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ABSTRACT

Using two-dimensional particle-in-cell simulations, we characterize the energy spec-

tra of particles accelerated by relativistic magnetic reconnection (without guide field) in

collisionless electron-positron plasmas, for a wide range of upstream magnetizations σ

and system sizes L. The particle spectra are well-represented by a power law γ−α, with

a combination of exponential and super-exponential high-energy cutoffs, proportional

to σ and L, respectively. For large L and σ, the power-law index α approaches about

1.2.

Subject headings: acceleration of particles — magnetic reconnection — relativistic

processes — pulsars: general — gamma-ray burst: general — galaxies: jets

1Lyman Spitzer Jr. Fellow

2 NASA Einstein Postdoctoral Fellow (PF3-140130) at the Kavli Institute for Particle Astrophysics and Cosmology,

Stanford University, and Stanford Linear Accelerator Center, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA

3Department of Astrophysical and Planetary Sciences, 391 UCB, Boulder, CO 80309, USA

SLAC-PUB-16599

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
 Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.

http://arxiv.org/abs/1409.8262v2


– 2 –

1. Introduction

Magnetic reconnection is a fundamental plasma physics process in which magnetic field rear-

rangement and relaxation rapidly converts magnetic energy into particle energy (Zweibel & Yamada

2009). Reconnection is believed to drive many explosive phenomena in the universe, from Earth

magnetospheric substorms and solar flares to high-energy X-ray and γ-ray flares in various astro-

physical objects. Quite often, the radiation spectra of these flares, and hence the energy distribu-

tions of the emitting particles, are observed to be non-thermal (e.g., characterized by power laws).

Therefore, understanding the mechanisms of nonthermal particle acceleration and determining the

observable characteristics—such as the power-law index and high-energy cutoff—of the resulting

particle distribution, is an outstanding problem in modern heliospheric physics and plasma astro-

physics.

Of particular interest in high-energy astrophysics is the role of relativistic reconnection—which

occurs when the energy density of the reconnecting magnetic field, B2
0/8π, exceeds the rest-mass

energy density nbmc2 of the ambient plasma, leading to relativistic bulk outflows and plasma

heating to relativistic temperatures—as a potentially important mechanism for nonthermal par-

ticle acceleration to ultra-relativistic energies (with Lorentz factors γ ≫ 1) in various astrophys-

ical sources (Hoshino & Lyubarsky 2012). In particular, this process has been invoked to ex-

plain energy dissipation and radiation production in electron-positron (pair) plasmas over multiple

scales in pulsar systems—e.g., in the pulsar magnetosphere near the light cylinder, in the striped

pulsar wind, and in the pulsar wind nebula (PWN) (Lyubarsky 1996; Lyubarsky & Kirk 2001;

Coroniti 1990; Uzdensky et al. 2011; Cerutti et al. 2012a, 2013, 2014a,b; Sironi & Spitkovsky 2011;

Uzdensky & Spitkovsky 2014). In addition, relativistic reconnection in pair and/or electron-ion

plasmas is believed to play an important role in gamma-ray bursts (GRBs) (Drenkhahn & Spruit

2002; Giannios & Spruit 2007; McKinney & Uzdensky 2012) and in coronae and jets of accreting

black holes, including AGN/blazar jets, e.g., in the context of TeV blazar flares (Giannios et al.

2009; Nalewajko et al. 2011).

Nonthermal particle acceleration is essentially a kinetic (i.e., non-fluid) phenomenon. Al-

though fluid simulations with test particles have been used to study particle acceleration,

particle-in-cell (PIC) simulations include kinetic effects self-consistently. A number of PIC

studies have investigated particle acceleration in collisionless relativistic pair-plasma reconnec-

tion (Zenitani & Hoshino 2001, 2005, 2007, 2008; Jaroschek et al. 2004; Lyubarsky & Liverts

2008; Liu et al. 2011; Sironi & Spitkovsky 2011; Bessho & Bhattacharjee 2012; Kagan et al. 2013;

Cerutti et al. 2012b, 2013, 2014a,b; Liu et al. 2015; Kagan et al. 2015); the best evidence for non-

thermal particle distributions was provided recently by Sironi & Spitkovsky (2014); Guo et al.

(2014). Whereas previous studies have identified power-law slopes of nonthermal spectra, the im-

portant question of the energy extent of these power laws has not been systematically addressed.

In this Letter we present a comprehensive two-dimensional (2D) PIC investigation of non-

thermal particle acceleration in collisionless relativistic reconnection in a pair plasma without
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guide magnetic field. In particular, we characterize the dependence of the resulting energy dis-

tribution function on the system size L and the upstream “cold” magnetization parameter σ ≡

B2
0/(4πnbmec

2) (relativistic reconnection requires σ ≫ 1). We find empirically that relativistic

reconnection produces a high-energy spectrum that is well represented by a power law with expo-

nential and super-exponential cutoffs:

f(γ) =
dN

dγ
∝ γ−α exp

(

−γ/γc1 − γ2/γ2c2
)

. (1)

The different cutoffs serendipitously allow us to distinguish different scalings with σ and L: γc1 ∼ 4σ

depends on σ, while γc2 ∼ 0.1L/ρ0 depends on L (here ρ0 ≡ mec
2/eB0 is the nominal Larmor

radius).

Equality of the two cutoffs, γc1 ≃ γc2, defines a critical size Lc ≃ 40σρ0 separating the small-

and large-system regimes. We find that for large systems (L/σρ0 ≫ 40), the energy spectrum

of accelerated particles (hence γc1) is essentially independent of L. Importantly (as we discuss

later), Lc is approximately the length at which a current layer, with thickness equal to the av-

erage Larmor radius ρe = γ̄ρ0, becomes tearing-unstable and breaks up into multiple plasmoids

and secondary current sheets. [Here, γ̄mec
2 is the average dissipated energy per background par-

ticle, γ̄ ≃ κ(B2
0/8π)/(nbmec

2) = κσ/2; in our simulations κ ≃ 0.6, so γ̄ ≃ 0.3σ.] Therefore, we

propose that (at least in 2D with an initially cold background plasma) reconnection in the plasmoid-

dominated regime yields a high-energy particle spectrum that is predominantly independent of sys-

tem size L ≫ Lc. Consequently, nonthermal particle acceleration in huge, astrophysically-relevant

systems may be studied via merely large simulations, i.e., with L & Lc.

2. Simulations

This study focuses on reconnection in 2D without guide field (Bz = 0). Although some impor-

tant differences in the reconnection dynamics emerge between 2D and 3D, such as the development

of the drift-kink instability (Zenitani & Hoshino 2008), the dimensionality is not believed to affect

the particle energy spectra at late stages (Sironi & Spitkovsky 2014; Guo et al. 2014; Daughton

2014; Drake 2014). Working in 2D (much less costly than 3D) enabled investigation of large system

sizes.

We simulate systems of size Lx = Ly = L with periodic boundary conditions and two antiparal-

lel reconnection layers. The two layers begin as relativistic Harris current sheets (Kirk & Skjæraasen

2003) with upstream magnetic field Bx = B0 and a peak drifting plasma simulation-frame-density

nd (at the layer centers) that is 10 times the uniform background density nb. A small (1%) initial

magnetic-flux perturbation facilitates reconnection onset. Electrons and positrons in each Harris

layer drift (in opposite directions) with average velocity βdc = 0.6c, and initial Maxwell-Jüttner

temperature θd ≡ kBTd/mec
2 = σ/16; the initial layer half-thickness is δ = (8/3)θd ρ0 = σρ0/6.

The background plasma is initially at rest, with temperature θb ≪ σ; however, due to the finite
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grid instability (Birdsall & Maron 1980), the background plasma is expected to heat until its Debye

length is resolved, which occurs at a temperature of order θD ∼ σ/512 for ∆x = σρ0/32.

The simulations begin with Np = 128 (macro)particles per grid cell with cell sizes ∆x =

∆y = θd ρ0/2 = σρ0/32 ≈ 0.2δ (except for σ = 3, where the mildly-relativistic particles allowed

∆x = θdρ0 without sacrificing accuracy). The total energy is conserved within 1% during each

simulation. Convergence tests with respect to ∆x and Np indicate that our simulations are well

resolved and, in particular, that the high-energy parts of the particle distributions are robust.

The Vorpal code (Nieter & Cary 2004), employed for this study, uses an explicit electromag-

netic PIC time advance, with Yee electromagnetics and a relativistic Boris particle push.

To determine the power-law index α and the energy cutoffs γc1 and γc2 as functions of the

upstream magnetization σ and the system size L, we ran simulations with σ = 3, 10, 30, 100,

300, 1000, and, for each σ, a range of system sizes up to L/σρ0 = 100 for σ = 1000, 300, up to

L/σρ0 = 200 for σ = 100, 30, 10, and up to L/σρ0 = 400 for σ = 3.

3. Results

We focus on the energy distribution of background particles, excluding the initially-drifting par-

ticles, which contribute negligibly to the overall distribution for large L. Evolution to a nonthermal

distribution proceeds rapidly (Fig. 1); and the shape of the high-energy spectrum, as characterized

by α and γc1/2, ceases to evolve well before all available flux has reconnected, especially for large

systems.

We find that the late-time high-energy spectrum is a power law with a high-energy cutoff signifi-

cantly above the average particle energy, in agreement with Sironi & Spitkovsky (2014). We further

observe (Fig. 1) that spectra for large systems have exponential cutoffs, exp(−γ/γc1), while small

systems have sharper cutoffs, which we empirically model with a super-exponential exp(−γ2/γ2c2).

We therefore fit all spectra with the universal form of Eq. (1) to determine the power-law index α

and the cutoffs γc1, γc2; for small systems, the best-fit γc1 is typically much larger than γc2 (hence

irrelevant and highly uncertain), while for large L, γc2 is larger and uncertain.

Each spectrum is fit to Eq. (1) over an interval [γf1, γf2], chosen as large as possible while

maintaining a good fit. Because spectra depart from a power law at lowest energies, and because

of increased noise at highest energies, larger fitting intervals yield unacceptably poor fits. Noise is

reduced (and fit improved) by averaging over short time intervals and, if available, over multiple

simulations (identical except for randomized initial particle velocities). Because the choices of ac-

ceptable fit quality and the durations of averaging intervals are somewhat subjective, we perform

many fits using different choices, and finally report the median values with “error” bars encompass-

ing the middle 68% of the fits (i.e., ±1 standard deviation if the data were Gaussian-distributed);

small error bars thus demonstrate insensitivity to the fitting process. Very uncertain and large



– 5 –

100 101 102
γ

10-4

10-3

10-2

10-1

100

γ
f(
γ
)

tωc =0
tωc =180
tωc =350
tωc =700
tωc =1400
tωc =2100
tωc =2800
tωc =3500
tωc =4200
tωc =4900

100 101 102 103

γ

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

γ
f(
γ
) 
(×

 a
rb
it
ra
ry
 f
a
ct
o
r)

θ=3.0

θ=2.0

γc1 γc2

γc1
γc2

α=1.6
α=1.4

α=1.5

α=0.8

(a) L/σρ0=200

(b) L/σρ0=25

σ=30

equiv. thermal
γ−α exp(−γ/γc1)
γ−α exp(−γ2/γ 2

c2 )
simulation

Fig. 1.— (Left) Time evolution of the particle energy spectrum for a run with σ = 30 and L/σρ0 =

200. Reconnection ceases at tωc ≈ 4300, but the shape of the high-energy spectrum is the same for

tωc & 2000 [ωc ≡ c/(θdρ0)]. (Right) An exponential cutoff (short dashes) fits the energy spectra

better for large-L simulations (a), while a super-exponential cutoff (long dashes) fits better for small

L (b). Brackets mark [γf1, γf2], where the displayed fits were performed. Thin-dashed lines show

Maxwell-Jüttner distributions with equivalent total energies. Considering many fits (e.g., with

different γf1, γf2), we determined for (a) α ∈ [1.38, 1.49], γc1 ∈ [119, 157], γc2 too large/uncertain

to measure; for (b) α ∈ [1.31, 1.48], γc1 too large/uncertain to measure, γc2 ∈ [39, 44].

(hence irrelevant) cutoff values are discarded.

By applying this fitting procedure to the background particle spectrum for each different value

of (L, σ), we mapped out α, γc1, and γc2 as functions of σ and L, up to sufficiently large L to

estimate the asymptotic values α∗(σ) = limL→∞ α(σ,L) (Fig. 2). We find that α∗(σ) starts above

2 for modest σ, and decreases to α∗(σ) ≈ 1.2 in the ultra-relativistic limit of σ ≫ 1 (Fig. 3), a

result that is broadly consistent with previous studies (Zenitani & Hoshino 2001; Jaroschek et al.

2004; Lyubarsky & Liverts 2008; Sironi & Spitkovsky 2014; Guo et al. 2014; Melzani et al. 2014);

while our measurement is closer to 1.2 than 1, the uncertainty is too large to rule out α∗ → 1,

predicted by some (Larrabee et al. 2003; Guo et al. 2014).

In contrast to the power-law index α, the energy extent of the power law has received relatively

little attention in relativistic reconnection literature (Larrabee et al. 2003; Lyubarsky & Liverts

2008). We find that the high-energy cutoffs scale as γc1 ∼ 4σ (independent of L) and γc2 ∼ 0.1L/ρ0
(independent of σ) (Figs. 4, 5). Thus L/σρ0 ≪ 40 implies γc2 ≪ γc1, and a super-exponential cuts

off the power-law at an energy determined by the system size. Larger system sizes L/σρ0 ≫ 40

have γc1 ≪ γc2, and so γc1 determines where the power law ends, independent of L.
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Fig. 2.— Measured power-law indices α vs. L, with extrapolations (α∗) to L → ∞ (cf. Fig. 3).
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4. Discussion

The scaling of the high-energy cutoffs can be explained in terms of the distance a particle

could travel within the reconnection field Ez ∼ βrB0 (where βr ∼ 0.1 is the reconnection rate).

By calculating analytic trajectories in fields around a single X-point, Ref. (Larrabee et al. 2003)

concluded that f(γ) ∝ γ−1 exp(−γ/Γ0) with Γ0 = 12eβ2
rB0ℓx/mec

2 ∼ eEzℓx/mec
2 ∼ 0.1ℓx/ρ0,

with ℓx being the size of the reconnection region in x 4, a result that was supported by 2D PIC

simulation in Lyubarsky & Liverts (2008).

In general, small systems reconnect mainly with one X-point, so ℓx ∼ L and Γ0 ∼ 0.1L/ρ0,

which equals our γc2. (The observed super-exponential form presumably results from the simula-

tion’s boundary conditions.)

In large systems, however, the tearing instability breaks up current layers with full-length

greater than ℓtear ∼ 100δ̄, where δ̄ is the layer half-thickness (Loureiro et al. 2005; Ji & Daughton

2011), resulting in a hierarchy of layers ending with elementary layers, which are marginally stable

against tearing (Shibata & Tanuma 2001; Loureiro et al. 2007; Uzdensky et al. 2010). The half-

thickness of elementary (single X-point, laminar) layers should be about the average Larmor radius

δ̄ ∼ ρe = γ̄ρ0 (Kirk & Skjæraasen 2003). Although Larrabee et al. (2003) considered singleX-point

reconnection, we propose that their formula for Γ0 can also be used in the context of plasmoid-

dominated reconnection in large systems if applied to elementary layers (instead of the entire

global layer): ℓx ∼ ℓtear ∼ 100γ̄ρ0 ∼ 30σρ0 (instead of ℓx ∼ L). Then, Γ0 ∼ 0.1ℓtear/ρ0 ∼

3σ, which is essentially our γc1 (and consistent with the measurement of Γ0 = 35 for σ = 9 in

Lyubarsky & Liverts (2008)).

This explanation of high-energy-cutoff scaling in terms of elementary layer lengths may

be robust despite the potentially important roles played by other acceleration mechanisms

(Hoshino & Lyubarsky 2012). For example, significant additional acceleration may occur within

contracting plasmoids (Drake et al. 2006; Dahlin et al. 2014; Guo et al. 2014, 2015) or—especially

for the highest-energy particles—in the (anti-)reconnection electric field of secondary plasmoid

mergers (Oka et al. 2010; Sironi & Spitkovsky 2014; Nalewajko et al. 2015).

It is interesting to compare our high-energy cutoffs to the upper bound imposed on a power-

law distribution by a finite energy budget. When 1 < α < 2, most of the kinetic energy resides

in high-energy particles, so the available energy per particle γ̄ ∼ 0.3σ limits the extent of the

power law. If f(γ) ∼ γ−α extends from γmin to γmax ≫ γmin, then γ̄ ≈ [(α− 1)/(2 − α)]γα−1
min γ2−α

max

(Sironi & Spitkovsky 2014). For α ≈ 1, γmax can extend well beyond γ̄, but γmax/γ̄ depends

weakly on system parameters, consistent with our finding γc1 ∼ γ̄ ∼ σ. E.g., for α = 1.2, γmax/γ̄ ≈

(103 γ̄/γmin)
1/4. However, when α > 2 (e.g., for low σ), the energy budget imposes no upper bound,

4 The x-extent of the reconnection region is the relevant length here because the calculation considered motion

in the xz-plane subject to fields uniform in z, so escape (hence cessation of acceleration) was possible only through

motion in x.
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since
∫

∞

γmin
γγ−αdγ is finite. Nevertheless, for σ = 3 where α∗ > 2, we observe γc1 ∼ 4σ, the same

as for smaller α∗.

The exponential cutoff at energies above γc1 ∼ 4σ ∼ 10γ̄ has important astrophysical im-

plications for particle acceleration in systems such as pulsar magnetospheres, winds, PWN, and

relativistic jets in GRBs and AGNs. Our results (insofar as they are ultra-relativistic) can be

generalized to relativistically-hot upstream plasmas by scaling all the energies by γ̄b, the average

Lorentz factor of background particles. The “hot” magnetization σ(hot) ≡ B2
0/(4πnw) therefore pa-

rameterizes similar simulations, since the relativistic specific enthalpy w also scales with γ̄b [i.e., w =

γ̄bmec
2 + pb/nb, where pb is the background plasma pressure; for γ̄b ≫ 1, w ≈ (4/3)γ̄bmec

2].5 For

example, our reconnection-based model (Uzdensky et al. 2011; Cerutti et al. 2012a, 2013, 2014a,b)

for high-energy γ-ray flares in the Crab PWN (Abdo et al. 2011; Tavani et al. 2011) relies upon

acceleration of a significant number of particles from γ̄b ∼ 3 × 106 to γ & 109. If, to achieve

this, we need γc1 > 109, then direct extrapolation of the results from this Letter would require

σ(hot) & (1/4)γc1/(w/mec
2) ≈ 60; this should be comparable (via scaling equivalence) to simu-

lations presented in this work with σ ∼ 60 (corresponding to a power-law index α∗ ∼ 1.3). This

required σ(hot) is significantly higher than what is expected in the Crab Nebula. However, here we

analyzed the entire spectrum of background particles, while (Cerutti et al. 2012b) suggested that

bright flares observed in the Crab Nebula result from preferential focusing of the highest-energy

particles into tight beams with energy spectra that differ from the entire spectrum. We also note

that our present simulations are initialized with a Maxwellian plasma, whereas the ambient plasma

filling the Crab Nebula has a power-law distribution, which may result in a higher high-energy

cutoff.

5. Conclusion

We ran a series of collisionless relativistic pair-plasma magnetic reconnection simulations with

no guide field, covering a wide range of system sizes L and upstream magnetizations σ ≥ 3.

We observed acceleration of the background plasma particles to a nonthermal energy distribution

f(γ) ∼ γ−α(L,σ) with a high-energy cutoff. The cutoff energy is proportional to the maximum

length of elementary, single X-point layers, which is limited by L in small systems, and by the

secondary tearing instability in large systems. For small systems (L ≪ 40σρ0) we observe f(γ) ∼

γ−α exp(−γ2/γ2c2) with γc2 ∼ 0.1L/ρ0, and for large systems, f(γ) ∼ γ−α exp(−γ/γc1) with γc1 ∼

4σ. As L becomes large, the power-law index α(L, σ) asymptotically approaches α∗(σ), which in

turn decreases to ≈ 1.2 as σ → ∞. This characterization of power-law slope and high-energy cutoffs

can be used to link ambient plasma conditions (i.e., σ) with observed radiation from high-energy

5 Because the finite grid instability heats the background plasma until its Debye length is resolved

(Birdsall & Maron 1980), the resolution prevents us from obtaining values of σ
(hot) above a few hundred. For

our simulations with σ . 100, σ(hot)
≈ σ; however, for σ & 300, the numerical heating reduces the value of σ(hot).
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particles, to investigate the role that reconnection plays in high-energy particle acceleration in the

universe.
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Kagan, D., Milosavljević, M., & Spitkovsky, A. 2013, ApJ, 774, 41

Kagan, D., Sironi, L., Cerutti, B., & Giannios, D. 2015, Space Science Reviews, 191, 545

Kirk, J. G., & Skjæraasen, O. 2003, ApJ, 591, 366

Larrabee, D. A., Lovelace, R. V. E., & Romanova, M. M. 2003, ApJ, 586, 72

Liu, W., Li, H., Yin, L., et al. 2011, Physics of Plasmas, 18, 052105

Liu, Y.-H., Guo, F., Daughton, W., Li, H., & Hesse, M. 2015, Phys. Rev. Lett., 114, 095002

Loureiro, N. F., Cowley, S. C., Dorland, W. D., Haines, M. G., & Schekochihin, A. A. 2005, Phys.

Rev. Lett., 95, 235003

Loureiro, N. F., Schekochihin, A. A., & Cowley, S. C. 2007, Phys. Plasmas, 14, 100703

Lyubarsky, Y., & Kirk, J. G. 2001, ApJ, 547, 437

Lyubarsky, Y., & Liverts, M. 2008, ApJ, 682, 1436

Lyubarsky, Y. E. 1996, A & A, 311, 172

McKinney, J. C., & Uzdensky, D. A. 2012, MNRAS, 419, 573

Melzani, M., Walder, R., Folini, D., Winisdoerffer, C., & Favre, J. M. 2014, Astronomy & Astro-

physics, 570, A112

Nalewajko, K., Cerutti, B., Werner, G. R., Uzdensky, D. A., & Begelman, M. C. 2015, in prepara-

tion

Nalewajko, K., Giannios, D., Begelman, M. C., Uzdensky, D. A., & Sikora, M. 2011, MNRAS, 413,

333

Nieter, C., & Cary, J. R. 2004, J. Comput. Phys., 196, 448



– 12 –

Oka, M., Phan, T.-D., Krucker, S., Fujimoto, M., & Shinohara, I. 2010, ApJ, 714, 915

Shibata, K., & Tanuma, S. 2001, Earth, planets and space, 53, 473

Sironi, L., & Spitkovsky, A. 2011, ApJ, 741, 39

—. 2014, ApJ, 783, L21

Tavani, M., Bulgarelli, A., et al. 2011, Science, 331, 736

Uzdensky, D. A., Cerutti, B., & Begelman, M. C. 2011, ApJ, 737, L40

Uzdensky, D. A., Loureiro, N. F., & Schekochihin, A. A. 2010, Phys. Rev. Lett., 105, 235002

Uzdensky, D. A., & Spitkovsky, A. 2014, ApJ, 780, 3

Zenitani, S., & Hoshino, M. 2001, ApJ, 562, L63

—. 2005, ApJ, 618, L111

—. 2007, ApJ, 670, 702

—. 2008, ApJ, 677, 530

Zweibel, E. G., & Yamada, M. 2009, ARA&A, 47, 291

This preprint was prepared with the AAS LATEX macros v5.2.


	1 Introduction
	2 Simulations
	3 Results
	4 Discussion
	5 Conclusion

