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Abstract. The B-mode polarization of the cosmic microwave background on large scales
has been considered as a probe of gravitational waves from the cosmic inflation. Ongoing
and future experiments will, however, suffer from contamination due to the B-modes of non-
primordial origins, one of which is the lensing induced B-mode polarization. Subtraction of
the lensing B-modes, usually referred to as delensing, will be required for further improve-
ment of detection sensitivity of the gravitational waves. In such experiments, knowledge of
statistical properties of the B-modes after delensing is indispensable to likelihood analysis
particularly because the lensing B-modes are known to be non-Gaussian. In this paper, we
study non-Gaussian structure of the delensed B-modes on large scales, comparing it with
that of the lensing B-modes. In particular, we investigate the power spectrum correlation
matrix and the probability distribution function (PDF) of the power spectrum amplitude.
Assuming an experiment in which the quadratic delensing is an almost optimal method, we
find that delensing reduces correlations of the lensing B-mode power spectra between differ-
ent multipoles, and that the PDF of the power spectrum amplitude is well described as a
normal distribution function with a variance larger than that in the case of a Gaussian field.
These features are well captured by an analytic model based on the 4th order Edgeworth
expansion. As a consequence of the non-Gaussianity, the constraint on the tensor-to-scalar
ratio after delensing is degraded within approximately a few percent, which depends on the
multipole range included in the analysis.ar
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1 Introduction

Measurement of the B-mode polarization of the cosmic microwave background (CMB) on
angular scales larger than a few dozen arcminutes has been considered as the best avenue to
probe the primordial gravitational waves. The joint analysis of BICEP, Keck and PLANCK
reported the constraint on the tensor-to-scalar ratio as r0.05 < 0.12 (95% C.L.) [1], while the
much tighter constraint was recently obtained from PLANCK 2015 as r0.002 < 0.08 (95%
C.L.) [2], where the subscripts 0.05 and 0.002 are the pivot scale of the primordial power
spectrum in unit of Mpc−1. Still, there is no evidence for the presence of the primordial
gravitational waves.

On large scales, Galactic foreground emission, which is one of the most significant con-
taminations, is expected to dominate over the B-mode signals of the primordial gravitational
waves (sometimes called as the primary B-modes). Many studies have been devoted for
foreground rejection techniques [3–5] and it would be possible to remove the foreground con-
tamination sufficiently for the detection of the primordial gravitational waves of r ∼ 0.001
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[6]. Even if the foreground contamination is successfully removed, there is still a significant
contamination due to gravitational lensing from mass distribution between the last scatter-
ing surface and an observer. The gravitational lensing effect on the propagation of CMB
photons disturbs the spatial pattern of the polarization map, which converts a small portion
of E-modes into B-modes [7]. The lensing B-modes on large scales has a spectrum like white
noise and their amplitude is comparable to that of the primary B-modes of r = 0.01 on the
scales of the recombination bump (` ∼ 10-100) [8]. In addition to precise measurement of the
lensing B-modes, subtraction of the lensing B-modes, usually referred to as delensing, will
be required in ongoing and future CMB experiments. It is expected to improve detection
sensitivity of the primary B-modes [9–13] and even the signals of other non-lensing sources
such as cosmic strings (e.g. [14, 15]), specific phenomena of modified gravity theories (e.g.,
[16]), and self-ordering scalar fields [17] (more generically, any cosmic defect network [18]).

For delensing, we need to know the lensing mass distribution, which is described by the
lensing potential. Measurement of the lensing potential became realized recently by multiple
observations of CMB polarizations such as ACTPol [19], PLANCK [20], POLARBEAR [21]
and SPTpol [22, 23]. Near term and next generation CMB observations such as Advanced
ACT [24], Simons Array [25], SPT-3G [26], CMB Stage-IV [27] will greatly improve sensitivity
to the lensing potential. In addition, mass tracers at high redshifts such as the cosmic infrared
background would be also able to be used for delensing [12, 28].

To perform likelihood analysis of the B-modes, we should understand and characterize
statistical properties of the lensing and delensed B-modes. The lensing B-modes are known
to be non-Gaussian field, and their statistical properties and the impact on the cosmological
parameter constraints have been discussed in several works [29–32]. These studies showed
that off-diagonal correlations of the B-mode power spectrum lead to notable degradation
in the cosmological parameter estimation. On the other hand, statistical properties of the
delensed B-modes, the knowledge of which is indispensable to analyses in future B-mode
experiments, has not been explored in detail.

The main purpose of this paper is to explore how delensing changes the non-Gaussian
properties of the lensing B-modes, in particular the off-diagonal elements of the power spec-
trum correlation matrix and the probability distribution function (PDF) of the power spec-
trum amplitude. We also discuss its impact on the estimation of the tensor-to-scalar ratio.
To explore statistical properties of the delensed B-modes, we synthesize Monte Carlo samples
of simulated CMB maps. Using the simulated maps, we estimate the lensing potentials and
compute the delensed B-modes. The samples of the lensing and delensed B-modes are used
for simulating the power spectrum covariance and the PDF of the power spectrum ampli-
tude. To understand the simulation results, treating the delensed B-mode polarization as
a weakly non-Gaussian field, we construct an analytic model which explains the simulated
power spectrum covariance and also the simulated PDF of the power spectrum amplitude.

This paper is organized as follows: In Sec. 2, we describe the procedures of our delensing
analysis and generation of Monte Carlo samples. In Sec. 3, we show the simulation results,
focusing on the power spectrum covariance and PDF of power spectrum amplitude of the B-
mode polarization. In Sec. 4, we present analytic expressions for the statistics of the delensed
B-modes and compare them with the simulation results. In Sec. 5, we show the impact of
the non-Gaussianity on the estimation of the tensor-to-scalar ratio. Finally, Sec. 6 is devoted
to our conclusion and discussion.

Throughout this paper, we assume a flat ΛCDM model characterized by six parameters
which are the baryon density (Ωbh

2), non-relativistic matter density (Ωmh
2), dark energy
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density (ΩΛ), scalar spectral index (ns), scalar amplitude defined at k = 0.05Mpc−1 (As),
and reionization optical depth (τ). The cosmological parameters have the best-fit values of
PLANCK 2013 results [33]; Ωbh

2 = 0.0220, Ωmh
2 = 0.1409, ΩΛ = 0.6964, ns = 0.9675,

As = 2.215× 10−9, and τ = 0.0949.

2 Simulation Method

In our analysis, to show non-Gaussian structure involved in the delensed B-mode power
spectrum, we first simulate lensed CMB polarization maps, and then perform quadratic
lensing reconstruction and delensing. The number of our Monte Carlo samples is 10000. In
this section, we describe our method of simulating lensed polarization maps, quadratic lensing
reconstruction and delensing. Note that the simulation method described below corresponds
to our previous paper [34].

2.1 Map simulation

We denote the polarization anisotropies at a position n̂ on the last scattering surface as
[Q± iU ](n̂). The lensed polarization anisotropies in the direction n̂, are then given by (e.g.,
[7]):

[Q± iU ](n̂) = [Q± iU ](n̂ + d(n̂)) , (2.1)

where d is the deflection angle, and is given by the gradient of the lensing potential ∇φ.
Here we ignore curl modes in our simulation (see e.g. [35]). Instead of being expressed as
spin-2 quantities, the following E and B mode polarizations are usually analysed in harmonic
space (e.g., [7]):

[E ± iB]`m = −
∫

dn̂ ±2Y
∗
`m(n̂)[Q± iU ](n̂) , (2.2)

where we denote the spin-2 spherical harmonics as ±2Y`m. Similarly, with the spin-0 spherical
harmonics, Y`m, the lensing potential is transformed into the harmonic space as

φLM =

∫
dn̂ Y ∗LM (n̂)φ(n̂) . (2.3)

To simulate the lensed CMB polarization map, we first compute the unlensed angular power
spectra of the E-mode polarization (CEE

` ) and lensing potential (CφφL ) with CAMB [36]. In
Lenspix [37], according to these spectra, the harmonic coefficients, E`m and φLM , are gener-
ated as zero mean random Gaussian fields. Note that, in our lensing simulation, the primary
B-mode polarization at the last scattering surface is not included since the lensed primary
B-mode is much smaller than the lensing B-mode. Then, E`m is transformed into Q and U
maps while φ`m is transformed into φ(n̂). Finally, the Q and U maps are remapped according
to Eq. (2.1) using φ(n̂). In our simulation, the Healpix pixelization parameter (nside) is set
to be 2048.

Expanding Eq. (2.1) up to the first order of the lensing potential, the B modes of the
lensed polarization field are described as (e.g., [38])

B̃`m = −i
∑
`′m′

∑
LM

(
` `′ L
m m′ M

)
S(−)
``′LE

∗
`′m′φ

∗
LM , (2.4)
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where we ignore the primary B-mode. The quantity S(±)
``′L represents the mode coupling

induced by the lensing:

S(±)
``′L = p(±)

√
(2`+ 1)(2`′ + 1)(2L+ 1)

16π
[−`(`+ 1) + `′(`′ + 1) + L(L+ 1)]

(
` `′ L
2 −2 0

)
.

(2.5)

Here p(+) (p(−)) is unity if `+ `′ + L is an even (odd) integer and zero otherwise. Eq. (2.4)
is known to be a good analytic approximation for the lensing B-modes on large scales. From
Eq. (2.4), the lensing B-modes in the absence of the primary B-modes are simply expressed
in terms of a convolution between the E-mode polarization and lensing potential as

B̃`m = B`m[E, φ] , (2.6)

where we simplify Eq. (2.4) by defining a convolution operator for two multipole moments:

B`m[α, β] ≡ −i
∑
`′m′

∑
LM

(
` `′ L
m m′ M

)
S(−)
``′Lα

∗
`′m′β

∗
LM . (2.7)

2.2 Quadratic lensing reconstruction

From the lensed polarization map, we reconstruct the lensing potential φ with the following
method. Lensing induces the off-diagonal elements of the covariance matrix (` 6= `′ or
m 6= m′) between two lensed polarization anisotropies (X,Y = E,B) as

〈X̃`mỸ`′m′〉CMB =
∑
L,M

(
` `′ L
m m′ M

)
fXY
``′Lφ

∗
LM +O(φ2) , (2.8)

where the operation 〈· · ·〉CMB denotes the ensemble average over the primary CMB anisotropies.
The weight function fXY

``′L in Eq. (2.8) is defined as [39]

fEE
``′L = S(+)

``′LC
EE
`′ + S(+)

`′`LC
EE
` , (2.9)

fEB
``′L = iS(−)

`′`LC
EE
` . (2.10)

Eq. (2.8) motivates the following form for a quadratic lensing estimator (see e.g., [39]):

[φ̂XY
LM ]∗ = AXY

L

∑
``′

∑
mm′

(
` `′ L
m m′ M

)
1

∆XY
[fXY
``′L]∗

X̂`m

ĈXX
`

Ŷ`′m′

ĈYY
`′

, (2.11)

where X̂ and Ŷ are observed polarization anisotropies. The quantities, ĈXX
` and ĈYY

` , are
their angular power spectra. ∆XY is 2 for XY = EE and 1 for XY = EB. The quantity AXY

L

is given by

AXY
L =

{
1

2L+ 1

∑
``′

[fXY
``′L]∗fXY

``′L

∆XYĈXX
` ĈYY

`′

}−1

. (2.12)

Note that, to mitigate biases coming from the higher order terms of φ, we use the lensed
power spectrum (C̃EE

` ) in Eq. (2.10) [40, 41] instead of the unlensed power spectrum. The
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optimal estimator of the lensing potential is then obtained as a linear combination of the EE
and EB quadratic estimators:

φ̂LM = AφL

(
1

AEE
L

φ̂EE
LM +

1

AEB
L

φ̂EB
LM

)
, (2.13)

with

AφL ≡
1

(AEE
L )−1 + (AEB

L )−1
. (2.14)

In lensing reconstruction, we add a random white noise with a Gaussian beam factor
whose power spectrum is described as

NP
` ≡

(
∆P

TCMB

)2

exp

[
`(`+ 1)θ2

8 ln 2

]
. (2.15)

Here TCMB = 2.7K is the mean temperature of CMB, θ is a beam size, and ∆P is a noise level
of polarization measurement. The multipole ` is an integer between 2 and 2000. The fiducial
values for the experiment assumed in our analysis are ∆P = 6µK-arcmin and θ = 4 arcmin. In
such a situation, quadratic lensing reconstruction described here is a nearly optimal method
[42]. We estimate the lensing potential, using the E and B-modes up to ` = 2000. Note that
these values are similar to those of the Simons Array [25] which is expected to cover a wide
range of the entire sky. Advanced ACT also has a similar instrumental specification [24].

2.3 Quadratic delensing

Once we obtain the lensing potential using the quadratic estimator, we can estimate the
lensing B-modes in a similar manner of Eq. (2.6). On large scales, the lensing B-mode is well
estimated by [10]:

B`m[Êw, φ̂w] , (2.16)

where, again, the operator B`m convolves two fields in the same way that it forms the lensing
B-modes from the E-modes and lensing potential. We denote Êw

`m and φ̂w
`m as the Wiener

filtered multipoles, i.e., the measured E-mode polarization and lensing potential multiplied
by the corresponding Wiener filters (WE and W φ) defined as [9, 10]

WE
` =

CEE
`

CEE
` +NP

`

, (2.17)

W φ
` =

Cφφ`

Cφφ` +Aφ`
. (2.18)

The residual field of the B-mode polarization after delensing (Bd
`m) is then evaluated as [10]

Bd
`m = B̂`m −B`m[Êw, φ̂w] . (2.19)

To avoid delensing bias (see e.g. appendix A of Ref. [34]), only the multipoles between
` = 301 and 2000 are taken into account in the calculation of lensing reconstruction. Then, we
evaluate the delensed B-mode polarization only between ` = 2 and 300. Note that, as shown
in our previous paper [34], the filtering of large scale multipoles in lensing reconstruction is
required also for an unbiased estimate of the lensing potential in presence of 1/f noises.
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Figure 1. Correlation coefficients of the angular power spectrum of the lensing (Left) and delensed
(Right) B-modes between different multipoles defined in Eq. (3.4). The correlation coefficients are
computed from 10000 realizations of the lensed and delensed QU maps. We apply flat binning. The
bin width is ∆` = 15 and the multipoles between ` = 1 and 300 are divided into 20 bins. Note that
the diagonal elements are removed for an illustrative purpose.

3 Non-Gaussian Signature of Delensed B-mode Polarization

3.1 Power spectrum covariance

Significance of non-Gaussian properties of the B-mode polarization can be seen in the power
spectrum covariance. In the case of a Gaussian field, the power spectra at different multipoles
are uncorrelated, and the covariance matrix has only diagonal elements. On the other hand,
a non-Gaussian field such as the lensing B-modes has off-diagonal elements of notable magni-
tude in the covariance matrix as shown in the previous studies [29–32]. Here, we present the
simulated covariance matrix of the delensed B-mode power spectrum and compare it with
that of the lensing B-mode power spectrum. Note that, to see non-Gaussian structure of the
delensed B-modes, we do not include the tensor perturbations at first. The case including
the tensor perturbations is discussed in Sec. 5.

To compute the power spectrum covariance, the multipole is binned into 20 bins. The
binned angular power spectrum at ith multipole bin is defined as

Ĉi =
1

Ni

∑
`∈[`i−1,`i−1]

Ĉ` , (3.1)

where Ni is the number of multipoles in ith bin, and we choose `i = 15i+ 1. For the first bin
(i = 1), we remove ` = 1. The angular power spectrum is computed with the usual method:

Ĉ` =
1

2`+ 1

∑̀
m=−`

|B`m|2 . (3.2)

The power spectrum covariance between each multipole bin i and j is then evaluated as

Covij = 〈ĈiĈj〉 − 〈Ĉi〉〈Ĉj〉 . (3.3)
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Figure 2. Histogram of the estimated power spectrum amplitude of the lensing (Left) and delensed
(Right) B-modes. The number of the samples is 10000. The solid line shows the PDF obtained on
the assumption that the lensing/delensed B-modes obey Gaussian statistics. We show the ratio of
the standard deviation computed from the simulation (σA

sim) to that in the case of a Gaussian CMB
field (σA

g ). The skewness and kurtosis of the histogram are also shown. The fiducial power spectrum
is evaluated as the sample mean of the simulated power spectra.

〈· · ·〉 is the sample mean of the operand.
In Fig. 1, we show the correlation coefficients of the lensing (Left) and delensed (Right)

B-mode power spectrum defined as [32]

Rij =
Covij√

CoviiCovjj
. (3.4)

The values of the off-diagonal elements increase at higher multipoles. The typical values of
the correlation coefficients of the lensing B-modes are ∼ 6 − 8% at ` ∼ 200 − 300, which
is consistent with the previous results obtained in Ref. [32] 1. On the other hand, we can
confirm that the off-diagonal elements of the correlation matrix of the delensed B-modes are
definitely smaller than those of the lensing B-modes. These results imply that the delensing
operation reduced the off-diagonal covariance more efficiently than the diagonal covariance.

3.2 Probability distribution function of power spectrum amplitude

To discuss the non-Gaussian covariance more quantitatively, next we consider the estimation
of the power spectrum amplitude. In the case of a Gaussian field, the optimal estimator of
the power spectrum amplitude is given by [43]

Â =

∑
`(2`+ 1)Â`∑
`(2`+ 1)

, (3.5)

where Â` is the amplitude parameter at each multipole:

Â` =
Ĉ`
C`

. (3.6)

1 Note that Ref. [32] showed the correlation coefficients with 2 times wider bins in which the off-diagonal
elements are apparently larger than those in Fig. 1.
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The angular power spectrum in the denominator (C`) is the fiducial power spectrum defined
as the ensemble average of Ĉ`. The parameter Â` is a measured amplitude relative to C` at
each multipole. In the case of a Gaussian CMB field, the expected variance of Â is given by

(σAg )2 =
2∑

`(2`+ 1)
. (3.7)

Deviation of the simulated variance from (σAg )2 indicates a non-Gaussian signature.

The histograms of the estimator Â (3.5) of the lensing and delensed B-modes are shown
in Fig. 2. They are synthesized from 10000 realizations. In the estimation of Â, we use the
B-modes between ` = 2 and 300. We evaluate the fiducial power spectrum as the sample
mean of the simulated 10000 power spectra. Consequently, the sample mean of Â is unbiased.
The standard deviation of Â (σAsim) divided by that in the case of a Gaussian field (σAg ) is
shown in the figure.

Before delensing, the standard deviation of the estimator is ∼ 22% larger than that in
the case of a Gaussian CMB field. On the other hand, after delensing, the discrepancy is
decreased to ∼ 15%, which is considered to be an outcome of the decrease of the off-diagonal
correlations. Note that, even in the case that the lensing/delensed B-modes are assumed
to be Gaussian, the skewness and kurtosis of the amplitude estimator have non-zero values
because the amplitude estimator is quadratic in the CMB field. In our case, the skewness and
kurtosis of the estimator are 0.0057 and 1.3× 10−7, respectively. The skewness and kurtosis
are also shown, and they deviate from those in the case of a Gaussian CMB field within only
≤ 0.03 for the skewness and ≤ 0.07 for the kurtosis, respectively.

4 Modeling Statistical Properties of Delensed B-mode

To understand the statistical properties of the delensed B-modes shown in the previous
section, we construct an analytic model of the PDF of the lensing and delensed B-modes
which is consistent with the simulation results. The simulation results suggest that the
deviation from a Gaussian field is appeared primarily as the small increase of the variance
(σA)2. Motivated by this fact, we try to express the PDF of the lensing and delensed B-modes
as a perturbed Gaussian distribution. The Edgeworth expansion, which assumes a weakly
non-Gaussian PDF, is used for such purpose. We derive a PDF for the lensing and delensed
B-modes which includes corrections up to 4th order of the Edgeworth expansion.

4.1 Probability distribution function for weakly non-Gaussian fields

We denote nL(=
∑

`(2`+1)) independent Gaussian random variables as a`m. The joint PDF
of a = {a`m} is given by

Pg(a) =
1

(2π)nL/2|C|1/2
exp

[
−1

2
atC−1a

]
. (4.1)

Here, we denote the covariance of a`ms as C = 〈aat〉. The PDF including the corrections
from the Edgeworth expansion at 4th order is given by

P (a) = [1 + k(a)]Pg(a) , (4.2)
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where the 4th-order correction term k(a) is described as (see e.g. [44])

k(a) =
1

24Pg(a)

∑
`imi

T `1`2`3`4m1m2m3m4

∂

∂a`1m1

∂

∂a`2m2

∂

∂a`3m3

∂

∂a`4m4

Pg(a) (4.3)

=
1

24

∑
`imi

T `1`2`3`4m1m2m3m4

(
a`1m1a`2m2a`3m3a`4m4

− 6C−1
`1m1,`2m2

a`3m3a`4m4 + 3C−1
`1m1,`2m2

C−1
`3m3,`4m4

)
. (4.4)

The quantity a`m = [C−1a]`m is the inverse-variance filtered multipole. We also denote the
connected part of the four-point correlation as

T `1`2`3`4m1m2m3m4
= 〈a`1m1a`2m2a`3m3a`4m4〉c . (4.5)

We assume that the covariance matrix of a`m is diagonal:

C`m,`′m′ = δ``′δm,−m′(−1)mC` . (4.6)

This simplifies the PDF as

P (a) =
1 + k(a)

(2π)nL/2

∏
`

C
− 2`+1

2
` exp

[
−
∑̀
m=−`

|a`m|2

2C`

]
. (4.7)

Note that the PDF described above is used to derive the optimal trispectrum estimator of
the lensing potential power spectrum [45, 46].

In the above PDF, we ignore the third order term in the Edgeworth expansion which
is expressed in terms of the B-mode bispectrum because the bispectrum of the B-mode
polarization has the odd-parity symmetry and is not generated in the standard cosmology.

Let us discuss the statistical property of the power spectrum amplitude, Â. Using the
PDF P (a) given by Eq. (4.7), we obtain the mean of the estimator as follows:

〈Â〉 = 〈(Â+ Âk(a))〉g = 1 . (4.8)

Here, the operation 〈· · ·〉 means averaging based on the whole PDF P (a), while the operation
〈· · ·〉g means that on the Gaussian PDF Pg(a). The derivation is shown in appendix A.1. On
the other hand, from the PDF described in Eq. (4.7), the variance of the amplitude estimator
is given by (see appendix A.2)

(σA)2 ≡ 〈Â2〉 − 1 =
(σAg )2

nL

∑
``′

(2`+ 1)(2`′ + 1)

2

Cov``′

C`C`′
, (4.9)

where the power spectrum covariance, Cov``′ , is expressed as

Cov``′ =
2C`C`′

2`+ 1
δ``′ +

1

(2`+ 1)(2`′ + 1)

∑
mm′

(−1)m+m′T ```
′`′

m,−m,m′,−m′ . (4.10)

The PDF of the power spectrum amplitude Â is given as the chi square distribution with a
correction term from the kurtosis (see appendix A.3 for derivation):

P (Â) =
(nL/2)nL/2

Γ(nL/2)
Â

nL
2
−1 e−

nL
2
Â

{
1 + nL

(σA)2 − (σAg )2

4(σAg )2

[
nL

nL + 2
Â2 − 2Â+ 1

]}
. (4.11)

Once we obtain the power spectrum covariance, we can actually evaluate the variance of the
power spectrum amplitude and the PDF.
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4.2 Expression for B-mode power spectrum covariance

Next, we discuss mathematical expression for the B-mode power spectrum covariance. At
first, we summarize the derivation of the analytic expression for the power spectrum covari-
ance of the lensing B-modes developed by Refs. [29–32]. The lensing B-mode power spectrum
on large scales (`<∼ 300) is well described by a convolution of the E-mode polarization and
lensing potential power spectra (see e.g., [10]):

C̃BB
` =

1

2`+ 1

∑
`′L

(S(−)
``′L)2CEE

`′ C
φφ
L ≡ Ξ`[C

EE, Cφφ] , (4.12)

where S
(−)
``′L is given in Eq. (2.5), and we define a convolution operator:

Ξ`[A,B] =
1

2`+ 1

∑
`1`2

(S(−)
``1`2

)2A`1B`2 . (4.13)

The fluctuations of the E-mode and lensing potential power spectra contribute to the fluctu-
ation of the lensing B-mode power spectrum as follows [32]:

δC̃BB
` =

∑
`′

∂C̃BB
`

∂CEE
`′

δCEE
`′ +

∑
`′

∂C̃BB
`

∂Cφφ`′
δCφφ`′ . (4.14)

The connected part of the covariance due to this contribution 〈C̃BB
` C̃BB

`′ 〉c is approximately
given by

〈C̃BB
` C̃BB

`′ 〉c =
∑
L

∂C̃BB
`

∂CEE
L

2(CEE
L )2

2L+ 1

∂C̃BB
`′

∂CEE
L

+
∑
L

∂C̃BB
`

∂CφφL

2(CφφL )2

2L+ 1

∂C̃BB
`′

∂CφφL
. (4.15)

Here we use

〈δCX` δCX`′ 〉 =
2CX` C

X
`′

2`+ 1
δ``′ , (4.16)

where X is EE or φφ. Note that the power spectrum covariance also contains a fully con-
nected term which is not expressed like the r.h.s. of Eq. (4.15), but it has only negligible
contribution [31]. The approximate expression for the power spectrum covariance is then
described as [32]

CovBB
``′ ≡ 〈C̃BB

` C̃BB
`′ 〉 − 〈C̃BB

` 〉〈C̃BB
`′ 〉

'
2(C̃BB

` )2

2`+ 1
δ``′ +

∑
L

[
∂C̃BB

`

∂CEE
L

2(CEE
L )2

2L+ 1

∂C̃BB
`′

∂CEE
L

+
∂C̃BB

`

∂CφφL

2(CφφL )2

2L+ 1

∂C̃BB
`′

∂CφφL

]
. (4.17)

We now apply the above discussion to derive the power spectrum covariance for the
delensed B-modes. Assuming that the E-modes are nearly cosmic-variance limited, and
using the similar procedure described above, we obtain the following expression as

CovBB,d
``′ =

2(CBB,d
` )2

2`+ 1
δ``′ +

∑
L

[
∂CBB,d

`

∂CEE
L

2(CEE
L )2

2L+ 1

∂CBB,d
`′

∂CEE
L

+
∂CBB,d

`

∂CφφL

2(CφφL )2

2L+ 1

∂CBB,d
`′

∂CφφL

]
.

(4.18)

The actual derivation requires cumbersome calculation and is shown in appendix B.1.
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Figure 3. Correlation coefficients of the lensing (Left) and delensed (Right) B-mode power spectrum.
The correlation coefficients obtained from the Monte Carlo simulation (solid) are compared with those
of the analytic model (dashed). For an illustrative purpose, the multipoles up to 300 are binned into
12 bins.

Figure 4. Theoretical PDF of the lensing (Left) and delensed (Right) B-mode power spectrum
amplitude compared with the histogram shown in Fig. 2. We show two theoretical models; the
analytic model of the PDF given by Eq. (4.11) (solid), and the empirical PDF obtained by fitting a
normal distribution with the histogram (dashed). Note that, the y-axis is in logarithmic scale for the
clarification of the effect on the variance.

4.3 Comparison with simulation results

Now we compare the model calculations with the results of the Monte Carlo simulation.

The correlation coefficients of the lensing and delensed B-mode power spectra are shown
in Fig. 3. The simulated correlation coefficients are compared with those of the analytic
models described in the previous subsection. The analytic models capture the behavior of
the simulated correlation coefficients.

The analytic PDFs of the power spectrum amplitude described in Sec. 4.1 are compared
with the histograms obtained from the Monte Carlo simulation in Fig. 4. Our analytic
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Figure 5. Histogram of the tensor-to-scalar ratio estimated from the tensor plus lensing (Left) and
tensor plus delensed (Right) B-modes. The number of the samples is 10000. The input value of the
tensor-to-scalar ratio is r = 0.05. The solid line shows the PDF in the case of a Gaussian B-mode.
The fiducial power spectrum is evaluated as the sample mean of the simulated power spectra.

model of the delensed B-modes well describes the statistics of the simulated samples. The
simulated standard deviation of the amplitude parameter is σA = 0.005357. By use of the
analytic formula, the standard deviation is estimated as σA = 0.005264 which is in agreement
with the simulation result within 1.8%. We also show the normal distributions fitted with
the histograms. Contrary to the PDFs in the case of a Gaussian field (Fig. 2), the normal
distributions with the fitted variances well capture the behaviors of the simulated histograms,
which also validates the use of the 4th-order Edgeworth expansion.

5 Impact on Estimation of Tensor-to-Scalar Ratio

Here we demonstrate the effect of non-Gaussianity from the lensing/delensed B-modes to the
estimation of the tensor-to-scalar ratio r. At a single multipole `, the tensor-to-scalar ratio
which maximizes the likelihood function is obtained by, e.g., differentiating Eq. (3) of [6] in
terms of r:

r̂` =
ĈBB
` − CL

`

CT
`

, (5.1)

where the quantities ĈBB
` , CL

` and CT
` are the observed, lensing/delensed and tensor B-mode

power spectrum, respectively. Here the spectrum CT
` is for r = 1. Under the assumption that

the covariance of the observed B-mode power spectrum is diagonal, the expected variance of
the above quantity is given by

σ2
` =

2

2`+ 1

(
CL
` + rCT

`

CT
`

)2

. (5.2)

This leads to an optimal estimator of r as

r̂ = (σrg)2
∑
`

r̂`
σ2
`

, (5.3)

– 12 –



Figure 6. Standard deviations of the tensor-to-scalar ratio estimator divided by that in the case
of a Gaussian B-mode (σr

sim/σ
r
g) as a function of the minimum multipole included in the estimation

(`min) for the tensor plus lensing (dashed black) and tensor plus delensed (solid blue) B-modes. The
input value of the tensor-to-scalar ratio is 0.05. The maximum multipole in the estimation is fixed to
300.

where (σrg)2 is the expected variance of r̂:

(σrg)2 ≡ 1∑
` σ
−2
`

=

[∑
`

2`+ 1

2

(
CT
`

rCT
` + CL

`

)2
]−1

. (5.4)

Note that, to see the impact of the non-Gaussian property of the B-modes on the estimation of
r̂ clearly, we ignore the instrumental noise in the observed B-modes to be used for estimating
r. The effect of the instrumental noise on the estimation of r̂ is discussed later. The estimated
tensor-to-scalar ratio would be close to that obtained from the maximum likelihood method
2 .

The histograms of the estimated tensor-to-scalar ratio, which are obtained from 10000
realizations of the tensor plus lensing and tensor plus delensed B-modes, are shown in Fig. 5.
The input value of the tensor-to-scalar ratio is 0.05. In both cases, the mean of the estimated
tensor-to-scalar ratio equals to the input value within Monte Carlo error. Also in both
cases, we find that the standard deviation of the tensor-to-scalar ratio increases only within
a few percent (∼ 2%) compared with that in the case of a Gaussian B-mode. Unlike the
constraints on the power spectrum amplitude, the simulation results show that the standard
deviation obtained in the presence of the lensing-induced non-Gaussian B-modes (σrsim) is
not significantly different from that in the case of a Gaussian B-mode (σrg). This is because
well-defined estimators of r usually extracts information mainly from large scale modes which
earn a most part of the signal-to-noise of the tensor B-modes, while the B-modes on smaller

2 Note that the estimator r̂ is not precisely the same as that obtained from the maximum likelihood method
if the tensor-to-scalar ratio is close to zero and the fractional variance of r̂ is large. In our analysis here, the
estimated values of the tensor-to-scalar ratio are much larger than the standard deviation.
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scales, where non-Gaussian properties of the lensing/delensed B-modes are significant, are
down-weighted in the estimators. Note that the value of σrsim (σrg) is 0.00075 (0.00074) in
the case of the lensing B-modes, and 0.00088 (0.00086) in the case of the delensed B-modes,
respectively. That is, σrsim obtained in the case of the delensed B-modes is decreased by
∼ 15% compared to that in the case of the lensing B-modes, while σrg is decreased by 14%
after delensing. This means that the delensing efficiency is almost unchanged whether or not
the non-Gaussian structure of the B-mode polarization is taken into account.

Let us discuss the case if the instrumental noise is added in the lensing and delensed
B-modes. If a white noise is added, the B-modes at high multipoles behave like a Gaussian
field, and the results of the estimation would be more close to those in the case of a Gaussian
field. On the other hand, if the large scale B-modes are filtered out, the ratio of the standard
deviations σrsim/σ

r
g would be increased. In practical situations, the large scale B-modes are

significantly contaminated by Galactic foreground emission or 1/f noises. In Fig. 6, the ratio
of the simulated standard deviation to that in the case of a Gaussian field (σrsim/σ

r
g) is shown

as a function of the minimum multipole included in the estimation (`min). As expected,
the ratio increases for larger values of `min. Also, the figure compares the constraint on the
tensor-to-scalar ratio in the case of the tensor plus lensing B-modes with that in the case of
the tensor plus delensed B-modes. Note that, if `min is increased to be larger than 100, the
discrepancy between the two cases grows further.

6 Summary and Discussion

We have explored the non-Gaussian structure of the delensed B-mode polarization. Assuming
an experiment of moderate sensitivity where the quadratic delensing is an almost optimal
method, we find that not only the diagonal elements of the power spectrum covariance matrix
but also its off-diagonal elements are reduced due to the delensing operation. In particular,
the correlation coefficients between the power spectra at different multipoles become smaller
than those of the original lensing B-modes. As a result, the constraint on the amplitude of
the delensed B-mode power spectrum is not significantly degraded by the non-Gaussianity,
compared to that on the amplitude of the lensing B-mode power spectrum. We show that
the PDF of the power spectrum amplitude is broadened due to the non-Gaussianity, which
leads to the increase of the variance, while the skewness and kurtosis of the PDF are basically
consistent with those in the case of a Gaussian field. These features are well captured by
the analytic model based on the 4th order Edgeworth expansion. Also, we show that the
non-Gaussianity degrades the constraint on the tensor-to-scalar ratio after delensing within
a few percent.

In this paper, we assumed the noise level of ∆P = 6µK-arcmin and the beam size of
θ = 4 arcmin. In fact, our analytic model (and mathematical interpretation based on the
model) works well as long as such moderate sensitivity experiments are assumed. For ex-
ample, we checked that difference of σA between simulations and the model prediction is
∼ 1% if ∆P = 9µK-arcmin or 7.5µK-arcmin, and ∼ 2% if ∆P = 3.5µK-arcmin. On the
other hand, decreasing the noise level, we found that the analytic calculations based on the
formulas described in Sec. 4 eventually began to deviate from the simulation results. The
ratio σA/σAg increases after initial decrease in the simulation, while that of the analytic model
decreases monotonically. For example, if the noise level is 1.5µK-arcmin, the analytic model
overestimates the constraint on the power spectrum amplitude by ∼ 7%. In absence of in-
strumental noise (i.e., cosmic-variance limited up to ` = 2000), the discrepancy reaches to
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∼ 14%. This result implies that the approximations used in Sec. 4 are no longer valid. In
such high sensitivity experiments, since quadratic delensing is no longer an optimal method,
iterative delensing proposed in Ref. [42] would be used for actual delensing analysis. Proper-
ties of the B-modes delensed in such analysis should be explored through another simulation
(and another analytic modeling) based on the iterative method. It would be our future work.
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A Statistical Properties of Power Spectrum Amplitude

A.1 Mean

Let us first derive the mean of the power spectrum amplitude Â. The mean of the power
spectrum amplitude is given by

〈Â〉 = 〈Â〉g + 〈Âk(a)〉g . (A.1)

Since 〈|a`m|2〉g = C`, the first term becomes

〈Â〉g =

∑
`m(〈|a`m|2〉g/C`)∑

`(2`+ 1)
= 1 . (A.2)

On the other hand, the second term vanishes. This is because, as described in Eq. (4.3), k(a)
is a linear combination of four derivatives with respect to a`m. Therefore, for any nth order
polynomial f(a`m) with n < 4, a quantity 〈f(a`m)k(a)〉g vanishes by integration by parts.

The mean of Â then becomes 〈Â〉 = 1.

A.2 Variance

Next we derive the expression for the variance (4.9), and also Eq. (4.10). The variance of the
amplitude estimator is defined as

(σA)2 ≡ 〈Â2〉 − 1 =
1

[
∑

`(2`+ 1)]2

∑
``′

(2`+ 1)(2`′ + 1)(〈Â`Â`′〉 − 1) . (A.3)

Using the variance in the case of a Gaussian field (σAg )2 defined in Eq. (3.7), the above
equation becomes Eq. (4.9):

(σA)2 =
(σAg )2

nL

∑
``′

(2`+ 1)(2`′ + 1)

2

〈C`C`′〉 − C`C`′
C`C`′

=
(σAg )2

nL

∑
``′

(2`+ 1)(2`′ + 1)

2

Cov``′

C`C`′
. (A.4)

Here, we denote the power spectrum covariance as

Cov``′ = 〈C`C`′〉 − C`C`′ . (A.5)
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The power spectrum covariance is rewritten as

Cov``′ = 〈C`C`′〉g − C`C`′ + 〈C`C`′k(a)〉g . (A.6)

The sum of the first two terms is the disconnected part of the power spectrum covariance:

Covg
``′ ≡ 〈C`C`′〉g − C`C`′ =

2C`C`′

2`+ 1
δ``′ . (A.7)

On the other hand, the connected part of the covariance is related to the trispectrum as (see
equations from Eq. (A.10) to Eq. (A.14) for the derivation of Eq. (A.9) from Eq. (A.8))

Covc
``′ ≡ 〈C`C`′k(a)〉g

=
1

(2`+ 1)(2`′ + 1)

∑
mm′

〈a`ma∗`ma`′m′a∗`′m′k(a)〉g (A.8)

=
1

(2`+ 1)(2`′ + 1)

∑
mm′

(−1)m+m′T ```
′`′

m,−m,m′,−m′ . (A.9)

The sum of the disconnected part (A.7) and connected part (A.9) gives Eq. (4.10).

The remaining part of this subsection is devoted for derivation of Eq. (A.9) from
Eq. (A.8). Using Eq. (4.3), we rewrite Eq. (A.8) as

1

(2`+ 1)(2`′ + 1)

∑
mm′

〈a`ma∗`ma`′m′a∗`′m′k(a)〉g

=
1

(2`+ 1)(2`′ + 1)

∑
mm′

∫
da a`ma

∗
`ma`′m′a

∗
`′m′k(a)Pg(a)

=
1

(2`+ 1)(2`′ + 1)

∑
mm′

1

24

∑
`imi

T `1`2`3`4m1m2m3m4
K . (A.10)

where we define

K ≡
∫

da a`ma
∗
`ma`′m′a

∗
`′m′

∂

∂a`1m1

∂

∂a`2m2

∂

∂a`3m3

∂

∂a`4m4

Pg(a) . (A.11)

Introducing an operator ci which only affects on a`imi
as cia`imi

= a∗`imi
, we perform inte-

gration by parts which gives

K = −
∫

da [δ``1δmm1(a∗`m + c1a`m)a`′m′a
∗
`′m′ + (`m↔ `′m′)]

× ∂

∂a`2m2

∂

∂a`3m3

∂

∂a`4m4

Pg(a) . (A.12)
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Repeating integration by parts, we find

K =

∫
da [δ``1δmm1δ``2δmm2(c2 + c1)a`′m′a

∗
`′m′

+ δ``1δmm1(a∗`m + c1a`m)δ`′`2δm′m2(a∗`′m′ + c2a`′m′) + (`m↔ `′m′)]

× ∂

∂a`3m3

∂

∂a`4m4

Pg(a)

= −
∫

da [δ``1δmm1δ``2δmm2(c2 + c1)δ`′`3δm′m3(a∗`′m′ + c3a`′m′)

+ δ``1δmm1δ``3δmm3(c3 + c1)δ`′`2δm′m2(a∗`′m′ + c2a`′m′)

+ δ``1δmm1(a∗`m + c1a`m)δ`′`2δm′m2δ`′`3δm′m3(c3 + c2)] + (`m↔ `′m′)]

× ∂

∂a`4m4

Pg(a)

=

∫
da

1

4

∑
h,i,j,k=(1,2,3,4)

δ``hδmmh
δ``iδmmiδ`′`jδm′mj

δ`′`kδm′mk
(ch + ci)(cj + ck)Pg(a)

=
1

4

∑
h,i,j,k=(1,2,3,4)

δ``hδmmh
δ``iδmmiδ`′`jδm′mj

δ`′`kδm′mk
(ch + ci)(cj + ck) . (A.13)

The summation with respect to h, i, j and k is applied for every permutaion of (1, 2, 3, 4).
Using the above equation, we obtain

1

(2`+ 1)(2`′ + 1)

∑
mm′

〈a`ma∗`ma`′m′a∗`′m′k(a)〉g

=
1

(2`+ 1)(2`′ + 1)

∑
mm′

(−1)m+m′T ```
′`′

m,−m,m′,−m′ . (A.14)

This equation equals to Eq. (A.9).

A.3 Probability distribution function of power spectrum amplitude

Here we derive the PDF of the power spectrum amplitude, Â, shown in Eq. (4.11). The PDF
of Â is defined as

P (Â) ≡
∫

dnLa δD

(
Â−

∑
`m |a`m|2/C`

nL

)
P (a)

∝
∫

dnLa δD

(
Â−

∑
`m |a`m|2/C`

nL

)
[1 + k(a)]

∏
`′

C
− 2`′+1

2
`′ exp

[
−

`′∑
m′=−`′

|a`′m′ |2

2C`′

]

=

[∏
`′

C
− 2`′+1

2
`′

]
e−

nL
2
Â

∫
dnLa δD

(
Â−

∑
`m |a`m|2/C`

nL

)
[1 + k(a)] . (A.15)

Here δD is the Dirac delta function. Introducing variables u`m so that a`m = (nLÂC`)
1/2u`m,

the above relation is simplified as

P (Â) = Pg(Â)

∫
dnLu δD

(
1− |u|2

)
[1 + k(u, Â)]

≡ Pg(Â)K(Â) , (A.16)
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where the PDF in the case of a Gaussian field has the dependence as

Pg(Â) ∝ Â
nL
2
−1 e−

nL
2
Â . (A.17)

We define the correction factor as follows:

K(Â) ≡ P (Â)

Pg(Â)
=

∫
dnLu δD

(
1− |u|2

)
+

∫
dnLu δD

(
1− |u|2

)
k(u, Â) . (A.18)

Let us consider a simplified expression for K(Â). For this purpose, we use the following
formula∫

dnLx δD(1− |x|2)f(|x|2) = SnL

∫
dr rnL−1δD(1− r2)f(r2)

=
SnL

2

∫
ds s(nL−2)/2δD(1− s)f(s) =

SnLf(1)

2
, (A.19)

where SnL = 2πnL/2/Γ(nL/2) is the surface area of the unit sphere in nL − 1 dimension.
From the above equation, the first term of Eq. (A.18) is given by SnL/2. On the other hand,
the evaluation of the second term requires a bit complicated calculation. Using the explicit
expression for the kurtosis contribution (4.4), we first rewrite the second term of Eq. (A.18)
as

1

24

∑
`imi

T `1`2`3`4m1m2m3m4

(C`1C`2C`3C`4)1/2

∫
dnLu δD

(
1− |u|2

)(
n2
LÂ

2u∗`1m1
u∗`2m2

u∗`3m3
u∗`4m4

− 6nLÂδ`1`2δ−m1,m2(−1)m1u∗`3m3
u∗`4m4

+ 3δ`1`2δ−m1,m2δ`3`4δ−m3,m4(−1)m1+m3

)
. (A.20)

Note that this is a real number for a given set of a`ms. The above equation consists of the
three terms: the term proportional to Â2, Â and independent of Â. We first consider the
term containing Â2. To simplify this term, we use the following general formula:∑

ijkm

Tijkm
∫

dnLx δD

(
1− |x|2

)
xixjxkxm

=

∫
dnLx δD

(
1− |x|2

)∑
i

Tiiii|xi|4 + 3
∑
i 6=j
Tijij |xi|2|xj |2


= 3I4

∑
ij

Tijij . (A.21)

Here, the quantity Tijkl is assumed to be unchanged by the exchange of two idices, e.g.
Tijkl = Tjikl. We define I4 as

I4 ≡
∫

dnLx δD

(
1− |x|2

)
|xi|2|xj |2 , (A.22)

where i 6= j. Also, we use the fact that (see Sec. A.4 for derivation):

I4 =
1

3

∫
dnLx δD

(
1− |x|2

)
|xi|4 . (A.23)
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I4 is independent of the indices (i and j) appearing in the r.h.s. of the above equations. The
quantity I4 is computed as3

∑
i

+
∑
i 6=j

 I4 =

∫
dnLx δD

(
1− |x|2

)∑
i

|xi|4 +
∑
i 6=j
|xi|2|xj |2


=

∫
dnLx δD

(
1− |x|2

)(∑
i

|xi|2
)2

=
SnL

2
. (A.24)

By use of Eqs. (A.21) and (A.24), the first term of Eq. (A.20) is given by

1

24

∑
`imi

T `1`2`3`4m1m2m3m4

(C`1C`2C`3C`4)1/2

∫
dnLu δD

(
1− |u|2

)
n2
LÂ

2u∗`1m1
u∗`2m2

u∗`3m3
u∗`4m4

= SnL

nL
nL + 2

Â2

16

∑
`m`′m′

〈|a`m|2|a`′m′ |2〉c
C`C`′

. (A.25)

Next we consider the second term of Eq. (A.20). Similarly as in the case of the first term,
we define the following integral:

I2 ≡
∫

dnLu δD

(
1− |u|2

)
uiuj = δij

∫
dnLu δD

(
1− |u|2

)
|ui|2 . (A.26)

This quantity satisfies ∑
i

I2 =

∫
dnLx δD

(
1− |x|2

)∑
i

|xi|2 =
SnL

2
. (A.27)

This reduces the second term of Eq. (A.20) to

−Â
4

∑
`imi

T `1`2`3`4m1m2m3m4

∫
dnLu δD(1− |u|2)δ`1`2δ−m1,m2(−1)m1u∗`3m3

u∗`4m4

= −SnL

Â

8

∑
`m`′m′

〈|a`m|2|a`′m′ |2〉c
C`C`′

. (A.28)

Finally, the last term becomes

1

8

∑
`imi

T `1`2`3`4m1m2m3m4

∫
dnLu δD

(
1− |u|2

)
δ`1`2δ−m1,m2δ`3`4δ−m3,m4(−1)m1+m3

=
SnL

16

∑
`m`′m′

〈|a`m|2|a`′m′ |2〉c
C`C`′

. (A.29)

Combining these results, we find

K(Â) =
SnL

2
+ SnL

(nL/(nL + 2)Â2 − 2Â+ 1)

16

∑
`m`′m′

〈|a`m|2|a`′m′ |2〉c
C`C`′

. (A.30)

We finally obtain the PDF of Â as

P (Â) ∝ Â
nL
2
−1 e−

nL
2
Â

(
1 +

(nL)/(nL + 2)Â2 − 2Â+ 1

8

∑
``′

(2`+ 1)(2`′ + 1)
Covc

``′

C`C`′

)
.

(A.31)

Note that the normalization is given by (nL/2)nL/2/Γ(nL/2).
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A.4 Formula of integration on unit hypersurface

Finally, we derive the relationship between the following two integrals:

Jij ≡
∫

dnx δD

(
1− |x|2

)
|xi|2|xj |2 , (A.32)

Ji ≡
∫

dnx δD

(
1− |x|2

)
|xi|4 . (A.33)

In our derivation, we use

F (t) ≡
∫

dnx δD

(
1− |x|2

)
e−(t1x21+t2x22+···+tnx2n) , (A.34)

where tt = (t1, t2, · · · , tn) are non-negative parameters. This function is considered as a
generating function of Jij and Ji, since these quantities are given as a derivative of F (t) in
terms of ti:

Jij = lim
t→+0

∂2F (t)

∂ti∂tj
, Ji = lim

t→+0

∂2F (t)

∂t2i
. (A.35)

The generating function (A.34) is rewritten as

F (t) =

∫
dnx

∫
ds

1

2π
e−is(1−|x|2) e−(t1x21+t2x22+···+tnx2n)

=

∫
ds

1

2π
e−is

n∏
i=1

∫
dxi exp

[
−(ti − is)x2

i

]
=

∫
ds

1

2π
e−is

n∏
i=1

(
π

ti − is

)1/2

. (A.36)

Substituting the above equation into Eq. (A.35), we find

3Jij = Ji . (A.37)

Since I4 = Jij , we obtain Eq. (A.24).

B Delensed B-mode Power Spectrum Covariance

B.1 Analytic expression

Let us discuss analytic expression for the power spectrum covariance of the delensed B-mode
polarization. The estimator of the delensed B-mode polarization is given by Eq. (2.19). For
a realization of our simulation, the lensing potential is obtained from the simulated CMB
map according to Eqs. (2.11) and (2.13). The estimated lensing potential is decomposed into
the lensing potential and the other remaining term (the noise of the lensing reconstruction)
as

φ̂`m = φ`m + n`m . (B.1)

From Eq. (2.16), the estimator of the lensing B-mode is described as

B`m[E, φw] + B`m[E,nw] , (B.2)
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where the Wiener filtered multipoles φw
`m and nw

`m are defined by multiplying the Wiener

filter W φ
` in Eq. (2.18) to the φ`m and n`m, respectively. The dominant contribution of the

lensing B-mode at large scales is also expressed by the convolution of the E-mode polarization
and lensing potential as described in Eq. (2.6) [10]. On the assumption that the lensing B-
mode is given by Eq. (2.6), the delensed B-mode polarization (in the absence of the tensor
perturbations) is described as a sum of two components:

Bd
`m = B`m[E, (1−W φ)φ]−B`m[E,nw] . (B.3)

In the above equations, we assume that the Wiener filter for the E-mode (WE) is unity up
to ` = 2000, i.e., uncertainty in the E-mode polarization is dominated by its cosmic variance
and the instrumental noise is negligible. This approximation would be valid for ongoing
and future high-resolution experiments since their polarization sensitivity will be better than
O(1)µK-arcmin also with small beam sizes of a few arcminute. The filter function for the

lensing potential (W φ
` ) depends on the lensing power spectrum of the theoretical model which

is identified through a parameter estimation procedure in actual analysis. We assume that
the model is correctly identified in our simulation and the filter function is henceforth treated
as a quantity independent of Cφφ` .

The delensed B-mode power spectrum is computed from Eq. (B.3). Under the assump-
tion that the lensing potential φ`m is statistically independent from the residual reconstruc-
tion noise n`m, the delensed B-mode power spectrum becomes [10]

CBB,d
` ' Ξ`[C

EE, (1−W φ)2Cφφ] + Ξ`[C
EE, (W φ)2Nφφ] (B.4)

' Ξ`[C
EE, (1−W φ)Cφφ] , (B.5)

where Nφφ
` is the power spectrum of n`m, and, from Eq. (B.4) to (B.5), we assume that Nφφ

`

corresponds to Aφ` given in Eq. (2.14). Note that, strictly speaking, the lensing potential
and reconstruction noise are correlated because the reconstruction noise has contributions
from the lensing potential and lensed E-mode. The impact of the correlation between φ`m
and n`m would be, however, negligible at least for experiments assumed in this paper, since
the approximate form of Eq. (B.5) is in good agreement with the simulation results. This
issue is also discussed in our previous work [34] where we assumed the similar experimental
specification.

To derive the power spectrum covariance in the delensed case, we need to compute the
correlation of Eq. (B.4). Denoting the first and second terms of Eq. (B.4) as

Dφ
` ≡ Ξ`[C

EE, (1−W φ)2Cφφ] , (B.6)

Dn
` ≡ Ξ`[C

EE, (W φ)2Nφφ] , (B.7)

we write the covariance of the delensed B-mode power spectrum as the sum of the following
three terms:

T 4φ
``′ = 〈Dφ

`D
φ
`′〉 , (B.8)

T 4n
``′ = 〈Dn

`D
n
`′〉 , (B.9)

T 2φ2n
``′ = 〈Dφ

`D
n
`′〉+ (`↔ `′) . (B.10)
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The first two terms would be evaluated analytically with the analogy used in the case of the
lensing B-modes [31, 32], i.e.,

T 4φ
``′ =

∑
L

2

2L+ 1

{
∂Dφ

`

∂ lnCEE
L

∂Dφ
`′

∂ lnCEE
L

+
∂Dφ

`

∂ lnCφφL

∂Dφ
`′

∂ lnCφφL

}

=
∑
L

2

2L+ 1

{
∂Dφ

`

∂ lnCEE
L

∂Dφ
`′

∂ lnCEE
L

+ (1−W φ
L )4 ∂C̃BB

`

∂ lnCφφL

∂C̃BB
`′

∂ lnCφφL

}
, (B.11)

and

T 4n
``′ =

∑
L

2

2L+ 1

 ∂Dn
`

∂ lnCEE
L

∂Dn
`′

∂ lnCEE
L

+

[
(W φ

L )2Nφφ
L

CφφL

]2
∂C̃BB

`

∂ lnCφφL

∂C̃BB
`′

∂ lnCφφL

 . (B.12)

Here we assume that the power spectra CEE, Cφφ and Nφφ have Gaussian covariance. Note
that, as discussed in Refs. [20, 48, 49], the covariance between CEE, Cφφ and Nφφ can have
off-diagonal elements and is shown that these are basically negligible. The remaining term
T 2φ2n
``′ would be approximated as

T 2φ2n
``′ =

∑
L

2

2L+ 1

{
∂Dφ

`

∂ lnCEE
L

∂Dn
`′

∂ lnCEE
L

+ (1−W φ
L )2(W φ

L )2N
φφ
L

CφφL

∂C̃BB
`

∂ lnCφφL

∂C̃BB
`′

∂ lnCφφL

}
+ (`↔ `′) . (B.13)

By combining the above three terms, we find

T 4φ
``′ + T 4n

``′ + T 2φ2n
``′ =

∑
L

2

2L+ 1

{
∂(Dφ

` +Dn
` )

∂ lnCEE
L

∂(Dφ
`′ +Dn

`′)

∂ lnCEE
L

+

[
(1−W φ

L )2 +
(W φ

L )2Nφφ
L

CφφL

]2
∂C̃BB

`

∂ lnCφφL

∂C̃BB
`′

∂ lnCφφL

}

'
∑
L

2

2L+ 1

{
∂(Dφ

` +Dn
` )

∂ lnCEE
L

∂(Dφ
`′ +Dn

`′)

∂ lnCEE
L

+ (1−W φ
L )2 ∂C̃BB

`

∂ lnCφφL

∂C̃BB
`′

∂ lnCφφL

}

'
∑
L

2

2L+ 1

{
∂CBB,d

`

∂ lnCEE
L

∂CBB,d
`′

∂ lnCEE
L

+
∂CBB,d

`

∂ lnCφφL

∂CBB,d
`′

∂ lnCφφL

}
. (B.14)

From the first to second equation, we assume that Nφφ
` corresponds to Aφ, and from the

second to third equation, we use Eq. (B.5). The covariance of the delensed B-mode power
spectrum given above equals to the off-diagonal part of Eq. (4.18). Note that we compute the

derivative of the delensed B-mode power spectrum CBB,d
` with respect to Cφφ` via Eq. (B.5).
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B.2 Numerical computation

Here we describe our method of computing the power spectrum covariance of the lensing and
delensed B-mode. The power spectrum covariance is given by

CovBB
``′ =

2

2`+ 1
C2
` δ``′ + CovE

``′ + Covφ``′ , (B.15)

where we denote the connected part of the covariance as

CovE
``′ =

∑
L

∂C`
∂CEE

L

2(CEE
L )2

2L+ 1

∂C`′

∂CEE
L

, (B.16)

Covφ``′ =
∑
L

∂C`

∂CφφL

2(CφφL )2

2L+ 1

∂C`′

∂CφφL
. (B.17)

To evaluate the connected part of the covariance, CovE and Covφ, we rewrite the derivatives
as

∂C`
∂CEE

L

= Ξφ`L[Cφφ] , (B.18)

∂C`

∂CφφL
= ΞE

`L[CEE] . (B.19)

Here we define

Ξφ`L[A] ≡ 1

2`+ 1

∑
L′

(S(−)
`LL′)

2AL′ , (B.20)

ΞE
`L[A] ≡ 1

2`+ 1

∑
L′

(S(−)
`L′L)2AL′ . (B.21)

Note that

Ξ`[A,B] =
∑
L

ALΞφ`L[B] =
∑
L

BLΞE
`L[A] . (B.22)

For instance, CovE
``′ is then given by

CovE
``′ =

∑
L

∂C`
∂CEE

L

2(CEE
L )2

2L+ 1

∂C`′

∂CEE
L

=
∑
L

Ξφ`L[Cφφ]
2(CEE

L )2

2L+ 1
Ξφ`′L[Cφφ] . (B.23)

Denoting

F `
′
L =

2(CEE
L )2

2L+ 1
Ξφ`′L[Cφφ] , (B.24)

we obtain

CovE
``′ = Ξ`[F

`′ , Cφφ] . (B.25)
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Similarly, we find

Covφ``′ = Ξ`[C
EE, G`

′
] , (B.26)

where we define

G`
′
L =

2(CφφL )2

2L+ 1
ΞE
`′L[CEE] . (B.27)

The summations in Ξ`, ΞE
`L and Ξφ`L are efficiently evaluated by use of the reduced wigner d

functions as described in Ref. [10]. The power spectrum covariance of the delensed B-modes
is also evaluated in the above similar manner.
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