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In this limit, the correlator will be dominated by the poles of the Mellin integrand with the

largest values of s and t. From the analysis of section 4 we expect that the leading poles in

s, t will be responsible for the behavior of the [TT ]n,` OPE coefficients.

A primary focus will be the Mellin amplitude for the OiT → Oi → OiT conformal block

in general d

BOi(s, t) = eiπ(1−∆i)
(
eiπ(2∆i+∆T−d−2s) − 1

) Γ(s− ∆T
2 )Γ(s−∆i − ∆T

2 + d
2)

Γ2(s)
, (5.12)

where we have assumed that Oi is a scalar operator. The first gamma function introduces an

infinite set of poles at s = ∆T
2 − n. Looking at eq. (5.10), we see that this leads to a series of

terms proportional to v
1
2

(∆i+2n), which corresponds to the exchange of Oi and its descendants.

The second gamma function also contains a set of unphysical poles at s = ∆i + ∆T
2 + d

2 − n,

which are eliminated by the zeroes of the oscillatory prefactor.

So in the z → 1, z̄ → 0 limit from section 4.1, the correlator is dominated by the poles of

the Mellin amplitude at8

s =
∆T

2
, t = ∆i −∆T , (5.13)

where the latter comes from the Γ(δ34) = Γ(t−∆i + ∆T ) in the definition of the Mellin space

integrand. This pole determines the limiting behavior in equation (4.2). Much of the utility

of the Mellin formalism comes from our ability to connect the dominant contribution to the

correlator with a single simple pole. Other contributions to the correlator that do not affect

the residue of this pole, and that do not supercede its importance, will not affect the [TT ]n,`
OPE coefficients.

We are interested in studying the 〈Oi(∞)Oi(1)T (z)T (0)〉 correlation function directly in

the OPE limit z, z̄ → 0, in order to extract OPE coefficients for individual [TT ]n,` operators.

As discussed in the previous section, the OiT → Oi → OiT conformal block has a branch

cut emanating from z = 0, which obstructs the OPE limit. We would like to understand how

this manifests in Mellin space. If we study the residue of a pole in the Mellin integrand at

s = s∗, we can expand in the OPE limit to find

(1− z)−s∗ ≈ 1 + (s∗)z +
s∗(s∗ + 1)

2
z2 + · · · , (5.14)

a result which is analytic near z = 0. Looking at the integrand of eq. (5.10), we see that

the (1− z)-dependence takes the form (1− z)−s, such that any non-analyticity about z = 0

must come from the behavior of the Mellin amplitude as |s| → ∞. The analytic structure of

correlation functions near z = 0 is determined by the poles of the Mellin integrand in t and

the asymptotic behavior of the Mellin amplitude as a function of s.

8We are assuming that ∆i −∆T > 0, interpreting Oi as ‘heavy’ and T as ‘light’.
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To see this more generally, note that the holomorphic dependence of the correlator is

z∆i−∆T

∫
ds dt

(2πi)2
M̃(s, t)z−t(1− z)−s, (5.15)

where we combined M(s, t) with the gamma functions to write the integrand as M̃(s, t).

Localizing the integral at a pole t = t∗, we find

z∆i−∆T−t∗
∫

ds

2πi
M̃(s)

∞∑

k=0

(s)k
zk

k!
, (5.16)

where (s)k = s(s + 1) · · · (s + k − 1) is the Pochhammer symbol, which produces a degree k

polynomial in s. Thus to obtain an analytic function of z near z = 0, the integral of M̃(s, t)

times any polynomial in s should be well-defined, which means that

lim
s→±i∞

M(s, t) e−2π|s||s|k = 0. (5.17)

We provide a more detailed argument in appendix C. One might wonder why we have focused

on s; in fact via crossing symmetry we can exchange s with t or t + s, and so the Mellin

amplitude should have equivalently bounded asymptotic behavior in these variables.

Furthermore, in general we expect that when we expand the CFT correlator about z =

0, the resulting series will have radius of convergence 1. This follows because the OPE

of Oi(z)Oi(0) converges until we reach the operator Oi(1) in the 4-pt correlator. Writing

1− z = reiθ, we see that |z| < 1 implies that θ lies in the range (−π
2 ,

π
2 ). So for the integrals

defining the correlator in terms of the Mellin amplitude to be well-defined, we must have

lim
s→±i∞

M(s, t) e−
3
2
π|s| = 0 (5.18)

to guarantee the convergence of the OPE when |z| < 1. AdS field theories satisfy a much

stronger polynomial bound, but it would be interesting to understand if this exponential

bound has an interpretation in terms of string theory in AdS.

If the Mellin integrand M̃(s, t) is well-behaved at infinity, then one might attempt to

derive sum rules for the correlation function from contour integrals of M̃(s, t). For example,

we can evaluate the integrals over s and t in equation (5.10) by closing the contour of inte-

gration to the left or the right of the imaginary axis. Because there is no contribution to the

correlator as s, t→ ±i∞, these are equivalent. So the sum rules simply express the fact that

when the correlator is expanded in one channel, it will agree with its analytic continuation

from any other channel. But the individual conformal blocks do not have this property.

One can study the case where the OPE coefficient of T in Oi(x)Oi(0) is treated as a

perturbative parameter, analogous to the ‘1/N ’ expansion, with other correlators taking the

generalized free theory form (equivalent to a free field theory in AdS). In that case, it can be

shown that [49] the operators that cancel the bad asymptotic behavior of the Mellin amplitude
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Figure 6. This figure shows that neglecting the exponentially growing part of the Mellin amplitude
for conformal blocks with spin turns them into a Feynman diagram for an AdS exchange plus AdS
contact interactions. Demanding that all OPE limits are well-defined and expanding perturbatively in
the 〈OiOiT 〉 OPE coefficients immediately suggests the existence of AdS Feynman diagrams for the
CFT correlators, as discussed in [49].

must be [OiT ]n,` operators appearing in the Oi(x)T (0) OPE. The implied connection between

conformal blocks and AdS Feynman diagrams is pictured in figure 6.

5.3 Universality of Large Spin OPE Coefficients and a Theorem of Darboux

We have seen that as long as the Mellin amplitude governing the 〈Oi(∞)Oi(1)T (z, z̄)T (0)〉
correlator is bounded according to equation (5.17), all OPE limits will exist. We can use

this to show that the OPE coefficients of large spin [TT ]n,` with Oi(x)Oi(0) are governed by

operators in the Oi(x)T (0) OPE with twist less than τi + τT , including Oi itself.

As discussed in section 5.1, the OPE coefficients of [TT ]n,` can be extracted by applying

a differential operator Dn,` at large ` and then taking the OPE limit z → 0. At large ` this

requires the application of a large number of derivatives, and so the procedure is only sensitive

to the large order expansion of the correlator in z. A theorem of Darboux9 states that the

dominant contribution to these large order terms is determined by singularities on the circle

of convergence. The OPE expansion converges for |z| < 1 and can only have singularities at

z = 1, so as expected from section 4, the large spin [TT ]n,` OPE coefficients will be determined

by the operators that produce singularities in the Oi(1)T (z) OPE.

In other words, a small subset of the Mellin amplitude poles determine the [TT ]n,` OPE

coefficients at large `. These coefficients do not depend on the asymptotic behavior of the

Mellin amplitude as long as it obeys the bound from equation (5.17). By unitarity in the

Oi(x)T (0) OPE limit, these poles must have positive residue, and so they can never be

9See chapter VII of [50] for a discussion, [51] for rigorous statements and proofs, and [71] for an application
to resurgence theory.
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eliminated by the inclusion of other operators. The utility of the Mellin amplitude language

is that it makes it easy to cleanly separate the poles, which determine the [TT ]n,` OPE at

large `, from the asymptotic behavior, which must satisfy a bound but is otherwise irrelevant

for the large spin OPE coefficients we are studying. But the Darboux theorem by itself

justifies keeping only the singular terms from the Oi(1)T (z) OPE when computing [TT ]n,`
OPE coefficients at large `.

We can now complete the analysis discussed in section 5.1 and use differential operators

to derive the OPE coefficients of [TT ]n,`. For simplicity we will take n = 0, and study only

the leading twist operators. The differential operator must be either entirely holomorphic and

anti-holomorphic, such that we write D` = D`,z or D`,z̄ when we are studying the minimal

twist [TT ]0,`. The differential operators take the form [46, 61] discussed in appendix A:

D`,z =
1

N`
∑̀

k=0

(−1)k

k!(`− k)!Γ(2hT + k)Γ(2hT + `− k)
∂k3∂

`−k
4 , (5.19)

with a similar expression for the antiholomorphic operator, and N` a normalization for the

[TT ]0,` operators. To determine the action of D`, we need to evaluate expressions of the form

∂k3∂
`−k
4

[
(1− z3)−hT (1− z4)−hT 2F1

(
hT , hT ; 2hi;

1− z3

1− z4

)]
. (5.20)

We are interested in the large ` limit, which means taking O(`) derivatives with respect to

both z3 and z4, or equivalently, expanding this function in z3 and z4 to very high order. By

the Darboux theorem [50, 51], the result will be governed by the singularity structure of the

function on the circle bounding its radius of convergence. The potential singularities are at

z3, z4 = 1, and are dominated by the power-law prefactors. If we send z4 → 1 with fixed z3

we obtain a much weaker singularity, as can be seen from the hypergeometric identity

2F1

(
hT , hT ; 2hi;

1− z3

1− z4

)
=

(
1− z4

z3 − z4

)hT
2F1

(
hT , 2hi − hT ; 2hi;

z3 − 1

z3 − z4

)
, (5.21)

and the fact that the last hypergeometric function behaves logarithmically near 1. This is

a much weaker singularity than the simultaneous limit z3 = z4 → 1. Similarly, if we send

z3 → 1 with fixed z4 then we obtain a weakened singularity. Thus the large order terms will

be governed by

∂k3∂
`−k
4

[
(1− z3)−hT (1− z4)−hT 2F1 (hT , hT ; 2hi; 1)

]

= (−1)` (hT )k (hT )`−k
Γ2 (2hi) Γ2 (2hi − 2hT )

Γ2 (2hi − hT )
.

(5.22)

Now we can sum over k weighted by the coefficients in equation (5.19) to obtain the [TT ]0,`
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OPE coefficients

C
(OiOi)
[TT ]0,`

C
(TT )
[TT ]0,`

=
Γ2 (2hT ) Γ

(
`
2 + hT

)
Γ
(
`+1

2

)

4hTΓ2(hT )Γ
(
`
2 + hT + 1

2

)
Γ
(
`
2 + 2hT

) × Γ(2h̄i)Γ(2h̄i − 2h̄T )

Γ2(2h̄i − h̄T )
, (5.23)

where for simplicity we computed the ratio of the coefficient with the generalized free theory

coefficients of [TT ]0,` in the T (x)T (0) OPE. The result matches equation (4.11) in the large

` limit, the only regime where either expression is valid.

More generally, consider a pair of distinct operators S and T , where both S and T appear

in the OPE Oi(x)O′(0) with hO′ ≤ hi. Thus there exists a conformal block OiT → O′ → OiS
contributing to the 〈OiOiTS〉 correlator. We can use the same methods to extract the large

` OPE coefficients of the operator [ST ]n,` with Oi(x)Oi(0). If we restrict to the leading twist

contributions, then we can allow all of the operators in this correlator to have general spin,

expressed as a difference h− h̄ between holomorphic and anti-holomorphic scaling dimension.

The treatment of general S is useful because we can view S itself as an operator like [TT ]n,`,

enabling us to recursively determine general [TT · · ·T ]` OPE coefficients at leading twist. We

find that

C
(OiOi)
[TS]0,`

= C
(OiT )
O′ C

(OiS)
O′

√
(2hT )` (hi + hS − hO′)2

`

`!(2hS)` (2hS + 2hT + `− 1)`
× Γ(2h̄O′)Γ(2h̄i − h̄T − h̄S)

Γ(h̄i + h̄O′ − h̄T )Γ(h̄i + h̄O′ − h̄S)

×3F2 (−`, 1− `− 2hS , hO′ − hi + hT ;hO′ − `− hi − hS + 1, 2hT ; 1) , (5.24)

where the result applies at very large `, and is due to the conformal block OiT → O′ → OiS;

the hypergeometric 3F2 function simplifies when hT = hS .

Using the more general differential operators or the conglomeration technique of [61]

one could compute the OPE coefficients with n 6= 0. It would be especially interesting to

study the combined contributions of an infinite tower of O′, as is encountered in 2d CFTs

[35, 43]. Operators such as [ST ]n,` have computable anomalous dimensions that can also be

expressed as a perturbation series in 1/` and log(`), so in future work, it will be important

to understand how these affect the use of D` to compute OPE coefficients and the anomalous

dimensions themselves. We expect that there will be a ‘derivative relation’ [30, 61] for these

large spin operators, so the perturbative OPE coefficients should be proportional to a certain

normalized derivative acting on the anomalous dimensions.

We can use this result to provide an alternate derivation of the summed conformal block

coefficient from [Tm]` exchange in equation (3.6) for the case m = 3. We need to take

S = [TT ]0,k and combine it with T to form a spin ` operator in all possible ways, so we have

P
(11,22)∑

[TTT ]0,`
=
∑̀

k=0

C
(11)
[[TT ]kT ]0,`−k

× C(22)
[[TT ]kT ]0,`−k

(5.25)

for the minimal twist [TTT ]` operators, where we take O′ = O1 and O2 when we compute
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the first and second OPE coefficient, respectively. We will not try to evaluate this expression

in full generality, but instead we will treat the special case hT = 1. Then, displaying only the

` dependent factors in equation (5.24) for simplicity, the hypergeometric function simplifies

and we obtain

P
(11,22)∑

[TTT ]`
=
∑̀

k=0

√
π(2`− 2k + 3)Γ(`+ 3)

22`+3(k + 1)(`− k + 1)(`− k + 2)(2`− k + 4)Γ
(
`+ 5

2

)

≈
√
π log(`)

22`+3`
3
2

(5.26)

at large `. This matches the expectation from equation (3.6), using equation (2.9) for γ0,

once we take hT = 1 and add the holomorphic and anti-holomorphic contributions. Note

that the log(`) dependence, which is crucial for eikonalization arises here because each Fock

space primary [[TT ]kT ]`−k has a conformal block coefficient proportional to 1/k.

6 Future Directions

The primary motivations for this work were to study classical background fields in AdS

purely from a CFT viewpoint, to extend and systematize the lightcone OPE limit and the

corresponding 1/` perturbation theory, and to determine how much information about the

CFT spectrum and OPE coefficients can be obtained from the existence of just a few operators

and a single term in the OPE O(x)O(0) ⊃ T .

The large spin expansion provides a concrete realization of an old hope for the bootstrap

– that OPE coefficients can be determined entirely from the CFT spectrum. For example, if

we know the dimensions of large spin operators of the form [OO]n,`, then in principle we can

immediately determine the OPE coefficients of O(x)O(0) with all operators of twist less than

2τO. It is particularly interesting that as τO increases, we obtain more and more information

about the OPE coefficients of O; perhaps in some situations one can make universal pre-

dictions about the properties of large dimension operators [40]. This also suggests that one

might diagnose sub-AdS scale locality in the CFT by using heavy probe operators, without

ever making an assumptions about a 1/N expansion.

Now that we can compute the OPE coefficients of the Fock space operators [TT · · ·T ]`
from the OPE coefficients of their elementary consitituent, T , we can systematize the 1/`

perturbation theory and attempt to analyze specific CFTs. In future work it may be fruit-

ful to use differential operators or integral conglomeration [46, 61] to directly extract OPE

coefficients and anomalous dimensions from the singular parts of correlators.

Recent work has shown that many universal features of quantum gravity in AdS3, in-

cluding the Hawking temperature of black holes, can be derived from the bootstrap [35, 37]

and Virasoro conformal blocks [43] at large central charge, without other assumptions about

the CFT data. We would like to generalize these results as far as possible to CFTs in d > 2

dimensions. The universality of gravity suggests that these results should depend on only a
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few OPE coefficients and modest assumptions concerning the CFT spectrum. For example,

we would like to understand when high dimension operators behave as a thermal background

for the correlators of light operators, and which CFT data determine the relationship between

energy and temperature. This will require incorporating the corrections to our results that

produce non-linear classical fields in AdS, perhaps using an analysis that parallels [43].

Our results also support the idea that multiple weak interactions can build up to produce

a large effect [72], without making direct reference to an AdS description, although a true

eikonal limit in CFT [41] would make for a more decisive demonstration. With the exchange of

the large spin Fock space under control, it will be exciting to perform a study of the eikonal

limit in general CFTs, although additional assumptions may be necessary. Conversely, it

may be possible to understand what ‘large’ spin means, i.e. what values of ` are large? For

example, one might generalize the cross section bounds on scattering amplitudes to AdS/CFT,

reformulating them as statements about the deviation of OPE coefficients from generalized

free theory values. Since CFTs in radial quantization are always gapped, a Froissart-type

bound could exist for general theories, regulating the range and strength of AdS interactions.

We were able to bypass a technical obstruction in order to directly obtain OPE coefficients

for large spin Fock space operators such as [TT · · ·T ]`, leading to the simpler computational

methods of section 5. Conceptually, our analysis was based on a Darboux-type [50, 51]

argument that controls the large order behavior of the OPE. Resurgence methods have been

used to study the OPE in general QFTs [73, 74]. Our analysis suggests a controlled setting

for studying the large order behavior of the OPE OL(x)OL(1), namely in the background

created by some heavy operators OH(∞)OH(0), which should appear thermal at large ∆H .

The large order behavior of the light operator OPE OL(x)OL(1) should be governed by the

singularity structure of the cross-channel OL(x)OH(0) OPE.
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A Lightcone Formulation of Correlation Functions

In this appendix, we consider the decomposition of CFTd conformal blocks into representa-

tions of the collinear, or lightcone, subgroup, as used in [34, 75]. The lightcone OPE limit

z → 0, z̄ → 1 then isolates those representations with lowest “lightcone twist”, rewriting

d-dimensional calculations in the simpler language of CFT2.
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A.1 Lightcone Subgroup and Four-Point Functions

In an arbitrary number of spacetime dimensions d, a combination of conformal transforma-

tions can reduce a 4-pt function to

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 → 〈O1(∞)O2(1)O3(x)O4(0)〉. (A.1)

The locations of three of the operators are therefore fixed, with only the two-dimensional

location of the final operator (the points 0, 1, x define a 2d plane) as the remaining degree of

freedom.

Mirroring the setup in CFT2, we can parametrize x in terms of (anti)holomorphic coor-

dinates z, z̄. The conformal generators associated with these directions can then be combined

into the suggestive form

L−1 ≡ Pz, L1 ≡ Kz, L0 ≡
1

2
(D +Mzz̄), (A.2)

with equivalent antiholomorphic generators. These generators form an SL(2,C)/Z2 “light-

cone” subgroup of the full conformal group, with the commutation relations

[L±1, L0] = ±L±1, [L1, L−1] = 2L0, (A.3)

which matches the familiar 2d global conformal algebra.

The (anti)holomorphic generators Li, L̄j all commute with the conformal Casimir Cd.

Irreducible representations of the full conformal group, associated with a primary operator

with scaling dimension ∆ and spin `, can therefore be broken up into irreps of the lightcone

subgroup. These irreps are each characterized by their associated “lightcone primary”, which

is an eigenstate of L0, L̄0 with eigenvalues h, h̄.

We can start with the spin-` primary state |Oµ1···µ`〉. This SO(d) multiplet consists of

various eigenstates of the angular momentum generator Mzz̄ = L0 − L̄0, with corresponding

eigenvalues

m ≡ h− h̄ = `, `− 1, · · · ,−`+ 1,−`. (A.4)

All of these separate components are eigenstates of D = L0 + L̄0 with the same scaling

dimension ∆ = h+ h̄. The state |Oµ1···µ`〉 is therefore divided into a set of distinct lightcone

primary states |Oh,h̄〉 with

h = τ
2 + `, τ2 + `− 1, · · · , τ

2 + 1, τ
2 ,

h̄ = τ
2 ,

τ
2 + 1, · · · , τ2 + `− 1, τ2 + `,

(A.5)

where τ ≡ ∆− ` is the twist of the original primary operator.

Each of these lightcone primaries Oh,h̄ defines an irrep of the lightcone subgroup, pop-

ulated by the (anti)holomorphic descendants of the form Lm−1L̄
n
−1|Oh,h̄〉. However, there are
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additional states created by acting with the transverse generators P⊥. These states are also

lightcone primaries,

L1P⊥|Oh,h̄〉 = [L1, P⊥]|Oh,h̄〉 = 0, (A.6)

which have increased scaling dimension

L0P⊥|Oh,h̄〉 =
(
P⊥L0 + [L0, P⊥]

)
|Oh,h̄〉 =

(
h+

1

2

)
P⊥|Oh,h̄〉, (A.7)

with matching antiholomorphic expressions. These states each define a new lightcone irrep,

consisting of descendants of the form Lm−1L̄
n
−1P

k
⊥|Oh,h̄〉.

A single representation of the full d-dimensional conformal group therefore generically de-

composes into an infinite number of representations of the lightcone subgroup, with minimum

“twist” τ and maximum “spin” `.

A.2 Conformal Blocks and Lightcone OPE Limit

Now that we understand the structure of the 2d lightcone subgroup, let’s return to the original

4-pt correlation function. We’ll first consider the case where all of the external operators are

scalars, then later generalize to the case of arbitrary spin.

This correlation function can be expanded in terms of d-dimensional conformal blocks,

〈O1(∞)O2(1)O3(z, z̄)O4(0)〉 = (zz̄)−
1
2

(∆3+∆4)
∑

τ,`

P
(12,34)
τ,` g

(d)
τ,` (z, z̄). (A.8)

By taking the limit z → 0, we can then isolate those conformal blocks with minimum twist

τm, which is of course bounded from below by unitarity.

Using the work of the previous section, we can then decompose each of these minimal

twist conformal blocks in terms of an infinite number of lightcone irreps, parametrized by

their associated (anti)holomorphic scaling dimensions,

g
(d)
τ,` (z, z̄) =

∑

h,h̄

Ph,h̄ g
(2)

h,h̄
(z, z̄), (A.9)

where the coefficients Ph,h̄ are completely fixed by conformal symmetry (and are therefore

not simply products of OPE coefficients). In the same small z limit, this sum is dominated

by those 2d conformal blocks with minimum holomorphic dimension h. In fact, there is only

one such lightcone primary, with h = τ
2 and h̄ = τ

2 + `.

In the lightcone OPE limit, we can therefore replace the minimal twist d-dimensional

conformal blocks with the corresponding 2d blocks,

g
(d)
τ,` (z, z̄)→ g

(2)
τ,` (z, z̄) (z → 0). (A.10)
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We can then turn to the cross-channel expansion of our correlator,

〈O1(∞)O2(1)O3(z, z̄)O4(0)〉 =
(
(1− z)(1− z̄)

)− 1
2

(∆2+∆3)
∑

τ,`

P
(14,23)
τ,` g

(d)
τ,` (1− z, 1− z̄).

(A.11)

Taking the limit z̄ → 1, we can again isolate the minimal twist conformal blocks. Each

of these conformal blocks can then be decomposed into lightcone representations, with the

dominant contribution coming from the one lightcone primary with h̄ = τ
2 and h = τ

2 + `.

We therefore see that in the lightcone OPE limit z → 0, z̄ → 1 the bootstrap equation

for 〈O1O2O3O4〉 in arbitrary d reduces to an effectively two-dimensional expression

∑

`

P
(12,34)
τm1 ,`

g
(2)
τm1 ,`

(z, z̄) ≈ (zz̄)
1
2

(∆3+∆4)

((1− z)(1− z̄)) 1
2

(∆2+∆3)

∑

`

P
(14,23)
τm2 ,`

g
(2)
τm2 ,`

(1− z, 1− z̄),

(A.12)

where τm1 , τm2 are the minimal twists contributing to the t- and s-channels, respectively.

This reduction to 2d conformal blocks makes manifest the d-independence of the asymptotic

large ` results derived in [33, 34].

This decomposition can be easily generalized to correlation functions involving operators

with nonzero spin. As shown in eq. (A.5), the components of each operator split into multiple

lightcone primaries with h, h̄ set by the twist τ and spin ` of the original operator. Corre-

lation functions involving the operators Oµ1···µ` can then be written in terms of correlation

functions built from the Oh,h̄ operators, with the various correlators related by conformal

transformations. These effectively 2d correlation function can then be studied using the

conformal bootstrap, with the lightcone OPE limit taking a similar form to eq. (A.12).

We therefore see that to determine the leading large ` behavior of minimal twist OPE

coefficients and anomalous dimensions, which are studied in the lightcone OPE limit, it is

sufficient to use two-dimensional conformal blocks, regardless of the number of spacetime

dimensions.

A.3 Differential Operators for OPE Limits in d = 2

Consider two operators Sd and Td of general spin in d dimensions. If we pick a 2-plane and

decompose Sd and Td according to the conformal group in this plane, for each of Sd and

Td we find operators S, S̄ and T, T̄ with minimal twist in the 2-plane. For example, S has

hS = 1
2τSd + `Sd and h̄S = 1

2τSd , whereas S̄ has h↔ h̄. Next we construct minimal twist large

spin operators [ST ]`(0) by acting with the holomorphic differential operator

D`,z =
1

N`
∑̀

k=0

(−1)k

k!(`− k)!Γ(2hT + k)Γ(2hS + `− k)
∂kz1∂

`−k
z2 , (A.13)
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on S(z1)T (z2), and then sending z1, z2 → 0. Similarly, starting with the mostly anti-

holomorphic S̄ and T̄ and acting with an anti-holomorphic

D`,z̄ =
1

N`
∑̀

k=0

(−1)k

k!(`− k)!Γ(2h̄T + k)Γ(2h̄S + `− k)
∂kz̄1∂

`−k
z̄2 , (A.14)

we can obtain [S̄T̄ ]`(0). Note that in our notation, the spin of [ST ]` is actually `+ `Sd + `ST .

Also note that [ST ]` and [S̄T̄ ]` combine to form one even parity, τ = τSd +τTd operator. Since

the operators [ST ]` have anomalous dimensions, when using these operators to extract OPE

coefficients care must be taken to separate the two effects.

The form of the differential operators can be easily justified by considering linear combi-

nations of

∑

k

ak

(
Lk−1S

)(
L`−k−1 T

)
(A.15)

and demanding that this operator be primary, i.e. that it be annihilated by L1. This fixes

the differential operators [46, 61] up to normalization.

The normalization factors N` can be obtained by acting with D`,z and D`,z̄ on the gen-

eralized free theory correlators

〈T (z1)T (z2)T (z3)T (z4)〉 =
1

z2hT
13 z2hT

24 z̄2h̄T
13 z̄2h̄T

24

+ permutations (A.16)

in order to obtain the 2-point function of [ST ]` with itself. Then

(N`)2 =
4`(2hS + 2hT + `− 1)`

`!Γ(2hS)Γ(2hT )Γ(2hS + `)Γ(2hT + `)
(A.17)

with our conventions, where we take hS = 1
2τSd + `Sd by definition in this formula.

B Scalar Conformal Blocks at Small u

For any spacetime dimension d, the s-channel contribution to a generic correlation function

〈O1O2O3O4〉 from the global conformal block for a scalar operator O with scaling dimension

∆ can be written as the double sum

gO(v, u) =
∑

m,n≥0

(∆+∆12
2 )n(∆−∆34

2 )n

n!(∆ + 1− d
2)n

(∆−∆12
2 )n+m(∆+∆34

2 )n+m

m!(∆)2n+m
v

∆
2

+n(1− u)m, (B.1)
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where ∆ij ≡ ∆i − ∆j . The sum over m can be evaluated exactly, giving us the simpler

expression

gO(v, u) =
∑

n≥0

{
(∆+∆12

2 )n(∆−∆12
2 )n(∆−∆34

2 )n(∆+∆34
2 )n

n!(∆ + 1− d
2)n(∆)2n

⊗ v
∆
2

+n
2F1

(
∆−∆12

2
+ n,

∆ + ∆34

2
+ n; ∆ + 2n; 1− u

)}
.

(B.2)

We are specifically interested in the behavior of this conformal block as u→ 0. In this limit,

we can use the identity

2F1

(
∆−∆12

2
+ n,

∆ + ∆34

2
+ n; ∆ + 2n; 1

)
=

Γ(∆ + 2n)Γ(∆12−∆34
2 )

Γ(∆+∆12
2 + n)Γ(∆−∆34

2 + n)
, (B.3)

to obtain

gO(v, 0) =
Γ(∆)Γ(∆12−∆34

2 )

Γ(∆+∆12
2 )Γ(∆−∆34

2 )

∑

n≥0

(∆−∆12
2 )n(∆+∆34

2 )n

n!(∆ + 1− d
2)n

v
∆
2

+n. (B.4)

We can now evaluate the sum over n, with the resulting expression

gO(v, 0) =
Γ(∆)Γ(∆12−∆34

2 )

Γ(∆+∆12
2 )Γ(∆−∆34

2 )
v

∆
2 2F1

(
∆−∆12

2
,
∆ + ∆34

2
; ∆ + 1− d

2
; v

)
. (B.5)

As a simple check, let us compare this expression to some known results for even d.

Starting with d = 2, we have the general conformal block

g
(2)
τ,` (v, u) = k′τ+2`(1− z)k′τ (1− z̄) + k′τ (1− z)k′τ+2`(1− z̄), (B.6)

where we have defined

k′2β(x) = xβ 2F1

(
β − 1

2
∆12, β +

1

2
∆34; 2β;x

)
. (B.7)

For scalar operators this reduces to the simpler expression

g
(2)
O (v, u) = k′∆(1− z)k′∆(1− z̄). (B.8)

The limit u → 0 at fixed v is equivalent to taking z̄ → 0 with fixed z, which gives us the

result

g
(2)
O (v, 0) =

Γ(∆)Γ(∆12−∆34
2 )

Γ(∆+∆12
2 )Γ(∆−∆34

2 )
k′∆(1− z). (B.9)
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Using the relation z = 1− v, we see that this precisely matches our general expression when

d = 2. Turning to d = 4, we have the general s-channel conformal block

g
(4)
τ,` (v, u) =

(1− z)(1− z̄)
z̄ − z

(
k′τ+2`(1− z)k′τ−2(1− z̄)− k′τ−2(1− z)k′τ+2`(1− z̄)

)
, (B.10)

which for a scalar operator reduces to

g
(4)
O (v, u) =

(1− z)(1− z̄)
z̄ − z

(
k′∆(1− z)k′∆−2(1− z̄)− k′∆−2(1− z)k′∆(1− z̄)

)
. (B.11)

If we again take the limit z̄ → 0 at fixed z, we then obtain

g
(4)
O (v, 0) =

Γ(∆)Γ(∆12−∆34
2 )

Γ(∆+∆12
2 )Γ(∆−∆34

2 )

v

1− v

(
k′∆−2(v)− (∆+∆12

2 − 1)(∆−∆34
2 − 1)

(∆− 1)(∆− 2)
k′∆(v)

)
. (B.12)

Using a combination of hypergeometric identities, we can rewrite this expression as

g
(4)
O (v, 0) =

Γ(∆)Γ(∆12−∆34
2 )

Γ(∆+∆12
2 )Γ(∆−∆34

2 )
v

∆
2 2F1

(
∆−∆12

2
,
∆ + ∆34

2
; ∆− 1; v

)
, (B.13)

which again matches our general expression with d = 4.

C Details of Mellin Asymptotics

Let us study the connection between analyticity and Mellin amplitude asymptotics more

carefully. Consider the asymptotic behavior of the full integrand in eq. (5.10), specifically for

the case of the Oi conformal block. Looking at eq. (5.12), we see that this particular Mellin

amplitude only depends on s, such that the integral over t takes the simple form

∫
dt

2πi
Γ(t)Γ(∆T −∆i + t)Γ2(∆i − s− t)u−t. (C.1)

where u = zz̄. This integral can be evaluated by closing the contour of integration in the

left half of the complex plane. The integrand has an infinite set of poles at both t = −n and

t = ∆i −∆T − n, for all non-negative integers n, whose residues lead to increasing powers of

u. However, we are specifically interested in the limit u � 1, such that we can focus on the

lowest poles in both series. The resulting integral then takes the schematic form

∫
dt

2πi
Γ(t)Γ(∆T −∆i + t)Γ2(∆i − s− t)u−t

∼
(

Γ2(∆i − s) + Γ2(∆T − s)u∆T−∆i

)(
1 +O(u)

)
,

(C.2)

where we have suppressed any constant coefficients to focus on the asymptotic scaling with

respect to s and u.
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Now that we have an approximate form for the integration over t, we can then turn to

the resulting s integral,

∫
ds

2πi
Γ2(s)

(
Γ2(∆i − s) + Γ2(∆T − s)u∆T−∆i

)
v−sMOi(s, t). (C.3)

Using Sterling’s approximation for gamma functions, this Mellin amplitude then takes the

asymptotic form

MOi(s, t) ∼
(
e−2iπs − 1

)
|s| d2−∆i−∆T (|s| → ∞), (C.4)

where we have suppressed any constant coefficients to focus on the asymptotic scaling. This

amplitude grows exponentially for s→ +i∞, but is power law suppressed for s→ −i∞.

To determine the asymptotic behavior of the full integrand, we also need to include the

prefactor

Γ2(s)
(

Γ2(∆i − s) + Γ2(∆T − s)u∆T−∆i

)
∼ e−2π|s|

|s|2
(
|s|2∆i + |s|2∆T u∆T−∆i

)
, (C.5)

where we have again suppressed constant coefficients. This product of gamma functions is

therefore exponentially suppressed for large imaginary s, such that it perfectly cancels the

exponential growth of the Mellin amplitude. Putting it all together, we obtain the asymptotic

integrand

Γ2(s)
(

Γ2(∆i − s) + Γ2(∆T − s)u∆T−∆i

)
v−sMOi(s, t)

∼ |s| d2−∆i−∆T−2
(
|s|2∆i + |s|2∆T u∆T−∆i

)
e−s log v,

(C.6)

where we have taken the limit s → +i∞ and assumed that v is real and positive. We are

specifically interested in the leading behavior of this conformal block in the limit u→ 0 with

∆i > ∆T . In that case, this conformal block will be dominated by the second term, leading

to the schematic integral

u∆T−∆i

∫
ds |s|∆T−∆i+

d
2
−2e−s log v ∼ u∆T−∆i

(
− log v

)∆i−∆T− d2 +1
. (C.7)

Finally, we need to include the overall prefactors of u, v from eq. (5.10), obtaining

gOi(v, u) ∼ v 1
2

(∆i+∆T )
(
− log v

)∆i−∆T− d2 +1
∼ z∆i−∆T− d2 +1, (C.8)

where we have taken the same limit as before, z̄ � z � 1. We therefore exactly reproduce

the non-analytic term discovered in section 5.1.

The general lesson of this analysis is that non-analyticity in position-space correlation

functions arises from exponential growth in the associated Mellin amplitudes. In this particular
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example, the Mellin integral for the Oi conformal block only develops a branch cut at z →
0 due to the term e−2πis, which cancels the exponential suppression of the set of gamma

functions. More generally, any Mellin amplitude which grows as

M(δij) & e2π|δij | (|δij | → ∞), (C.9)

will lead to non-analyticities in the correlation function.

The demand that a correlation function possess a well-defined OPE limit then translates

to a bound on the asymptotic behavior of the Mellin amplitude. In other words, analyticity

near z, z̄ = 0 requires that Mellin amplitudes must be exponentially bounded at large δij .

We can make this bound more precise by considering a schematic Mellin amplitude with

the asymptotic form

M(s, t) ∼ e2π|s||s| d2−∆i−∆T−α, (C.10)

where α is an arbitrary positive number. Using this generic Mellin amplitude, we then obtain

a contribution to the correlation function of the form
∫
dsΓ2(s)Γ2(∆T − s) v−sM(s, t) ∼ z∆i−∆T− d2 +1+α. (C.11)

We therefore see that for any value of α, the correlator still possesses a branch cut at z → 0.10

The requirement of a well-defined OPE limit is then equivalent to the asymptotic bound

M(s, t) e−2π|s||s|n → 0 (|s| → ∞), (C.12)

for any integer n.

D Eikonalization with Interactions and Mixing in d = 2

In this appendix, we discuss two examples of the eikonalization of conformal blocks for 2d

CFTs. We first consider the exchange of a conserved current J in theories with a global U(1)

symmetry. The OPE coefficients of multi-trace operators built from J are highly constrained,

such that their conformal blocks automatically exponentiate in any kinematic limit. We then

discuss the exchange of the stress-energy tensor T in theories with large central charge c.

Generalizing the ‘direct method’ results of [35], we demonstrate that corrections to the eikonal

behavior in eq. (2.10) have a natural interpetation as the exponentiation of gravitational

interactions in AdS3. We find some interesting cancellations in these calculations, where

several complicated terms add up to something significantly simpler. These cancellations also

occur in more complicated examples.

10For the case where the resulting exponent is a non-negative integer n, the correlation function still has a
branch cut of the form zn log z.
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D.1 Exponentiation of Currents

Consider a 2d CFT with an Abelian conserved current Jµ. This current can be split into

independent (anti)holomorphic components, J(z) and J̄(z̄). Similar to the stress-energy

tensor T (z), the holomorphic current can then be expanded into modes,

J(z) =
∑

m

zm−1J−m, (D.1)

with a similar expansion for the antiholomorphic J̄(z̄). These modes obey the simple com-

mutation relations

[Jm, Jn] = kmδm,−n, (D.2)

where k is simply a normalization factor arising from the J(z) two-point function. Similar to

the stress-energy tensor, the vacuum is annihilated by the non-negative modes,

Jm|0〉 = 0 (m ≥ 0). (D.3)

Based on the associated Ward identity, we can also derive the commutation relations

with any charged primary operators Oi,

[Jm,Oi(z)] = qi z
mOi(z), (D.4)

where qi is the charge associated with Oi. Using these commutation relations, we can then

determine the contribution of multi-J exchange to the correlation function 〈O†1O1O2O†2〉.
As a simple check of this approach, we’ll first construct the global conformal block associ-

ated with the primary operator J(z). Following the approach reviewed in [35], this conformal

block can be constructed using a projection operator,

gJ(z) =
〈O†1(∞)O1(1)[PJ ]O2(z)O†2(0)〉
〈O†1(∞)O1(1)〉〈O2(z)O†2(0)〉

, (D.5)

where PJ is formed from the set of “one-photon” states,

PJ =
∞∑

m=1

J−m|0〉〈0|Jm
〈JmJ−m〉

. (D.6)

Based on the commutation relations above, we see that this basis is automatically or-

thogonal,

〈JmJ−n〉 = kmδmn. (D.7)

We can then use the commutation relations above to derive the full expression for the J(z)
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global block,11

gJ(z) =
∞∑

m=1

〈O†1O1J−m〉〈JmO2O†2〉
〈O†1O1〉〈JmJ−m〉〈O2O†2〉

= −
∞∑

m=1

q1q2

km
zm

=
q1q2

k
log(1− z) = −q1q2

k
z 2F1(1, 1; 2; z).

(D.8)

We therefore obtain the correct form for the global block, with an overall conformal block

coefficient of P
(11,22)
J = − q1q2

k , indicating that this approach is correct.

We can then turn to the contribution of the double-trace operators [JJ ]n,`. Rather than

break this contribution into individual conformal blocks, we’ll consider the projection operator

built out of all possible “two-photon” states,

PJJ =
∑

m≥n

J−mJ−n|0〉〈0|JnJm
〈JnJmJ−mJ−n〉

. (D.9)

As we are considering an Abelian U(1) global symmetry, this basis continues to be orthogonal,

which we can confirm by computing the inner product

〈JmJnJ−pJ−q〉 = k2mn(δmpδnq + δmqδnp). (D.10)

Using these results, we find that the full two-photon contribution takes the simple form

∑

n,`

P
(11,22)
[JJ ]n,`

g[JJ ]n,`(z) =
〈O†1O1[PJJ ]O2O†2〉
〈O†1O1〉〈O2O†2〉

=
1

2

(
−q1q2

k
z 2F1(1, 1; 2; z)

)2
. (D.11)

We can then easily generalize this result to states with an arbitrary number of Jm oper-

ators, obtaining the full contribution of “photon exchange”

∑

n

P
(11,22)
[Jn] g[Jn](z) =

∑

{mi}

〈O†1O1J−m1 · · · J−mn〉〈Jmn · · · Jm1O2O†2〉
〈O†1O1〉〈Jmn · · · Jm1J−m1 · · · J−mn〉〈O2O†2〉

=

∞∑

n=0

1

n!

(
−q1q2

k
z 2F1(1, 1; 2; z)

)n
= exp

[
−q1q2

k
z 2F1(1, 1; 2; z)

]

= (1− z)
q1q2
k . (D.12)

We therefore see that the Abelian nature of this global symmetry automatically leads to

the exponentiation of multi-J exchange. Note that this behavior is quite general, without

any need to consider a particular kinematic limit or assume that the OPE coefficients are

perturbatively small.

11For notational simplicity, from now on we’ll suppress the locations of the operators, though they will
always correspond to the correlation function 〈O†1(∞)O1(1)O2(z)O†2(0)〉.
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D.2 Virasoro Blocks and Graviton Mixing

As discussed in section 2.3, in d = 2 the contributions of all multi-trace operators built from

the stress-energy tensor T can be grouped together into a single function, called the identity

Virasoro block. In [35], the identity Virasoro block for the 4-pt function 〈O1O1O2O2〉 was

shown to have the approximate form

V(z) ≈ (1− z)h2(α−1)

(
αz

1− (1− z)α
)2h2

, (D.13)

where α =
√

1− 24h1
c , and h1, h2 are the holomorphic scaling dimensions of O1,O2. This

approximate form specifically holds in the semi-classical limit c→∞ with fixed h1
c , h2, with

a similar expression for the antiholomorphic block V̄(z̄).

We can rewrite this Virasoro block in the suggestive form V(z) = exp[f(z)], with

f(z) = h2

[
(α− 1) log(1− z) + 2 log(αz)− 2 log(1− (1− z)α)

]
. (D.14)

While this form doesn’t seem any more useful, we can gain more intuition by expanding it as

a power series in h1
c ,

f(z) ≈ h2

[
2

(
h1

c

)
z2

2F1(2, 2; 4; z) +O

(
h2

1

c2

)]
. (D.15)

To leading order, this exponent therefore matches the T global conformal block! In other

words, in the limit c→∞ with fixed h1h2
c , the identity Virasoro block is simply

V(z) ≈ exp
[
PT gT (z)

]
, (D.16)

with PT = 2h1h2
c . We therefore see that to produce the leading contribution due to multi-T

exchange, one merely needs to calculate the contribution of “one-graviton” exchange,

f(z) ≈
∞∑

m=2

〈O1O1L−m〉〈LmO2O2〉
〈O1O1〉〈LmL−m〉〈O2O2〉

=
2h1h2

c
z2

2F1(2, 2; 4; z), (D.17)

and exponentiate the result. Note that the modes Lm are simply defined by the expansion

T (z) =
∑

m

zm−2L−m. (D.18)

But what about the subleading corrections to the Virasoro block? Why does the full

exchange of the stress-energy tensor not generically eikonalize like that of conserved currents?

We can see the answer to this most clearly by considering the Virasoro commutation relations,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n. (D.19)
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The second term in eq. (D.19) matches the structure of the J commutation relations in

eq. (D.2). However, the first term corresponds to the fact that the OPE T (x)T (0) ⊃ T . This

term then reflects the self-interactions of gravitons in AdS3.

In the limit c → ∞, the second term dominates, such that the algebra matches that of

the Abelian current J . The calculation of multi-T contributions then matches the work of

the previous section, leading directly to eikonalization.

The corrections to this result at finite c arise because this basis is not orthogonal. Due to

self-interactions, there is mixing between states with different numbers of “gravitons”. The

effects of this mixing are suppressed by factors of 1/c, but must be included to obtain the full

Virasoro block in eq. (D.13). We shall now argue that the subleading O
(
hk1
ck

)
corrections to

f(z) can be computed directly, with structure matching that of k → 1 graviton mixing.

We shall specifically consider the first correction to f(z), which can be found by continuing

to expand the expression to O
(
h2

1
c2

)
,

δf(z) ≈ h2

(
h2

1

c2

)(
−1

2

(
2z2

2F1(2, 2; 4; z)
)2 − 12

5
z3 log(1− z) 2F1(3, 3; 6; z)

)
. (D.20)

There are only two possible contributions with the correct h1, h2, c-dependence to reproduce

this expression. The first is the subleading corrections to “two-graviton” exchange, and the

second is the contribution of “two-to-one graviton mixing”, which arises due to the nonzero

overlap

〈Lm+nL−mL−n〉 =
c

12
n(n2 − 1)(2m+ n). (D.21)

Let’s first start with the subleading 2 → 2 corrections. Consider the contribution from

some general two-graviton state,

〈O1O1L−mL−n〉〈LnLmO2O2〉
〈O1O1〉〈LnLmL−mL−n〉〈O2O2〉

=

(
12h1

c

)2 (m− 1)(n− 1)h2
2 + n(n− 1)h2

(1 + δmn)m(m+ 1)n(n+ 1)
zm+n. (D.22)

The leading h2
2 term simply corresponds to two copies of the one-graviton exchange, and

is symmetric under m ↔ n. However, the second term has the correct h2-dependence to

potentially match δf(z), though it has a very asymmetric form,

δf (2→2)
m,n = 144h2

(
h2

1

c2

)
(n− 1)zm+n

(1 + δmn)m(m+ 1)(n+ 1)
. (D.23)

However, the state L−mL−n|0〉 is not orthogonal to the one-graviton state, so the process

of Gram-Schmidt forces us to also subtract the overlap with the one-particle state, leading to
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the 2→ 1 mixing correction,

δf (2→1)
m,n = − 〈O1O1L−mL−n〉〈LnLmL−m−n〉〈Lm+nO2O2〉

〈O1O1〉〈LnLmL−mL−n〉〈Lm+nL−m−n〉〈O2O2〉

= −
(

12h1

c

)2 (n− 1)(2m+ n)h2

(1 + δmn)m(m+ 1)(m+ n)(m+ n+ 1)
zm+n.

(D.24)

This expression has the same h2-dependence as the subleading 2→ 2 term, so we can combine

them to obtain the much simpler expression

δf (2→2)
m,n + δf (2→1)

m,n = 144h2

(
h2

1

c2

)
(m− 1)(n− 1)zm+n

(1 + δmn)(m+ 1)(n+ 1)(m+ n)(m+ n+ 1)
. (D.25)

Note that, unlike the two individual pieces, this full expression is symmetric under m↔ n.

Let’s now consider the full contribution from all two-graviton states. Including the cor-

rections from both 2→ 2 and 2→ 1, we obtain

∑

m≥n

(
δf (2→2)
m,n + δf (2→1)

m,n

)

= h2

(
h2

1

c2

)(
−1

2

(
2z2

2F1(2, 2; 4; z)
)2 − 12

5
z3 log(1− z) 2F1(3, 3; 6; z)

)
,

(D.26)

which precisely matches the correction δf(z) obtained from the expansion of eq. (D.13)!

It therefore appears that the semi-classical identity Virasoro block actually possesses a

much simpler structure than would näıvely be expected. The combination of both 2 → 2

and 2→ 1 exchange into a highly simplified form suggests that there is more straightforward

means of organizing this calculation [43], such that their combined contributions can be

interpreted as simply the perturbative mixing between one- and two-graviton states. Similar

simplifications appears at O
(
h3

1
c3

)
, suggesting the full semi-classical Virasoro block can be

written as

V(z) ≈ exp
[
(1→ 1) + (2→ 1) + (3→ 1) + · · ·

]
. (D.27)

Understanding this “generalized eikonalization” structure more quantitatively would be an

interesting direction for future research into the structure of both Virasoro blocks and gravi-

tational interactions in general AdSd+1.
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