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It has been suggested that several small-scale structure anomalies in ΛCDM cosmology can be
solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the
presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic
speeds come close to saturating the unitarity bound. This can result in the formation of a stable
bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied
the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident
bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up
to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark
matter directional detection experiment will uniquely determine many of the low-energy properties
of dark matter independent of the underlying dark matter microphysics.

I. INTRODUCTION

It is widely accepted that the Standard Model particles
do not make up the entire matter budget of the Universe.
This profound realization that most of the matter in
our Universe is not electromagnetically visible comes
from observations of the largest to the smallest scales
of the Universe [3–6]. Solutions to this “missing light”
problem range from a phenomenological modification
of Newton’s laws [7] to postulating the presence of a
new electromagnetically neutral particle, dark matter [8].
The latter solution is more appealing and economical as
it is able to solve this conundrum at all scales of the
Universe.

The search for particle properties of dark matter has
been ongoing for several decades [9–11]. Searches for dark
matter are currently pursued in colliders [12], indirect
detection [13–24], and direct detection [25–32].

Although the ΛCDM model of cosmology is
fantastically successful at large scales, there are a
number of observations at galactic or smaller scales
which suggest the incompleteness of this model [33].
These small-scale anomalies are typically classified as
the missing satellites problem [34], the core vs. cusp
problem [35–37] (see Ref. [38] for exception) and the
too big to fail problem [39–43]. These problems
are recognized when one confronts the astrophysical
observations with cold dark matter only simulations.

Baryons dominate the scales relevant for these small-
scale structure anomalies. This has driven the interest
in using baryons to solve the small-scale structure
problems [44–51].

Several particle physics solutions to these problems
have also been noted. Warm dark matter has the
potential to solve the missing satellites problem and the
too big to fail problem [52, 53], although there is some
dispute [54].

A novel solution to the cusp vs core problem and the

too big to fail problem is to hypothesize strong self-
interaction between dark matter particles first postulated
in Ref. [55]. Since then, a number of models for self-
interacting dark matter have been built [56–78].

Given the controversy over these small-scale structure
problems, is it possible to determine the dark matter self-
interaction cross section independent of the astrophysical
data? The answer is yes, and a model-independent
way to describe strong self-interactions between dark
matter particles was recently demonstrated in Ref. [1].
The presence of an S-wave resonance near the scattering
threshold of two dark matter particles can lead to
enhancements in the nonrelativistic annihilation and self-
interaction cross sections. When the cross section comes
close to saturating the unitarity bound, the S-wave
scattering length governs the low-energy dynamics of the
system [79–82]. If the real part of the S-wave scattering
length is positive, the resonance is a bound state below
the threshold of the two dark matter particles.

If the dark matter particles do not have any
annihilation channel, then the bound state of two dark
matter particles is stable. In this limit, the binding
energy is determined uniquely by the S-wave scattering
length. We studied the nuclear recoil energy spectrum
from a bound-state dark matter scattering in a direct
detection experiment in Ref. [2]. We demonstrated that
for a certain choice of the dark matter self-interaction
cross section, motivated by the small-scale structure
anomalies, the bound-state dark matter (which we named
darkonium) can break apart during its collision with the
nucleus. The break-up scattering along with the elastic
scattering of the darkonium can produce a unique nuclear
recoil energy spectrum.

In this work, we study the unique signature in
a dark matter directional detection experiment from
an incident darkonium. The observation of this
angular recoil spectrum will be a smoking gun
signature of the large scattering length in dark matter
interactinonrelativisticons.
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II. DIRECTIONAL DETECTION OF
DARKONIUM

A. Darkonium

Due to the present excitement about strong dark
matter self-interactions at nonrelativistic velocities, we
can try to apply the knowledge gained by studying
other nonrelativistic systems [79–81] to dark matter.
A phenomenological way to explain strong interaction
cross sections at nonrelativistic speeds is to postulate
the presence of an S-wave resonance near the scattering
threshold. Although this requires fine-tuning, yet this
also represents an extremely predictive scenario.

If the underlying parameters of the problem are such
that the S-wave scattering length is much larger than
the range of interaction between the particles, then the
complete dynamics of the system is determined by the
S-wave scattering length, which is in general a complex
number. In this case the resultant cross section scales
as 1/v2, where v is the relative velocity between the
two incident particles. The S-wave scattering length
becomes the largest length scale in the problem and hence
dictates the dynamics of the system. The properties of
the system become independent of the underlying details
of the interaction between the particles and is determined
only by the S-wave scattering length. Such properties
are called universal, as any system with a large S-wave
scattering length will have the same properties [79]. If
the S-wave scattering length is positive, the resonance
is composed of the two incident particles. Examples of
such systems in particle physics are the deuteron (which
is a bound state of the neutron and proton), X(3872)
(which is a bound state of charm mesons), the diatomic
4He molecule and many others. Numerous examples of
such systems exist in the cold atom literature [79].

The application of this physics to dark matter system
makes the resultant properties of dark matter extremely
predictive [1]. The elastic scattering cross section,
annihilation cross section, binding energy, lifetime, and
structure of the resonance is determined uniquely by the
S-wave scattering length. The annihilation cross section
of the dark matter particles and the decay rate of the
resonance are proportional to the imaginary part of the S-
wave scattering length. Turning off the annihilation cross
section between the dark matter particles automatically
makes the resonance stable [1]. This also implies that the
dark matter must be asymmetric in nature.

Denoting the S-wave scattering length as a, the self-
interaction cross section between two identical particles
of mass m and relative momentum k is

σel = 8πa2/(1 + a2k2) , (1)

and the binding energy is given by

EB =
1

ma2
. (2)

B. Directional detection

Directional detection of dark matter promises a
smoking gun signature of the particle properties of
dark matter in the solar circle [83]. Dark matter
particles have an isotropic velocity distribution in
the Galactic frame, but the motion of the Solar
system provides a preferential incident direction of
the dark matter particles in the laboratory frame.
This preferential incoming direction of the dark matter
particles imprints itself in the angular distribution of the
scattered nucleus. Although the present constraints from
directional detection experiments are weak [84–88], it
is expected that near future technology can make their
sensitivity competitive [89, 90].

Dark matter directional detection is the only way to
learn about the full dark matter velocity distribution
in the solar circle, and this has motivated a number of
theoretical studies [83, 91–96]. The intrinsically smaller
background also implies that a smaller number of events
are required to reveal the interactions of dark matter in
these detectors.

Directional detection has been studied only for dark
matter point particle scattering. Here we study the
directional detection signal due to an incident bound
state of dark matter. There has been an ongoing interest
about dark matter bound states [69, 97–104]. In our
case, the formation of dark matter bound states is
motivated by the hints of strong self-interaction between
dark matter particles. We take a representative value of
the dark matter self-interaction cross section, and this
determines the S-wave scattering length. This S-wave
scattering length then determines the form factor and the
break-up scattering of the bound state during its collision
with the nucleus.

The shape of the angular recoil spectrum for a
darkonium scattering with a nucleus is completely
determined by the S-wave scattering length. The
predictive nature of the underlying physics implies that
if we observe a similar angular recoil spectrum in a
dark matter directional detection experiment in the
future, this will completely determine many low-energy
properties of dark matter. In this case, the value
of the S-wave scattering length determined from the
angular recoil spectrum will give us information about
the binding energy of the bound state and also the
self-interaction cross section between the dark matter
particles. The effective theory, which is determined
only by the S-wave scattering length, does not fully
describe the underlying microphysics of dark matter
particle interactions but can be used to compare the
predictions from various different models.

In our work, the overall normalization of the angular
spectra is undetermined. Although we uniquely predict
the shape of the angular recoil spectrum, a complete
underlying theory will be required to determine the
overall normalization in our results.
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C. Formalism

1. Elastic scattering of dark matter particle

The directional detection rate of a dark matter particle
is well known and has been discussed extensively in
the literature [83, 91–96]. We rederive the relevant
expressions to introduce the reader to our notation.

The Feynman diagram of dark matter particle - nucleus
elastic scattering can be found in Fig. 1 of Ref. [2]. The
momentum of the incoming and outgoing dark matter
particle is denoted by P and P′. The corresponding
kinetic energies are P 2/2m and P ′2/2m, respectively,
where m denotes the mass of the dark matter particle.

The momentum of the incoming and outgoing target
nucleus is denoted by K and K′ respectively. Their
kinetic energies are denoted by K2/2mA and K ′2/2mA

respectively, where mA is the mass of the target nucleus.
We will work in the laboratory frame where the target
nucleus is initially at rest and hence K = 0. The
momentum transfer is denoted by q and q = K′ in the
laboratory frame.

The phase space can be written as [2]

(dΦ)A+1,Lab =
q2dq 2π d(cos θ)

(2π)2
m

q P
δ

(
cos θ − q m

2µP

)
. (3)

The angle θ is defined by the dot product P.q = Pq cos θ.
The reduced mass of the dark matter particle and the
nucleus is denoted by µ.

We denote the matrix element of the elastic scattering
by −iGA(q) where the exact form of GA(q) is determined
by the microphysics of scattering between the dark
matter particle and the nucleus. The normalization of
GA(q) is an arbitrary constant in this work. Although
we will take a specific form of GA(q) while showing our
results, we remind the reader that the normalization of
all our results is arbitrary. The S-wave scattering length
uniquely determines the shape of the recoil spectrum but
does not say anything about its normalization.

The differential nuclear recoil energy is given by
dEnr = q dq/mA. The expression for d(σv) is given by
|GA(q)|2 (dΦ)A+1,lab. From this expression, we derive(

d(σv)

dEnr

)
A+1

=
|GA(q)|2

q dq
mA

q2 dq 2π d(cos θ)

(2π)2
m

q P

× δ
(

cos θ − q m

2µP

)
. (4)

The following double differential is easily derived from
Eqn. 4:(

d2(σv)

dEnr dΩ

)
A+1

=
|GA(q)|2mAm

4π2 P
δ

(
cos θ − q m

2µP

)
.(5)

In the above expression, the differential solid angle is
given by dΩ = 2π d(cos θ). We numerically checked that

when we integrate this expression over the solid angle,
we reproduce the relevant expression in Ref. [2].

Since present directional dark matter detectors like
DRIFT [84] are primarily sensitive to spin-dependent
scattering, we can compare Eqn. 5 to the standard
expression used in the literature [105] to obtain

|GA(q)|2 =
π

µ2
σSD
A F 2

SD(Enr) , (6)

where σSDA refers to the spin-dependent cross section
between the dark matter particle and nuclei. In the
expression for this cross section, it is convenient to
include a multiplicative factor of the spin-dependent
cross section between the dark matter particle and the
proton [105].

Since the dark matter particles in our galaxy have a
normalized velocity distribution, denoted by f(v), the
interaction rate of elastic scattering between dark matter
particles and nuclei in the Galactic frame at the solar
radius is given by(

d2R

dEnr dΩ

)
A+1,Gal

= NT nχ

∫
d3v f(v)

× σSD
A F 2

SD(Enr)mA

4π µ2
δ

(
v.q̂ − q

2µ

)
, (7)

where q̂ represents the unit vector in the direction of q.
From the definition of cos θ, we find that v.q̂ = v cos θ.
Here we denote the speed of the dark matter particle
in the Galactic frame by v. The local number density
of dark matter particles is denoted by nχ, and NT
represents the number of the target nuclei.

To obtain the interaction rate in the laboratory frame,
we need to boost this expression to the laboratory frame
using Galilean kinematics, since all the velocities involved
are ∼ O(100 km s−1). This is most easily demonstrated
by the use of the Radon transform [91].

Instead of using the Radon transform, which is suitable
only for elastic scattering between two particles, we boost
our expression to the Galactic frame by a change of
coordinates [91]. This method of boosting the expression
from the Galactic frame to the laboratory frame turns out
to be especially convenient when we consider darkonium
break-up scattering.

Given that the velocity of the dark matter in the
Galactic frame is v, the velocity of the dark matter in the
laboratory frame is v′ = v−vE, where vE is the velocity
of the Earth with respect to the Galaxy. Since the
particle number in a differential velocity volume element
is conserved, we have f(v) d3v = f ′(v′) d3v′ where f ′(v′)
is the dark matter velocity distribution in the laboratory
frame.

In the laboratory frame, the velocity-dependent part
in Eqn. 7 reads as

∫
d3v′ f ′(v′) δ(v′.q̂ − q/2µ). Using

the conservation of the particle number in a differential
velocity volume element and inserting the expression
of v′, the break-up scattering in Eqn. 7 becomes∫

2π v2 dv d cos θvq f(v) δ(v cos θvq − vE cos θvEq − q/2µ).
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Here we define the angles θvq and θvEq by the following
dot products: v.q̂ = v cos θvq and vE.q̂ = vE cos θvEq.
The argument in the delta function also gives the
minimum dark matter speed required to cause a recoil
of momentum q and in the angle θvEq: v ≥ vE cos θvEq +
q/2µ ≡ vmin.

Integrating over the angle θvq, we get(
d2R

dEnr dΩvEq

)
A+1,Gal

= NT nχ

∫ vmax

vmin

σSD
A F 2

SD(Enr)mA

4π µ2

× 2π v f(v) dv , (8)

where vmax represents the maximum dark matter speed
in the solar radius. Here dΩvEq = 2π d(cos θvEq)
represents the solid angle that can be measured in a
directional detection experiment in the laboratory.

Similar to our previous paper [2], we take

f(v) = N exp(−v2/2v20) Θ(vmax − v) , (9)

and

N =
1

4π

−v20 vmax e
−
v2max

2v20 +

√
π

2
v30 erf

(
vmax√

2v0

)
, (10)

where the following values are taken as constants: vE
= 242 km s−1, vmax = 600 km s−1, and v0 = 230 km
s−1. The normalization constant N is obtained from∫
d3v f(v) = 1. We neglect the rotational motion of

the Earth and the motion of the Earth around the Sun
for simplicity [106]. Although using a different dark
matter velocity distribution can produce a different recoil
distribution [107, 108], and observations [6, 109] and
simulations [110, 111] do indeed show a non-Maxwellian
behavior of the dark matter velocity profile, our choice
is dictated by simplicity and intended as a proof of
concept. It is difficult to obtain an analytical form for the
double differential while using a non-Maxwellian velocity
distribution. In Sec. II E, we will compare the angular
nuclear recoil spectrum due to a Maxwellian distribution
to that due to a Tsallis distribution.

The velocity integral can be done analytically and we
obtain (in units of GeV−1 s−1 sr−1)(

d2R

dEnr dΩvEq

)
A+1,Lab

= NT nχ
σSD
A F 2

SD(Enr)mA

4π µ2

× 2πN v20

e−v
2
min

2v20 − e
−
v2max

2v20

 , (11)

as the full expression for the double differential elastic
scattering rate for a dark matter particle with the target
in the laboratory. This expression shows that the
dependence on the angle θvEq comes from the exponential
term in the second line of Eqn. 11.

2. Elastic scattering of darkonium

The analytical expression for the rate of elastic
scattering of darkonium is very similar to the expression
for the elastic scattering of dark matter particles as
detailed in the previous subsection. We will assume
that the local dark matter density is fully composed
of darkonium. In such a case, the number density
of incident darkonium is denoted by nχ2 . The
expressions for the scattering rate include the form
factor of the darkonium which naturally arises from the
calculation [2].

The Feynman diagram of the darkonium - nucleus
elastic scattering can be found in Fig. 2 of Ref. [2]. The
momentum of the incoming and outgoing darkonium is
denoted by P and P′ respectively. The corresponding
energies are given by −EB +P 2/4m and −EB +P ′2/4m.
The momentum and kinetic energies of the target and
scattered nucleus have the same notation as for elastic
scattering of dark matter particles. The momentum
transferred in the laboratory frame is denoted by q.

The phase space for this scattering can be written as

(dΦ)A+2,Lab =
q2dq d(cos θ)

π

2m

2q P
δ

(
cos θ − q

2µ2

2m

P

)
, (12)

where the angle θ represents the angle between the
incoming darkonium momentum and the momentum
transferred in the elastic collision. The reduced mass of
the darkonium - nucleus system is denoted by µ2. This
expression for the phase space differs from that in Eqn. 3
by the presence of µ2 instead of µ.

The matrix element for this process is [2]

M = −GA(q)
8γ

q
tan−1

q

4γ
, (13)

where γ denotes the inverse of the S-wave scattering
length.

Combining Eqns. 12 and 13, we get(
d2R

dEnr dΩ

)
A+2,Gal

= NT nχ2

∫
d3v f(v)

σSD
A F 2

SD(Enr)

µ2

×
(

4γ

q

)2 (
tan−1

q

4γ

)2
mA

π
δ

(
v.q̂ − q

2µ2

)
. (14)

Numerically integrating the expression in Eqn. 14 over
the solid angle reproduces the relevant expression in
Ref. [2].

This expression is very similar to the expression in
Eqn. 7 and this is expected as in both cases we have
elastic scattering between two objects. The difference in
this expression is the appearance of nχ2

, the dependence
of the delta function on µ2, the presence of the darkonium
form factor (4γ/q) tan−1(q/4γ) and an overall factor of
4. The factor of 4 can be understood as the coherence
factor of the darkonium which is composed of 2 dark
matter particles.

To boost this expression to the laboratory frame,
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we follow the same procedure as given in the previous
subsection. For our choice of the velocity profile, the
integration over the velocity can be done analytically and
we obtain(

d2R

dEnr dΩvEq

)
A+2,Lab

= NT nχ2

σSD
A F 2

SD(Enr)mA

π µ2

× 2πN

(
4γ

q

)2 (
tan−1

q

4γ

)2

v20

×

e−
v2min2

2v20 − e
−
v2max

2v20

 , (15)

where vmin2
≡ vE cos θvEq + q/2µ2. This gives the full

expression for the double differential elastic scattering
rate for a darkonium with the target in the laboratory.

3. Break up scattering of darkonium

When the binding energy of the darkonium is low
enough, it can break up into its constituents during its
scattering with the target nucleus. Here we detail our
calculation of this break-up scattering.

The Feynman diagram of the darkonium - nucleus
break-up scattering can be found in Fig. 3 of Ref. [2].
The incoming momentum and energy of the darkonium
are given by P and −EB + P 2/4m. The two dark
matter particles in the final state have a momentum
and energy of p1, p2 and p21/2m, p22/2m respectively.
The momentum and energy of the target and scattered
nucleus are the same as given in the previous subsection.

The phase space of this configuration is given by [2]

(dΦ)A+1+1,Lab =
d3q

(2π)3
d3r

(2π)3

× 2π δ

(
P.q− 2r2

2m
− EB −

q2

2µ2

)
, (16)

where r = (p1 − p2)/2.

The matrix element for the three diagrams is given in
Ref. [2]. Multiplying the square of the matrix element
with the phase space, we obtain

d(σv) =
d3r

(2π)3
d3q

(2π)3
2π δ

(
P.q− 2r2

2m
− EB −

q2

2µ2

)
× 16m2 16πγ

m2
|GA(q)|2

∣∣∣∣∣ 1

4γ2 + (2r− q)2
+

1

4γ2 + (2r + q)2

− i

2q(γ + ir)
ln

4r2 + (2γ − iq)2

4γ2 + (q − 2r)2

∣∣∣∣∣
2

. (17)

To arrive at a closed form expression for the scattering
rate of darkonium break up interaction, we need to
integrate over r. This is most conveniently calculated
by thinking of the whole-squared term in Eqn. 17 as the
sum of two terms where we consider the first two terms
together as one term and then consider the third term
separately.

We first consider the integral over r for the first two
terms in Eqn. 17:∫

r2dr cos θqr
(2π)2

2π δ

(
P.q− 2r2

2m
− EB −

q2

2µ2

)
× 16m2 16πγ

m2
|GA(q)|2

∣∣∣∣∣ 1

4γ2 + q2 + 4r2 − 4qr cos θqr

+
1

4γ2 + q2 + 4r2 + 4qr cos θqr

∣∣∣∣∣
2

. (18)

The integral over the angle θqr is easily calculated.
The delta function is rewritten as m/(2rθPq

) δ(r− rθPq
),

where r2θPq
= −γ2 + P.q/2 − (mq2)/(2µ2). Requiring

rθPq
≥ 0, we get the threshold condition for a given

angle θPq: θPq ≥ cos−1 (mEB + mq2/2µ2)/(mvq). The
integration over the variable r is now accomplished using
the delta function, where the maximum value of r is
R =

√
mqv − γ2 − (mq2)/2µ2.

The integration over the remaining terms in Eqn. 17
is evaluated in a similar manner. We then arrive at the
following analytical expression for the double differential:

d2(σv)

dEnr dΩ
=
mA q

(2π)3
16m2 16πγ

m2
|GA(q)|2 Θ

v −
(
γ2

mq
+

q

2µ2

)
cos θPq

 mrθPq

4π
(A + B + C) , (19)

where

A =
4

(4γ2 + q2 + 4r2θPq
)2

(
1

1−
16q2r2θPq

(4γ2 + q2 + 4r2θPq
)2

+
4γ2 + q2 + 4r2θPq

4qrθPq

tanh−1
4qrθPq

4γ2 + q2 + 4r2θPq

)
, (20)



6

B = 2

∣∣∣∣∣ i

2q(γ + ir)
ln

4r2θPq
+ (2γ − iq)2

4γ2 + (q − 2rθPq
)2

∣∣∣∣∣
2

, (21)

and

C =
1

qrθPq

tanh−1

(
4qrθPq

4γ2 + q2 + 4r2θPq

)(
− i

2q(γ + irθPq
)

ln
4r2θPq

+ (2γ − iq)2

4γ2 + (q − 2rθPq
)2

+

{
− i

2q(γ + irθPq
)

ln
4r2θPq

+ (2γ − iq)2

4γ2 + (q − 2rθPq
)2

}∗)
. (22)

Numerically integrating the expression in Eqn. 19 over
the solid angle reproduces the relevant expression in
Ref. [2].

We multiply Eqn. 19 by NT nχ2 f(v) and integrate over
the velocity volume element d3v to obtain the double
differential scattering rate for darkonium break up in the
Galactic frame.

To boost the expression to the laboratory frame,
we again follow the change of co-ordinates strategy as
outlined previously. Using the change of variable v →
v′ = v − vE, we have

r2θPq
→ r̃2θPq

= m(v − vE).q− γ2 − mq2

2µ2
. (23)

The change of variable for the theta-function in Eqn. 19
is accomplished by a change in the velocity co-ordinate
in the definition of rθPq

and demanding the resulting
expression to be greater than zero. This gives us the
minimum Galactic dark matter velocity required to break
up a darkonium and have the nucleus scattered in the
angle θvEq:

v ≥ 1

cos θvq

(
γ2

mq
+

q

2µ2
+ vE cosθvEq

)
. (24)

We get the following analytical expression for the
double differential scattering rate of darkonium break up
in the laboratory:(

d2R

dEnr dΩvEq

)
A+1+1,Lab

= NT nχ2

×
∫
v2 dv dΩvqf(v)

mAq

(2π)3
16m2 16πγ

m2
|GA(q)|2

×Θ

v −
γ2

mq
+

q

2µ2
+ vE cos θvEq

cos θvq

 mrθvq

4π

× (Ã + B̃ + C̃) , (25)

where Ã, B̃, and C̃ are the expressions in Eqns. 20,
21, and 22 with r̃θPq

replacing rθPq
. We performed the

integration over the velocity volume element numerically.
Having the complete expressions for the dark matter

elastic scattering, darkonium elastic scattering, and

darkonium break-up scattering in Eqns. 11, 15, and
25 respectively, we proceed to calculate the angular
dependence of these interactions when considering the
nuclear recoil energy over certain energy bin.

D. Results

We first consider the recoil angular distributions when
we take the dark matter particle mass m = 100 GeV, and
σel/m = 1 cm2 g−1 at relative velocity v = 10 km s−1.
In this case, the darkonium binding energy is 0.52 keV,
and it breaks apart during its collision with the nucleus.
The nuclear recoil spectrum in this case was shown in
Ref. [2].

As a variation, we also consider the case when the dark
matter particle mass is 10 GeV and σel/m = 1 cm2 g−1

at v = 10 km s−1. The darkonium binding energy is 52
keV in this case and it does not break apart during its
collision with the nucleus. The nuclear recoil spectrum
in this case was also shown in Ref. [2].

The targets used in the directional detection
experiment typically involve 19F [84–88]. Recently there
has been an interest in using xenon as a target in
directional detection experiments [89, 90, 112, 113]. We
show our results for 19F and Xe targets. We only
choose the isotopes of xenon, 129Xe and 131Xe, which
are sensitive to spin-dependent interactions [114].

The normalization in all our plots is arbitrary and
is not governed by the S-wave scattering length. For
concreteness, we take σpSD = 10−39 cm2. We take the
details of the form factors from Refs. [114–117]. For
129Xe and 131Xe, we take the Bonn A coefficients from
Ref. [117]. We take a0 = 0 and a1 = 2 in the definition
of the spin-dependent form factors for all cases [105].

The local dark matter density is taken to be 0.3 GeV
cm−3. While showing our results for the dark matter
particle and darkonium, we will assume that the full
local density of dark matter is composed of individual
dark matter particles and darkonium respectively. Since
the darkonium has double the mass of the dark matter
particle, the number density of dark matter particles is
double that of the darkonium.
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FIG. 1. The angular nuclear recoil spectra for dark matter particle (of mass m) scattering (red), darkonium scattering (blue),
and for a dark matter particle with mass 2m and σSD that is 4 times larger (dashed green) with 19F as the target. We have
determined the S-wave scattering length, which uniquely determines the shape of the angular recoil spectrum, by taking the
elastic scattering cross section per unit mass to be σel/m = 1 cm2 g−1 at relative velocity v = 10 km s−1. The normalizations
of the curves correspond to the choice σp

SD = 10−39 cm2. Left plot : The dark matter particle mass is taken to be 100 GeV
and the energy bin for integration is [5, 40] keV. Right plot : The dark matter particle mass is taken to be 10 GeV and the
energy bin for integration is [5, 14] keV. Note the different scales in the y-axis.
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1. Target: Fluorine

We show the angular recoil distribution of nuclear
scattering for 100 GeV dark matter and σel/m = 1 cm2

g−1 at v = 10 km s−1 on the left in Fig. 1. The target
nucleus is 19F. We have integrated over the energy bin 5
keV to 40 keV to obtain the angular recoil spectra for the
100 GeV and 200 GeV dark matter particle scattering,
and darkonium scattering. The threshold used in this
calculation follows from Ref. [118]. For the case of 200
GeV particle scattering, we have taken the cross section
to be 4 times larger, i.e., σpSD = 4 × 10−39 cm2, as this
produces a comparable recoil energy spectrum [2].

The angular spectrum for the darkonium scattering
is very different compared to the 100 GeV particle
scattering both in shape and normalization. There is
similarity with the angular spectrum from the 200 GeV
particle scattering but even here the shapes are different.
The width between the angular spectra of darkonium
scattering and the 200 GeV particle scattering varies
with angle and this will be an important experimental
discriminator. The number of events in different angular
bins for a 200 GeV dark matter particle and darkonium
will differ with angle, and this will be the experimental
signature of our scenario.

In the left hand plot of Fig. 2, we show the contribution
of the different energy bins to the angular recoil spectra
of the darkonium. We subdivide the total energy region
[5, 40] keV into two separate bins: [5, 25] keV and [25,
40] keV. From the plot we see that the majority of the
angular recoil events comes from the lower nuclear recoil
energy bin.

A flattening of the angular recoil spectrum is seen for
θvEq & 130◦ for the nuclear recoil energy bin [5, 25]
keV in the left hand plot of Fig. 2. An intuitive way
to understand this behavior comes from the expression
for vmin2

in eqn. 15. For these large values of the angle
θvEq and small values of the recoil momentum q, there is
a partial cancellation between the terms vE cosθvEq and
q/2µ2, and this explains this flattening behavior.

We try to make a simplistic estimate of the
exposure required to differentiate between the darkonium
scattering and 200 GeV particle scattering for this
chosen normalisation. Let us denote the number
of 200 GeV particle and darkonium scattering events
integrated over the full solid angle as N2d and Nd2 ,
respectively. An exposure of 15 kg-year is required
to have (Nd2 - N2d)

2/N2d ≈ 3. The inclusion of the
experimental angular resolution, energy resolution, and
other experimental uncertainties will deteriorate this
ratio, and hence a larger exposure will be required
to discriminate between the darkonium scattering and
200 GeV particle scattering signals. However, our
theoretical estimate shows that a reasonable exposure
can distinguish between the darkonium scattering and
200 GeV particle scattering signals.

The angular distribution when the dark matter particle
mass is 10 GeV and has σel/m = 1 cm2 g−1 at v = 10 km

s−1 is shown on the right in Fig. 1. The target nucleus is
19F. In this case, we have integrated over 5 keV to 14 keV
to plot the angular recoil spectrum for the 10 GeV and
20 GeV dark matter particle scattering, and darkonium
scattering.

The angular recoil spectrum for the darkonium is
different in both shape and normalization compared to
the dark matter particle of mass 10 GeV. The angular
recoil spectrum of darkonium looks similar to the case
of a 20 GeV dark matter particle elastic scattering with
a 4 times larger cross section. This is expected as the
darkonium does not break up during its collision with
the nucleus.

In the right hand plot of Fig. 2, we show the angular
recoil spectrum when we consider a higher energy bin and
a lower energy bin. We subdivide the total recoil energy
bin, [5, 14] keV, into two parts: [5, 10] keV and [10,
14] keV. We see that the lower energy bin contains the
majority of the nuclear recoil events. A hint of flattening
of the angular recoil spectrum is seen for θvEq & 160◦.
Again this can be explained by the expression for vmin2

in eqn. 15. The reasoning is similar to the one that
explains the flattening in the lower energy bin in the left
hand panel of Fig. 2. In this case, the flattening occurs
at higher angles due to lower mass of the darkonium as
compared to the left hand panel of Fig. 2.

Denoting the number of 20 GeV particle scattering
and darkonium scattering as N2d,20 and Nd2,10, we find
that an exposure of 5 kg-year is required for (Nd2,10 -
N2d,20)2/N2d,20 ≈ 3. A smaller amount of exposure is
required compared to the 100 GeV case due to the larger
overall normalization involved.

2. Target: Xenon

The angular recoil spectrum when the target is Xe is
shown in Fig. 3. We have taken the natural abundance of
129Xe and 131Xe as targets in 1 kg of Xe for these plots.
For the left figure, we have taken the energy bin to be 2
keV to 40 keV. The energy bin used in the right column
is 2 keV to 23 keV. The energy threshold is again taken
from Ref. [118].

Similar to the case where the target was 19F, the
angular recoil spectrum of the darkonium is very different
from that of a particle with half the mass. As expected,
for the case of the 10 GeV dark matter particle, the
angular recoil spectrum of darkonium is similar to that of
a 20 GeV dark matter particle with 4 times larger cross
section.

We show the angular recoil spectrum for different
nuclear recoil energy bins for darkonium scattering in
Fig. 4. When the darkonium is composed of two 100
GeV dark matter particles, we divide the total nuclear
recoil spectrum [2, 40] keV into two bins: [2, 20] keV and
[20, 40] keV. When the darkonium is composed of two 10
GeV dark matter particles, we divide the total nuclear
recoil spectrum [2, 23] keV into two bins: [2, 10] keV and



9

d
R

/d
Ω

v
E
 q

 [
ev

en
ts

 /
 (

d
ay

 .
 k

g
 .

 s
r)

]

 cos θvE q 

 0

 0.0002

 0.0004

 0.0006

-1  0  1

particle

particle

darkonium

(200GeV, 4 x σSD)

 Xe 

d
R

/d
Ω

v
E
 q

 [
ev

en
ts

 /
 (

d
ay

 .
 k

g
 .

 s
r)

]

 cos θvE q 

 0

 0.001

 0.002

 0.003

 0.004

-1  0  1

particle

particle (20 G
eV

, 4 x σ
SD )

darkonium

Xe

FIG. 3. Same as Fig. 1 but with xenon as the target nucleus. Left plot: The energy bin for integration is taken to be [2, 40]
keV. Right plot: The energy bin for integration is taken to be [2, 23] keV.
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FIG. 4. Same as Fig. 2 but with xenon as the target nucleus. Left plot: The energy bins taken in this analysis are [2, 20] keV
and [20, 40] keV when the darkonium is composed of two 100 GeV dark matter particles. Right plot: The energy bins taken
in this analysis are [2, 10] keV and [10, 23] keV when the darkonium is composed of two 10 GeV dark matter particles.

[10, 23] keV. Due to the heavier mass of the target, most
of the nuclear recoil events are in the lower energy bin.

A bump-like feature is seen at around 120◦ in the
angular recoil spectrum in the left panel of Fig. 3. This
feature is present for 100 GeV and 200 GeV dark matter
particle scattering and for darkonium scattering. This
feature arises due to the low threshold energy and the
dark matter mass considered. When cos θvEq is greater
than π/2, the expression vE cos θvEq becomes negative,
and this causes a partial cancellation between the terms
in vmin in the exponential of Eqn. 11. If we take the
threshold energy to be higher, say for e.g., 20 keV, then

the values of q/2µ are sufficiently large enough to not
cause a cancellation with the term vE cos θvEq and the
bump-like feature disappears. A similar reasoning is also
applicable for the appearance of the velocity-dependent
part feature in the case of darkonium scattering.

E. Impact of non-Maxwellian velocity distribution

Numerical simulations of Milky Way like object which
includes dark matter and baryons often predict a velocity
distribution which is very different from the Maxwellian
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FIG. 5. The two different dark matter velocity profiles that
are used in this work. The Maxwellian distribution is plotted
in blue. The Tsallis distribution is plotted in black.

distribution that we have assumed till now. In particular,
Ref. [119] finds that the velocity distribution closely
follows the Tsallis distribution:

f(v) = NTsallis

{
1− (1− q)v

2

v20

} q

1− q
(26)

where v0 = 267.2 km s−1 and q = 0.773.
The normalization constant NTsallis is obtained from∫
d3v f(v) = 1. The Tsallis distribution shows that the

maximum velocity of dark matter particles is vmax =
{v20/(1− q)}1/2 ≈ 560 km s−1.

We compare these different velocity profiles in Fig. 5.
The v2 f(v) of the Tsallis distribution peaks at around
250 km s−1, whereas it peaks at around 300 km s−1

for the Maxwellian distribution. This is not the only
type of non-Maxwellian velocity distribution seen in
simulations of Milky Way-like galaxies which include
baryons. Non-Maxwellian velocity profile is also seen
in more modern simulations of the Milky Way which
includes baryons [120].

The inclusion of this non-Maxwellian velocity
distribution in our calculation is straight forward.
Closed form expression of the nuclear recoil energy
distribution is not possible for this Tsallis distribution.
For the elastic scattering of a dark matter particle with
a nucleus, we use the expression of f(v) in Eqn. 26
in Eqn. 8. The integration over v can be carried out
numerically. The non-Maxwellian expression of f(v)
is used in Eqn. 14. Similarly the non-Maxwellian
expression for f(v) is used in Eqn. 25.

We compare the angular recoil spectrum for the
Maxwellian velocity distribution and Tsallis velocity
distribution in Fig. 5. It is clear from the figures that the
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FIG. 6. The angular nuclear recoil spectra for darkonium
scattering. The S-wave scattering length and the
normalization of the plots are the same as in the
corresponding Figs. 1 and 3. The angular recoil spectrum due
to the Maxwellian velocity distribution and Tsallis velocity
distribution is shown in blue and black respectively. The
darkonium is composed of two 100 GeV particles in both the
plots. Top plot : The target is 19F. We integrate over the
nuclear energy range [5, 30] keV and [5, 40] keV to obtain
this angular recoil spectrum for the Tsallis and Maxwellian
distributions respectively. Bottom plot : The target is Xe.
We only consider 129Xe and 131Xe since we show the plot for
spin-dependent interactions. The energy bin for integration
is [2, 40] keV. Note the different scales in the y-axis.

shape of the angular recoil energy spectrum is sufficiently
different for the two different angular recoil spectra.

In the top panel of Fig. 5, we plot the angular nuclear
recoil spectra when a darkonium, composed of two 100
GeV dark matter particles, collides with 19F for the
two different velocity distributions that we consider,
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Maxwellian and Tsallis. Due to the lower maximum
velocity in the Tsallis distribution, the integration range
is [5, 30] keV. This also explains why the angular recoil
distribution due to the Tsallis distribution is lower than
the one due to the Maxwellian distribution. The values
of the S-wave scattering length and the dark matter -
nucleon cross section that we consider in this plot is the
same as in Fig. 1.

In the bottom panel of Fig. 5, we plot the angular
nuclear recoil spectra when a darkonium, composed of
two 100 GeV dark matter particles, collides with Xe for
the two different velocity distributions that we consider,
Maxwellian and Tsallis. We consider spin-dependent
cross sections with the same parameters as in Fig. 1.
Again, the shape of the angular nuclear recoil spectra
is different for the Maxwellian and Tsallis spectra.

If the smoking gun signature for a darkonium
is observed in a dark matter directional detection
experiment, then the shape of this angular nuclear recoil
spectrum can be used to reconstruct the underlying dark
matter velocity distribution. These new angular recoil
spectra as derived in this work open up a new avenue to
probe exotic properties of dark matter like strong self-
interaction. Although the normalization in all our plots
is arbitrary, the shape of the angular recoil spectrum is
uniquely dictated by the S-wave scattering length. In
this work, we derived the angular recoil spectrum due
to a specific value of the self-interaction cross section
and for two specific dark matter velocity distributions.
Variations on this theme require considering different
values of the self-interaction cross section as advocated in
Ref. [121] and considering various different dark matter
velocity distributions [6, 107–111].

III. CONCLUSION

We have discussed the directional detection signal that
is expected when a bound-state dark matter collides with
a nucleus. The bound state in our case is motivated by
the hints of strong self-interaction cross section between
dark matter particles. The predictive assumption of
a near threshold S-wave resonance is used to uniquely
determine the angular recoil spectrum.

The S-wave scattering length determines the self-
interaction cross section between the dark matter
particles and also determines the binding energy of the
resultant bound state (which we call darkonium). When
the darkonium is incident on a nucleus, two possibilities
arise: (i) the darkonium elastically scatters with the
nucleus, such that the angular recoil spectrum contains

information about the form factor of the darkonium,
which is uniquely determined by the S-wave scattering
length, and (ii) the darkonium breaks up while scattering
with the nucleus. Even in the latter case the angular
recoil spectrum is uniquely determined by the S-wave
scattering length.

The angular recoil spectrum for two different targets
and two different dark matter masses are shown in Figs. 1
and 3. Figs. 2 and 4 show the angular recoil spectrum
when divided into different energy bins. We take σel/m
= 1 cm2 g−1 at relative velocity v = 10 km s−1 to
determine the S-wave scattering length in all the cases.
For the case of the 10 GeV dark matter particle mass, the
bound state does not break up during its collision with
the nucleus. In this case, the angular recoil spectrum of
the incident darkonium is very similar to that of a dark
matter particle of mass 20 GeV. When the dark matter
particle mass is 100 GeV, the angular recoil spectrum
of the dakonium is different from the angular recoil
spectrum of either 100 GeV or 200 GeV dark matter
particle mass.

Figs. 1 to 4 assume that the underlying dark matter
velocity distribution is Maxwellian. Simulations of Milky
Way-sized halos which include baryons typically predict
a non-Maxwellian dark matter velocity distribution, for
e.g., Ref [119] and [120]. We compare the Maxwellian
and Tsallis distribution in Fig. 5. Fig. 6 compares
the angular nuclear recoil spectrum when a darkonium
scatters with 19F and Xe nuclei for a Maxwellian and
Tsallis dark matter velocity distribution. As expected
the angular recoil spectrum is different for different dark
matter velocity distributions.

The predictive nature of the underlying physics implies
that if these signatures are detected in a future dark
matter directional detection experiment, then many of
the low-energy properties of the dark matter will be
completely determined. Such a smoking gun signature
from a model-independent approach will be crucial in
determining the underlying particle properties of dark
matter.
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