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Water is a life-giving source, fundamental to human existence, yet, over a billion people

lack access to clean drinking water. Present techniques for water treatment such as piped,

treated water rely on time and resource intensive centralized solutions. In this work, we

propose a decentralized device concept that can utilize sunlight to split water into hydrogen

and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bub-

bles out. In enabling this device, we require an electrocatalyst that can oxidize water while
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suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide.

Using density functional theory calculations, we show that the free energy of adsorbed OH⇤

can be used as a descriptor to screen for selectivity trends between the 2e� water oxidation to

H2O2 and the 4e� oxidation to O2. We show that materials that bind oxygen intermediates

su�ciently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a

rational design principle for the selectivity in electrochemical water oxidation and identify

new material candidates that could perform H2O2 evolution selectively.

The global energy consumption is projected to increase with the increased energy con-

sumption being concentrated in areas that rank highest on the water scarcity index.1,2 A key

challenge in providing clean drinking water is to find a low-cost, energy-e�cient approach to

treatment and disinfection of water so that it is suitable for consumption. Providing piped,

treated water requires time and resource intensive centralized facilities and an infrastructure

that does not exist in many places today.3 Conventional techniques for water disinfection

typically involve the use of chlorine or ozone as the oxidant.4 However, chlorination gener-

ates hazardous and carcinogenic compounds,5 while the use of ozone, though e�cient and

harmless, is expensive.4 Hydrogen peroxide is an attractive candidate for water treatment

as its degradation product is water and it has strong oxidative properties.6

H2O2 is generated at an industrial scale through the oxidation of anthraquinone. This

process is a multi-step method requiring significant energy input and generates substantial

waste and its transportation causes possible hazards.6 A direct e�cient and economic route

for production of hydrogen peroxide could enable its wide-spread application in water treat-

ment and other areas. The direct thermal catalytic synthesis from H2 and O2 on palladium

based materials have been studied for many years.6–8 However, selectivity and production

rate of H2O2 are far below the desired limit.6 An alternate synthetic route is through direct

electrochemical reduction of oxygen and protons.9,10 Experimental and theoretical studies

have shown it is possible to selectively activate hydrogen peroxide generation from oxygen

reduction, however, this route requires electrocatalysts that are made out of expensive metals
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Figure 1: Schematic of a novel ‘dream’ device concept that can absorb photons from sunlight
and use it to split water into hydrogen and hydrogen peroxide. Hydrogen peroxide will
decompose the organics in water and thus cleaning water and hydrogen will bubble out.

such as gold, platinum and palladium.11–14

Our core idea is to identify a synthetic route for hydrogen peroxide that uses water as its

only reactant and uses sustainable electricity preferably from sunlight. In Figure 1, we show

the schematic of a decentralized water treatment device. This device employs a material

that can absorb photons and generate electrons and holes with appropriate energy such that

the electrons can reduce protons to hydrogen and holes can oxidize water to H2O2. To

enable this device, two material challenges need to be overcome. The first is we require a

photon absorber whose band positions are suitably aligned such that it can catalyze hydrogen

evolution and hydrogen peroxide evolution. The second, more formidable requirement is of

an electrocatalyst that can catalyze H2O2 evolution and suppress the thermodynamically

favored O2 evolution. The second electrocatalyst requirement forms the focus of our present

work.

In this work, using thermodynamic analysis based on density functional theory calcula-

tions, we demonstrate the existence of material candidates that can activate H2O2 evolution
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through the oxidation of water. We show that the free energy of adsorbed OH⇤ can be used

as a descriptor, to a first approximation, for determining trends in 2e� vs 4e� oxidation of

H2O. We identify materials that are good candidate materials for H2O2 generation. Among

these, we identify SnO2 and TiO2 as candidate materials with good selectivity and our

analysis provides a quantitative foundation for the identification of more e�cient, selective

electrocatalyst materials. This analysis provides a necessary, but not su�cient criterion for a

good selective electrocatalyst. Undoubtedly, kinetic barriers are important for determining

selectivity, however, such a thermodynamic analysis has proved successful in determining

selectivity trends for oxygen reduction.12,13,15

Results

An ideal electrocatalyst for the 4 electron oxygen evolution reaction should be capable of

facilitating oxidation of H2O just above the equilibrium potential of 1.23 V. As a mini-

mum requirement, the four charge transfer steps should have reaction free energies of the

same magnitude equal to the equilibrium potential of 1.23 eV. We consider the associative

mechanism shown below:16–19

2H2O(l) + ⇤ ! OH⇤ + H2O(l) + H+ + e�, (1a)

OH⇤ + H2O(l) + H+ + e� ! O⇤ + H2O(l) + 2H+ + 2e�, (1b)

O⇤ + H2O(l) + 2H+ + 2e� ! OOH⇤ + 3H+ + 3e�, (1c)

OOH⇤ + 3H+ + 3e� ! O2(g) + 4H+ + 4e� + ⇤. (1d)

However, an ideal electrocatalyst for the two electron oxidation of water to hydrogen peroxide

should facilitate the oxidation just above the equilibrium potential of 1.77 V. This implies

that each of the two charge transfer steps must have a reaction free energy of 1.77 eV. We
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consider a similar associative mechanism for H2O2 production,

2H2O(l) + ⇤ ! OH⇤ + H2O(l) + H+ + e�, (2a)

OH⇤ + H2O(l) + H+ + e� ! H2O2(l) + 2H+ + 2e�. (2b)

Figure 2: Free energy diagram of water oxidation plotted at U = 1.77 V, versus the reversible
hydrogen electrode on SnO2(110) and RuO2(110). On SnO2(111), the limiting step for 2e�

oxidation is the activation of H2O as OH⇤ while that for the 4e� oxidation is the oxidation
of OH⇤ to O⇤. On RuO2(111), the limiting step for 2e� oxidation is the formation of H2O2

from OH⇤ while that for the 4e� oxidation is the oxidation of O⇤ to OOH⇤.

In Figure 2, we show the calculated free energy diagram for the 2e� and 4e� oxidation

of water on rutile type SnO2 and RuO2 at U = 1.77 V, versus the reversible hydrogen

electrode.17 Using the free energy diagrams, an important parameter, the thermodynamic

limiting potential, UL, can be extracted and this is defined as the lowest potential at which

all of the reaction steps are downhill in free energy. This approach has been successfully used

to rationalize trends in hydrogen evolution, oxygen reduction and oxygen evolution.17,20–22

The potential determining step for the 2e� oxidation on SnO2 is the activation of H2O as

OH⇤ while that for the 4e� oxidation is the oxidation of OH⇤ to O⇤. It is to be noted that the
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calculated limiting potential for the 2e� oxidation is lower than that for the 4e� oxidation

and we would expect this to show selectivity towards hydrogen peroxide generation. In

contrast, the potential determining step for 2e� oxidation on RuO2 is the formation of H2O2

from OH⇤ while the potential determining step for 4e� oxidation is the oxidation of O⇤ to

OOH⇤. For RuO2(110), the activation to OH⇤ is facile at 1.77 V, however, because the

further oxidation of OH⇤ to O⇤ is strongly exothermic, selectivity for H2O2 is expected to

be low on RuO2. Materials with an OH⇤ binding energy between that on SnO2 and RuO2

are expected to have improved activity for the 2e� oxidation provided selectivity for the 4e�

oxidation can be suppressed.

The trends for oxygen electrochemistry is determined by the binding of three key in-

termediates, O⇤, OH⇤ and OOH⇤.16 However, it has been demonstrated that the binding

of these intermediates on oxide materials are correlated. This enables the activity, given

by the limiting potential, UL, to be plotted as a function of a single descriptor, to a first

approximation. These plots allow for the quantitative determination of the descriptor values

that yield optimal catalyst activity.16,17,21,23

Generalizing this analysis, for the 4e� oxidation of water, in the case of materials that

bind oxygen intermediates too strongly, we have step 1c associated with the oxidation of

adsorbed O⇤ being the limiting step. Therefore, the free energy di↵erence of the limiting

step is given by,

�G1c = �GOOH⇤ ��GO⇤ . (3)

In the case of the materials that bind oxygen intermediates too weakly, we have step 1b

associated with the oxidation of adsorbed OH⇤ being the limiting step for the 4e� oxidation

of water. Therefore, the free energy di↵erence of the limiting step is given by,

�G1b = �GO⇤ ��GOH⇤ (4)

For the 2e� oxidation of water, the activity of materials that bind oxygen intermediates
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too strongly, reaction 2b associated with the oxidation of OH⇤ to H2O2 is the limiting step.

The free energy of the limiting step is given by,

�G2b = �GH2O2(l) ��GOH⇤ . (5)

The activity of materials on the weak binding leg of the volcano is limited by 2a associated

with the activation of water as OH⇤ and the free energy di↵erence of the limiting step is

given by,

�G2a = �GOH⇤ ��GH2O(l) (6)

In this work, we have chosen free energy of OH⇤, �GOH⇤, as the descriptor and this choice

is made as the activity for hydrogen peroxide evolution is directly determined by �GOH⇤.

In Figure 3, we show the calculated thermodynamic limiting potentials, UL, as a function of

the free energy of OH⇤, �GOH⇤.

The calculated activity volcano shows that the optimal catalyst for peroxide evolution

should exhibit a free energy of OH⇤ adsorption of 1.77 eV. We identify RuO2, PtO2 as mate-

rials that bind oxygen too strongly for peroxide evolution. PtO2 calculations are performed

on a rutile structure. According to our analysis, we also identify SnO2 and TiO2 as materials

that bind oxygen too weakly and have slightly lower potentials for peroxide evolution than

oxygen evolution. It is worth highlighting that kinetic barriers are also important for deter-

mining selectivity and the activity volcano analysis presented here provides a necessary, but

not su�cient criterion for a good selective electrocatalyst.

Discussion

The only direct experimental demonstration for selectively making H2O2 over O2 through

electrochemical oxidation of water has been the recent work of MacFarlane and co-workers

who employed MnOx electrode with an ionic liquid based electrolyte to tune the thermo-
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Figure 3: Activity volcano for the 2e� and 4e� oxidation of water. The scaling relations
used to construct the volcano are �GOOH = �GOH + 3.2 [eV] and �GO = 2�GOH + 0.28
[eV].24

dynamics and showed H2O2 formation.25,26 Based on our analysis, we find that the limiting

potentials for hydrogen peroxide evolution and oxygen evolution on MnO2 are quite close

and small changes in surface energetics due to solvent e↵ects (ionic liquid) could a↵ect the

selectivity. There has been no direct experimental demonstration of electrochemical H2O2

generation in a purely aqueous system. It is worth pointing out that photogeneration of

H2O2 has been demonstrated on TiO2 and ZnO.27,28

It has also been demonstrated that electrodes that have high overpotentials for oxygen

evolution exhibit enhanced performance towards the decomposition of organics although the

exact details of the mechanism are still unclear.29,30 For instance, it has been shown that

SnO2 which is poor at catalyzing oxygen evolution exhibits a higher e�ciency for organic

degradation compared to Pt.30 We suggest that generation of hydrogen peroxide is a pre-

cursor to the decomposition of organics and based on this assumption, our analysis attributes
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the enhanced e�ciency for the decomposition of organics to the weaker binding of oxygen

intermediates on SnO2 compared to Pt. As a result, we would expect little decomposition

of organics on PtO2 and significant decomposition on SnO2.

Our descriptor based approach can be used to identify possible candidate materials that

could be e↵ective at selectively catalyzing peroxide evolution. An avenue could be the doping

of metal ions on cheap material such as TiO2, which has been pursued for oxygen evolution.31

We have searched for suitable doped TiO2 candidates for selective peroxide evolution. Based

on our analysis, we identify TiO2 doped with Ru or Ir are interesting candidate materials that

could exhibit enhanced activity for peroxide evolution, as discussed in the SI. In addition to

selectivity, stability is a stringent requirement for water oxidation electrocatalysts32,33 and we

expect the stability requirement to be play a crucial role in the selection of an electrocatalyst.

Finally, the provided device requires a photon absorber whose band positions are suitably

aligned for hydrogen peroxide generation. This poses a requirement for a photon absorber

that the valence band maximum is greater than 1.77 V vs normal hydrogen electode (NHE)

and the conduction band minimum is less than 0 V vs NHE. There are many material

candidates that satisfy this criterion, including SnO2. Hence, identifying a suitable photon

absorber is less challenging than finding a selective electrocatalyst. This analysis suggests

that it is possible to identify a single material that can carry out the catalysis as well as the

photon absorption.

We have outlined a quantitative framework for determining selectivity in electrochemical

water oxidation. We show that it is possible to selectively catalyze the 2e� oxidation to

H2O2 over the thermodynamically favored oxygen evolution. This can be accomplished under

certain range of potentials by choosing catalysts that are ine�cient at carrying out oxygen

evolution. We show SnO2 and TiO2 as materials that exhibit suitable bonding characteristics

for peroxide evolution and identify doped TiO2 candidate materials that could carry out this

process more e�ciently. This shows that it is possible to selectively form fuels or chemicals

that involve a smaller number of proton-coupled electron transfer over its thermodynamically
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favored competing reaction that involves a larger number of proton-electron transfer. We

expect this core idea to be broadly useful given the ubiquity of adsorbate scaling relations

and we expect it to be particularly useful for nitrogen and carbon electrochemistry.

Methods

Free energy diagrams: The free energy diagram is calculated based on density functional

theory calculations which accounts for zero point energy and entropic corrections and a

detailed discussion is presented in the SI.16 The e↵ect of potential, U, is included by shifting

the free energy of an electron by -eU and the free energy at a potential U, can thus be

calculated using the relation, �G = �G0 � eU where U is the potential relative to the

reversible hydrogen electrode and �G0 is the calculated reaction free energy under standard

conditions.34

Computational details: A detailed description of the computational details is given

in the SI.
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Computational Details

Formation energies of OH⇤ and O⇤ on SnO2(110) and OH⇤ , O⇤ and OOH⇤ MnO2(110) are

obtained from Density Functional theory calculations by Man et al.1 Additional calculations

are performed on SnO2(110) to obtain the formation energy of OH⇤ . It is found that OOH⇤

spontaneously transfers a hydrogen atom to a nearby bridging oxygen atom. The free energy

of OOH ⇤ on SnO2(110) is therefore approximated from the scaling relation between OH ⇤

and OOH ⇤ and the formation energy of OH ⇤ .2

The computational details used are similar to those in ref. 1 and given below for com-

pleteness.

Density functional theory calculations are performed with the DACAPO DFT code. Ionic

cores are described using Vanderbilt ultrasoft pseudo potentials and Kohn-Sham states are

expanded in plane waves with an energy cuto↵ of 350 eV, while the electron density is

expanded in plane waves with an energy cuto↵ corresponding to 500 eV.3 Occupation of

one-electron states follows a Fermi-Dirac distribution with kBT = 0.1 eV and total energies

are extrapolated to kBT = 0 eV. E↵ects of exchange and correlation are described using the

RPBE functional.4

The SnO2(110) surface is modeled using a slab with a (1 ⇥ 2) surface supercell cell

consisting of 4 trilayers. The geometry of the bottom two trilayers is fixed in the bulk

position, and adsorbates are added to the topside of the slab. Slabs are separated by 15 Å

of vacuum and the electrostatic dipole interaction between periodically repeated slabs has

been removed.5 The first Brilluin zone is sampled using 4 ⇥ 4 ⇥ 1 Monkhorst-Pack grid of

k-points.6 Adsorbates and the two topmost trilayers are optimized until the maximum force

component is below 0.05 eV/Å.
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Free Energy Diagrams

Potential dependent free energies are calculated using the computational hydrogen electrode

reference.7 Consider the initial step in water oxidation, written here in acid

H2O(l) + ⇤ ��! OH ⇤ + H+ + e�. (1)

At 0 V vs an reversible hydrogen electrode (RHE) the reaction

1
2
H2(g) ��! H+ + e� (2)

is in equilibrium, so the chemical potential of a proton and an electron is equal to the

chemical potential of 1
2
H2(g)

1
2
µH2(g) = µH+ + µe� . (3)

Therefore the reaction free energy of eq. 1 at 0 V versus RHE, �G0, can be calculated from

the equivalent gas phase reaction

H2O(l) + ⇤ ��! OH ⇤ + 1
2
H2(g) (4)

�G0 = G(OH ⇤ ) � G(⇤) � µH2O(l) +
1

2
µH2(g). (5)

At an arbitrary potential, U versus RHE, the chemical potential of an electron is shifted by

�eU and correspondingly the reaction free energy of eq. 1 is given by

�G = �G0 � eU. (6)

The approach is easily generalized to include formation of O⇤ and OOH⇤ adsorbates.

The reaction free energy of eq. 4 is calculated from DFT simulations by adding con-

tributions from entropy and vibrational zero-point energies (ZPE) to the reaction energies
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obtained from DFT.

�G0 = �EDFT + �EZPE � T�S. (7)

For adsorbates, the zero point energy is calculated from vibrational frequencies calculated

on RuO2(110) and taken from ref. 1, while the entropy of adsorbed species is assumed to

be negligible. For molecules, the ZPE is obtained from DFT calculated frequencies, while

the entropy is taken from experiment.8 The chemical potential of H2O(l) is calculated as

the chemical potential of H2O(g) at 0.035 bar, which is the vapor pressure of H2O at room

temperature. The contributions from ZPE and entropy are listed in S1.

Table S1: Zero point energies and entropic contributions to adsorbates and water
oxidation reactions. Energies are in eV.

TS T�S EZPE �EZPE �EZPE � T�S
H2O(l) 0.67 0.56
H2(g) 0.41 0.27
OH ⇤ 0.0 0.36
O ⇤ 0.0 0.07
OOH ⇤ 0.0 0.43
OH ⇤ + 1

2
H2(g) 0.20 -0.47 0.50 -0.06 0.41

O ⇤ + H2(g) 0.41 -0.27 0.34 -0.22 0.05
OOH ⇤ + 3

2
H2(g) 0.61 -0.73 0.83 -0.29 0.45

c

Screening for new candidate materials

Based on the activity volcano, we can screen for new candidate materials that could posses

higher selectivity than SnO2. One strategy is to use a cheap material such as TiO2 and

using doping to tune the adsorption energy. Our analysis suggests that a strengthening of

the OH⇤ binding energy by about ⇠0.3 eV relative to that of TiO2 could lead to substantially

improved selectivity and electrocatalytic activity for H2O2 evolution.

We screened the calculated adsorption energies on doped rutile TiO2(110) surfaces based

on a substitutional model with 6.25% transition-metal impurities relative to the host Ti
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atoms in the slab, that is, M-Ti15O32.
9 The analysis considered transition metals M=V, Nb,

Ta, Cr, Mo, W, Mn, Fe, Ru, Ir, and Ni as dopants at four di↵erent substitutional sites.

Among the considered cases, our analysis suggests the most promising candidates are Ir or

Ru-doped TiO2 as shown in Figure S1.

Figure S1: Activity volcano for the 2e� and 4e� oxidation of water with the identified doped
TiO2 candidates. The adsorption site for the doped TiO2 candidates, Ir and Ru, is on top
of a 5-fold coordinated Ti site while the Fe-doped case is on top of a 6-fold coordinated Ti
site.
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