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To shed light on how electronic correlations vary across the phase diagram of the cuprate su-
perconductors, we examine the doping evolution of spin and charge excitations in the single-band
Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response,
we observe that the effects of correlations weaken rapidly with doping, such that one may expect the
random phase approximation (RPA) to provide an adequate description of the two-particle response.
In contrast, when compared to RPA, we find that significant residual correlations in the two-particle
excitations persist up to 40% hole and 15% electron doping (the range of dopings achieved in the
cuprates). These fundamental differences between the doping evolution of single- and multi-particle
renormalizations show that conclusions drawn from single-particle processes cannot necessarily be
applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-
dependent crossover into a weakly correlated metallic state where the spin and charge excitation
spectra exhibit similar behavior and where RPA provides an adequate description.

I. INTRODUCTION

A full understanding of the cuprate phase diagram
has been prevented in part by difficulties in obtaining
well-controlled theories for the doping evolution of elec-
tronic excitations. This is due to the lack of exact solu-
tions to the Hubbard model in two dimensions, the stan-
dard model thought to contain the low-energy physics of
the cuprates that captures aspects of magnetic proper-
ties seen in experiments1. At low doping, strong cou-
pling treatments of the large-U Hubbard model describe
the dispersion and intensity of magnon excitations ob-
served via neutron scattering2. At high doping, it is be-
lieved that spin excitations behave like weakly interacting
particle-hole excitations governed by the underlying free
particle kinetic energy, with a weak influence from the
Hubbard U . If correct, this limit can be adequately rep-
resented by the random phase approximation (RPA) as a
proxy for more exact treatments3. Many studies have as-
sumed weak correlations in doped cuprates, so RPA has
been used to address spin and charge excitations observed
by neutron and Raman scattering, as well as the forma-
tion of a d-wave superconducting ground state2,4–10.

However, a set of surprising results have emerged from
recent resonant inelastic x-ray scattering measurements
(RIXS) in a variety of cuprates11. In the hole-doped
La2−xSrxCuO4, YBa2Cu3O6+x, Y1−xCaxBa2Cu3O6+x,
Tl2Ba2CuO6+x, and Bi2Sr2CaCu2O8+x families12–16,
high-energy magnons or paramagnons on the antiferro-
magnetic zone boundary (AFZB) persist from the parent
compounds into the heavily overdoped regime, showing
little doping dependence up to 40% hole doping where

the system is believed to exhibit Fermi-liquid-like behav-
ior in the single-particle response or transport. In the
electron-doped Nd2−xCexCuO4 family17,18, momentum-
dependent low-energy charge excitations have been found
over a large energy range and surprisingly, the magnetic
excitations harden to high energies when doped beyond
the antiferromagnetic phase. Both computational and
analytical techniques have been brought to bear on these
results. Exact diagonalization and determinant quantum
Monte Carlo (DQMC) have captured the momentum and
doping dependence of the AFZB paramagnons19. On the
other hand, RPA has been used to conclude that the
collective spin and charge excitations have similar low-
energy behavior20. Beyond the spin response, the charge
excitations may be associated with charge ordering ob-
served in the cuprate pseudogap regime, so it is useful to
systematically explore how both spin and charge excita-
tions evolve with doping throughout the Brillouin zone,
and to what degree the response functions can be ap-
proximated using RPA.

In this study, we compute spin and charge susceptibil-
ities of the single-band Hubbard model1,21,22 throughout
the first Brillouin zone (Fig. 1) via DQMC, a numerically
exact imaginary-time auxiliary-field technique23–25. The
susceptibilities are compared to those calculated with
RPA26, a formalism originally developed for weakly inter-
acting systems that is expected to become an increasingly
good approximation as the doping level increases. Our
calculations reveal that the influence of correlations on
the multi-particle excitations persists to higher dopings
than suggested by quantities related to the single-particle
response24. At even higher doping, RPA provides an ad-
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FIG. 1: Cartoon of the first Brillouin zone showing the an-
tiferromagnetic zone boundary (AFZB) and high-symmetry
cuts. The nodal direction, from zone center to (π, π), is indi-
cated with a red arrow. The antinodal direction, from zone
center to (π, 0), is marked with a green arrow.

equate description of the response functions, which show
a smooth momentum-dependent crossover into a weakly
correlated metallic state.

II. MODEL AND METHODS

The single-band Hubbard Hamiltonian describes
strongly correlated electrons on a lattice:

H =
∑
〈i,j〉σ

tij(c
†
iσcjσ + h.c.) +

∑
{i,j}σ

t′ij(c
†
iσcjσ + h.c.)

−µ
∑
iσ

niσ + U
∑
i

ni↑ni↓ (1)

where c†iσ (ciσ) creates (annihilates) a particle with spin

σ on site i, and niσ = c†iσciσ is the number opera-
tor. The nearest- and next-nearest-neighbor hoppings are
controlled by t and t′, respectively, and U is the on-site
Coulomb interaction that penalizes double occupancy.
We work with a canonical parameter set, t′ = −0.3t and
U = 8t, so the ground state is a strongly correlated Mott
insulator in the undoped system27 and upon hole-doping
the system will possess a hole-like Fermi surface. As
usual all energies are expressed in units of t. The chemi-
cal potential µ is adjusted to give between 15% electron
and 75% hole doping. Without particle-hole symmetry,
DQMC exhibits a significant sign problem25, so we work
at an inverse temperature β = 3/t to give reasonable
statistics. The imaginary-time spin and charge correla-
tors are computed as

χs,c(q, τ) = 〈Tτ Ôs,c(q, τ)Ô†s,c(q, 0)〉, (2)

where Ôs =
∑
i e
iq·Ri(ni↑ − ni↓), Ôc =

∑
i e
iq·Ri(ni↑ +

ni↓), and niσ is the number operator. The correlators
are analytically continued using the Maximum Entropy
method to obtain the real-frequency susceptibilities28.

RPA susceptibilities are determined for the same tem-
perature and doping range as DQMC, and are normalized

0

1

2
Im

 χ
sD

Q
M

C (q
,ω

)

0

0.2

0.4

0 1 2 3
ω (t)

0

1

2

Im
 χ
sRP

A
(q

,ω
)

n=1.00
n=0.95
n=0.90
n=0.80
n=0.70
n=0.60

0 1 2 3
ω (t)

0

0.2

0.4

0.6 0.8 1 1.2
<n>

3

4

5

6

Re
 χ

-1
0(q

,0
) (π,0)

(π/2,π/2)
(π,π)

(π,π) (π/2,π/2) (0,0) (π/2,0) (π,0)
0

0.5

1

1.5

2

En
er

gy
 (t

)

DQMC n=1.00
DQMC n=0.85
DQMC n=0.60
RPA n=1.00
RPA n=0.85
RPA n=0.60

a1) 

(c) 

(d1) 

(π,0) 

(0,0) 

(π/2,π/2) 

(π,π) 

0 42
ω (t) 

(π,0) 

(0,0) 

(π/2,π/2) 

(π,π) 
0 42

ω (t) 
0 42

ω (t) 

(a1) (a2) (a3) 

(b1) (b2) (b3) 

(d2) 

(d3) (d4) 

FIG. 2: The spin susceptibilities along high-symmetry cuts
in the Brillouin zone are calculated using DQMC [panels
(a1)-(a3)] and RPA [panels (b1)-(b3)], for three hole dopings
[n=1.00 in (a1) and (b1), n=0.85 in (a2) and (b2), and n=0.60
in (a3) and (b3)]. The maximum of the color scale is set by the
highest intensity in each panel. (c) The peak energies in (a1)-
(a3) and (b1)-(b3) are plotted versus momentum to highlight
the doping trends. Spin susceptibilities at the representative
momentum points (π, π) and (π, 0) from DQMC [(d1) and
(d2), respectively] and RPA [(d3) and (d4), respectively] are
shown for hole doping ranging from 0% to 40%.

to the DQMC two-particle sum rule for ease of compari-
son. The RPA susceptibilities are computed from:

χRPA
s,c (q, ω) =

χ0(q, ω)

1∓ Ūχ0(q, ω)
, (3)

where −(+) corresponds to the spin (charge) susceptibil-
ity, Ū is the effective interaction strength, and χ0 is the



3

non-interacting Lindhard susceptibility8,29

χ0(q, ω) =
1

N

∑
k

f(εk+q)− f(εk)

iω − (εk+q − εk)
. (4)

The bandstructure is εk = −2t(cos kx + cos ky) −
4t′ cos kx cos ky and the Fermi function is f(εk) = {1 +
exp [β(εk − µ)]}−1, with the chemical potential µ control-
ling the filling. The inset in Fig. 2(d3) shows Ūmax =
Reχ−10 (q, 0), the location of the new pole in χRPA

s , plotted
versus filling for (π, π), as well as for (π, 0) and (π/2, π/2)
on the AFZB. Ū is most tightly constrained by (π, π).

To isolate doping-dependent bandstructure effects
from doping-dependent changes to effective interactions
that can be harder to predict, we use a single value of
Ū to calculate the RPA susceptibility for all momenta
and all doping levels. Because the low-doping behav-
ior of the spin response in cuprates, and the single-band
Hubbard model, is well known, we set Ū = 3t such that
the RPA response mimics the spin response near the AF
instability at (π, π) for 0% doping which captures the ex-
perimental neutron scattering results30 and matches the
DQMC trends by construction. These low-energy spin
excitations near (π, π) also may be integral to pairing in
a broad class of superconductors2, and their doping evo-
lution will thus be well captured by both computational
methods. We note that this value for Ū falls within the
range of values obtained in previous studies5,9,10; how-
ever, one should note again that for the chosen set of pa-
rameters the undoped, single-band Hubbard model pos-
sesses a Mott insulating ground state, and should not be
viewed as weakly correlated. The expression for χRPA

c

does not contain a new pole, so its behavior is primar-
ily determined by that of χ0 and thus set by the non-
interacting bandstructure.

III. DOPING EVOLUTION OF SPIN AND
CHARGE SUSCEPTIBILITIES

Figure 2 summarizes the hole doping evolution of the
DQMC [(a1)-(a3)] and RPA [(b1)-(b3)] spin susceptibil-
ities along the nodal (from q = (0, 0) to q = (π, π)) and
antinodal (from q = (0, 0) to q = (π, 0)) cuts in the first
Brillouin zone. For momenta near (π, π), doping both re-
duces and shifts spectral weight to higher energies, with
a good comparison between DQMC and RPA as doping
increases, a mirror of the results from neutron scatter-
ing experiments31,32 and a by-product of the choice of
Ū . On the other hand, along the antinodal direction the
peak in the spin response remains unchanged with dop-
ing in the DQMC calculations but softens considerably in
RPA, highlighted in Fig. 2(c). The strong disagreement
between DQMC and RPA in large portions of the Bril-
louin zone as doping increases indicates that the influence
of correlations on the spin response remains considerable
to relatively large doping levels.

Since (π, π) and (π, 0) are representative of the behav-
ior along the nodal and antinodal directions, respectively,
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FIG. 3: The charge susceptibilities along high-symmetry cuts
in the Brillouin zone are calculated using DQMC [panels
(a1)-(a3)] and RPA [panels (b1)-(b3)], for three hole dopings
[n=1.00 in (a1) and (b1), n=0.85 in (a2) and (b2), and n=0.60
in (a3) and (b3)]. The maximum of the color scale is set by the
highest intensity in each panel. (c) The peak energies in (a1)-
(a3) and (b1)-(b3) are plotted versus momentum to highlight
the doping trends. Charge susceptibilities at the represen-
tative momentum points (π, π) and (π, 0) from DQMC [(d1)
and (d2), respectively] and RPA [(d3) and (d4), respectively]
are shown for hole doping ranging from 0% to 40%.

Fig. 2(d1)-(d4) focuses on the evolution from 0% to 40%
hole doping at those momenta. At 0% doping, the (π, π)
spin response peaks strongly at low energy, but it broad-
ens and hardens with increasing doping, as determined
by the non-interacting bandwidth. These findings agree
with previous DQMC and dynamical cluster approxima-
tion calculations33–35. Due to proximity to the pole in
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FIG. 4: The spin and charge susceptibilities are calculated by
DQMC and RPA for different levels of electron doping. While
the DQMC spin susceptibility shows the same doping trend as
RPA at (π, π) and (π, 0), suggesting decreasing correlations,
the RPA charge susceptibility is dominated by the band edge,
unlike DQMC.

Eq. 3, the low-doping RPA spin excitations at (π, π) gen-
erally occur at lower energies than in DQMC and their
peaks are much sharper. In addition, the RPA response
has longer tails set by the full non-interacting bandwidth.
At (π, 0), the DQMC and RPA spin responses remain
quite different up to at least 40% hole doping. The
RPA spin susceptibilities soften significantly with dop-
ing, whereas the DQMC spin response shows persistent
excitations in agreement with experiments.

Figure 3 summarizes the hole doping evolution of the
charge susceptibilities as calculated using DQMC [(a1)-
(a3)] and RPA [(b1)-(b3)] throughout the first Brillouin
zone. Along both the nodal and antinodal cuts, the spec-
tral weight of the response evaluated using DQMC is lo-
cated at high energies (determined at 0% doping by the
Hubbard U) and the spectra show a charge gap that de-
creases with doping33,34. On the other hand, the RPA
susceptibility shows no charge gap and is dominated by
the peak in the Lindhard susceptibility at the band edge.
With doping, the lineshape of the RPA charge response
along the nodal cut changes little [Figs. 3(b1)-(b3)], al-
though spectral weight along the antinodal direction in-
creases at lower energies in agreement with the response
from DQMC. Figure 3(c) highlights the doping evolution
of the peak positions and Figs. 3(d1)-(d4) focus on a
more detailed doping dependence for representative mo-
menta in the nodal, (π, π), and antinodal, (π, 0), direc-
tions.

Upon electron doping, the DQMC and RPA spin sus-
ceptibilities (Fig. 4) show similar behavior, hardening
and broadening with increasing doping at (π, π), again
by construction. At (π, 0), both ImχRPA

s and ImχDQMC
s

harden and decrease in intensity with doping. The spin
response thus exhibits an electron-hole doping asymme-
try, as the doping trend near (π, 0) is different from
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FIG. 5: The spin and charge susceptibilities calculated by
DQMC and RPA are shown for representative momenta at
55% and 75% hole doping to illustrate the gradual weakening
of correlations at extremely high doping.

that on the hole-doped side (Fig. 2). This suggests
that correlation effects on the spin susceptibilities be-
come less relevant more rapidly with electron than hole
doping. In the charge channel, the DQMC and RPA
responses exhibit different doping trends similar to the
evolution on the hole-doped side: the charge gap along
the nodal and antinodal directions at 0% doping in the
DQMC charge susceptibility vanishes with electron dop-
ing whereas the RPA charge susceptibility shows no gap,
and the low-energy structure in ImχRPA

c remains essen-
tially unchanged up to 15% electron doping for both
(π, π) and (π, 0), again manifesting the system’s electron-
hole doping asymmetry.

As the system is doped to extremely high levels,
the correlations continue to weaken until the system
smoothly transitions into a weakly correlated metal,
where RPA provides a fairly adequate description of the
spin and charge responses across the Brillouin zone. As
shown in Fig. 5, at 55% and even more so at 75%
hole doping, ImχDQMC

s and ImχRPA
s agree both quali-

tatively, and even to some degree quantitatively, at low
energies. In addition, the DQMC spin peak broadens sig-
nificantly with increasing doping until it closely resembles
the charge susceptibility at 75% hole doping, indicating
that the response in the spin channel essentially can be
viewed as a trivial spin flip on top of the charge excita-
tions. Figure 5 thus demonstrates that the influence of
correlations on the multi-particle response can decrease
significantly, but only at doping levels well beyond those
where weak coupling approaches typically already have
been applied for the cuprates.
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IV. CORRELATIONS IN SINGLE- VERSUS
TWO-PARTICLE CORRELATORS

An important subtlety in examining how correlations
evolve with doping is that single- and multi-particle
quantities exhibit fundamentally different renormaliza-
tions. The spin and charge susceptibilities reveal that
correlations in two-particle quantities persist to signifi-
cantly higher dopings than suggested by single-particle
correlators24, necessitating the study of both to resur-
rect the full richness of the phase diagram. Figure 6(a)
shows the doping dependence of the compressibility for
t′ = 0 and −0.3t, with the next-nearest-neighbor hopping
breaking particle-hole symmetry. Because the compress-
ibility is zero in the Mott plateau and finite elsewhere, it
could be interpreted as a proxy of how strong the corre-
lations are. For both t′ = 0 and −0.3t, the compressibil-
ity vanishes near half filling, corresponding to the Mott
plateau, as expected. However, it recovers rapidly with
both hole and electron doping, suggesting that the cor-
relation effects weaken rapidly away from half filling.

On the other hand, the nearest-neighbor equal-time
spin-spin correlation function [Fig. 6(b)] suggests that
correlations extend to higher doping levels. For t′ = 0,
the spin correlations persist well away from half fill-
ing with both hole and electron doping. Next-nearest-
neighbor hopping strongly suppresses the correlation
function above 30% hole doping, suggesting that corre-
lations have weakened significantly by that doping level,
but the magnitude of the correlation function is actually
enhanced slightly on the electron-doped side. The equal-
time spin-spin correlation function thus implies that cor-
relation effects persist to significantly higher doping levels
than can be seen in the compressibility.

The difference between the double occupancy D =
〈n↑n↓〉 from its uncorrelated value of (〈n〉/2)2 provides a
third way of studying how far correlations extend away
from half filling in the charge response [Fig. 6(c)]. Due to
its local nature, this quantity is more sensitive to corre-
lations. Like the spin-spin correlation function, it shows
that they weaken more slowly with doping than the com-
pressibility suggests. However, unlike the spin-spin cor-
relation function, (〈n〉/2)2 −D shows little particle-hole
asymmetry in the doping trend even with next-nearest-
neighbor hopping, implying a fundamental difference be-
tween the spin and charge responses.

Figure 6 also highlights the particle-hole symmetry-
breaking effect of next-nearest-neighbor hopping on
single- and multi-particle quantities. Although the com-
pressibility shows little doping dependence above ∼ 15%
hole or electron doping when t′ = 0, it exhibits notice-
able doping dependence on the hole-doped side when
t′ = −0.3t. The spin correlations are suppressed on the
hole-doped side by next-nearest-neighbor hopping, while
they are enhanced on the electron-doped side. Although
D is barely impacted by t′ = −0.3t because of the dou-
ble occupancy’s local nature, single- and multi-particle
quantities that are sensitive to longer-range hopping will
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FIG. 6: The doping trends of the (a) compressibility, (b)
equal-time spin-spin correlation function, and (c) difference
between the double occupancy D = 〈n↑n↓〉 from its uncor-
related value of (〈n〉/2)2 are shown for next-nearest-neighbor
hopping t′ = 0 and −0.3t.

display significant particle-hole doping asymmetry.

V. CONCLUSIONS

In this study, we have investigated spin and charge sus-
ceptibilities in the single-band Hubbard model to under-
stand the influence of correlations on the multi-particle
response as a Mott insulator evolves into a weakly cor-
related metal. The naive expectation based on probes
more sensitive to single-particle properties has been for
correlations to weaken rapidly with doping such that
the cuprates cross-over to a more Fermi-liquid-like be-
havior for overdoping near the edge of the supercon-
ducting dome. The compressibility, a quantity associ-
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ated with the single-particle response, computed using
DQMC reflects this behavior as it quickly becomes non-
zero and even saturates away from 0% doping. How-
ever, in addition to the dynamical response functions dis-
cussed here, two-particle equal-time quantities computed
using DQMC also show significant residual correlations
to much higher doping levels: the behavior of the spin-
spin correlation function counters the naive expectation
that the response in the spin channels represents a simple
spin flip on top of the charge background, and the differ-
ence in the double occupancy from its uncorrelated value
provides a direct measure of the residual correlations in
the system, which extend to relatively high doping lev-
els as concluded from the multi-particle response. When
compared to RPA calculations, the DQMC-derived spin
and charge response functions show qualitative differ-
ences that persist across large portions of the Brillouin
zone and throughout the doping range relevant to the
cuprates, especially in the charge channel, attributable
to distinctions between the doping dependence of corre-
lation effects at the single- and multi-particle level. Only
when doped to extremely high levels will the two-particle
response represent a system in a weakly correlated metal-
lic state. These conclusions help to elucidate evolution

away from the Mott insulating ground state and demon-
strate that strong correlations can extend over a larger
region of the cuprate phase diagram than has been ap-
preciated previously.
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