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In this paper, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term
gµνR being added to the determinantal action is analysed from a cosmological point of view. It
corresponds to the most general action constructed from a rank two tensor that contains up to first
order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric
gµν . This very interesting type of amendment has not been considered within the Palatini formalism
despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can
provide smooth bouncing solutions which were not allowed in the EiBI model for the same EiBI
coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter
space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter
field. Finally, in this model we discover a new type of cosmic “quasi-sudden” singularity, where the
cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.
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I. INTRODUCTION

Undeniably, Einstein’s theory of general relativity
(GR) has been an extremely successful theory for around
a century [1]. However, the theory is expected to break
down at some points at very high energies where quantum
effects are expected to become crucial, such as in the past
expansion of the Universe where GR predicts a big bang
singularity [2]. This is one of the motivations for look-
ing for possible modified theories of gravity, which are
hoped to not only be able to preserve the huge achieve-
ments of GR, but also to shed some light on smoothing
the singularities predicted in GR. Such theories could be
seen as effective/phenomenological approaches of a more
fundamental quantum theory of gravity.
In 1934 Born and Infeld proposed a non-linear action

for classical electrodynamics, which is characterised by
its grand success in solving the divergence of the self-
energy of point-like charges [3]. This action for electro-
magnetism has an elegant determinantal structure which
reads:

SBI =
1

κ

∫

d4x
√

|gµν + κFµν |, (1.1)

with gµν and Fµν being the metric tensor and the electro-
magnetic field strength. Here κ is a dimensional constant.
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Note that the Born-Infeld action (1.1) recovers Maxwell
action for small amplitudes.
Since the proposal of the Born-Infeld action, modified

theories of gravity with a Born-Infeld-inspired action, ini-
tiated by the pioneering work of Deser and Gibbons [4],
have received much attention; c.f. Refs. [5–10]. These
theories of gravity not only maintain the properties of
GR for small curvatures, but provide various interesting
deviations from GR at high curvature regimes. Most of
these works start with a general gravitational action of
the form

Sdet =
1

κ

∫

d4x
√

|gµν + κGµν(R,Rαβ , Rµναβ)|, (1.2)

where Gµν represents a linear Ricci term Rµν , plus higher
order curvature terms containing R, Rµν , and Rµναβ .
Rather than amending the higher curvature terms in Gµν ,
we can also modify the action by multiplying the metric
term in the determinant by a factor 1+α1R, where α1 is
a constant with length square dimensions. This approach
does not lead to a violation of the requirements in the low
curvature limit, i.e. we can still recover GR at low ener-
gies. Actually, a gravitational action with this pure trace
term has been considered in Ref. [5] within a pure metric
formalism. The theory thus inevitably suffers from the
presence of troublesome fourth order derivatives in the
field equations or ghost instabilities [4].
In order to keep the theory free from aforementioned

problems, alternative theories formulated within the
Palatini formalism and teleparallel representation have
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been widely studied in Refs. [9–16]. For example, a
theory constructed upon the Palatini approach, which
is dubbed Eddington-inspired-Born-Infeld theory (EiBI)
(see Ref. [16]), has recently attracted a lot of attention
and has been studied from both astrophysical and cosmo-
logical points of view [17–50]. The EiBI theory is shown
to be able to cure the big bang singularity for a radia-
tion dominated universe through a loitering effect1 or a
bounce2 in the past, with the coupling constant κ being
positive or negative, respectively. The ability of the the-
ory to smooth other cosmological singularities in a phan-
tom dominated universe was also studied in Refs. [19, 20].
Interestingly, in Refs. [37–39] the authors showed that the
bouncing solutions for negative κ are robust against the
changes of the Lagrangian through an additional f(R)
term or some functional extensions (see as well Ref. [51]
for another generalized gravitational theory related to
massive gravity and Ref. [52] for the tensorial perturba-
tions of a further generalized gravitational theory within
the Palatini formalism.). However, it should be stressed
that the amendments through the addition of a pure trace
term to the determinantal action have never been consid-
ered so far. Besides, the EiBI theory with a negative cou-
pling constant κ was also shown to suffer from instability
problems due to the imaginary effective sound speed [32].
On the other hand, a recently proposed determinan-

tal gravity formulated within the teleparallel represen-
tation was shown to be able to cure the big bang sin-
gularity in the past evolution of the Universe through a
de Sitter inflationary phase [15]. Considering the widest
generalization, the author added a pure trace term into
the Lagrangian of the form of gµνT , where T is the
Weitzenböck invariant [53]. In our previous work, we
exhibited that this theory contains cosmological singu-
larities for some parameters of the model, including the
emergence of some cosmological singularities from purely
geometrical effects (without the need of exotic matter)
[47].
As far as we know, the gravitational actions with a

pure trace term added to the Born-Infeld determinantal
structure have never been considered within the Palatini
approach in the literature. Furthermore, we expect the
emergence of interesting cosmological solutions with the
addition of a pure trace term because it is expected in the
teleparallel version. Based on these motivations, in this
work we will consider a modified EiBI theory with a pure
trace term added to the determinantal action, and anal-
yse its cosmological implications. For simplicity, in this
work we will assume a homogeneous and isotropic uni-
verse filled with a perfect fluid with a constant equation

1 The Universe starts its evolution with a minimum size and at an
infinite cosmic time in the past, before it enters the standard GR
expansion [16].

2 A bouncing universe is a universe with a minimum or a maximum
scale factor such that after a contracting phase, an expanding
phase happens or the other way around. In this kind of model,
the big bang is substituted by a bounce.

of state. Because the field equations are complicated, we
will follow a method similar to that used in Ref. [37] to
demonstrate the results graphically.
In this paper, we will follow Ref. [54] to character-

ize the cosmological singularities by the behavior of the
Hubble rate and its cosmic time derivative at the singular
event: 3

• A big rip singularity takes place at a finite cosmic
time with an infinite scale factor, where the Hubble
parameter and its cosmic time derivative diverge
[58–65].

• A sudden singularity takes place at a finite cosmic
time with a finite scale factor, where the Hubble
parameter remains finite but its cosmic time deriva-
tive diverges [54, 66, 67].

• A big freeze singularity takes place at a finite cos-
mic time with a finite scale factor, where the Hub-
ble parameter and its cosmic time derivative di-
verge [54, 68–71].

• A type IV singularity takes place at a finite cosmic
time with a finite scale factor, where the Hubble
parameter and its cosmic time derivative remain fi-
nite, but higher cosmic time derivatives of the Hub-
ble parameter still diverge [54, 68, 70–73].

• A little rip event takes place at an infinite cosmic
time with an infinite scale factor, where the Hubble
rate and its cosmic time derivative diverge [54, 74–
79].

• A little sibling of the big rip takes place at an
infinite cosmic time with an infinite scale factor,
where the Hubble rate diverges, but its cosmic time
derivative remains finite [80].

Our results are clearly shown in Table I where we com-
pare them with the original EiBI model [16]. As can
be seen the model we are proposing can provide smooth
bouncing solutions which were not allowed in the EiBI
model for the same EiBI coupling (κ > 0). Most in-
terestingly, for a radiation filled universe there are some
regions of the parameter space that can naturally lead
to a de Sitter inflationary stage without the need of any
exotic matter field. Finally, in this model we discover a
new type of cosmic “quasi-sudden” singularity, where the
cosmic time derivative of the Hubble rate becomes very
large but finite at a finite cosmic time.
This paper is outlined as follows. In section II, we

briefly introduce the basis of the modified EiBI theory
with the addition of a pure trace term, including its ac-
tion, field equations, and the low curvature limits of the

3 For an alternative classification of cosmological singularities see
Refs. [55–57].
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theory. In section III, we assume a homogeneous and
isotropic universe filled with a perfect fluid with a con-
stant equation of state, then follow a similar approach to
that used in Ref. [37] to derive a parametric Friedmann
equation. In section IV, we exhibit the evolution of the
Universe by graphically showing the Hubble rate as a
function of the energy density under different assump-
tions of the parameters characterising the theory. To
analyse the evolution of the Universe at the very early
time, we then confine ourselves to a radiation dominated
universe in our analysis of the modified EiBI theory. We
finally present our conclusions in section V.

II. PROPOSED MODEL: ACTION AND FIELD

EQUATIONS

As mentioned in the introduction, in this paper we will
add a pure trace term, which takes the form of gµνR,
to the EiBI determinantal Lagrangian. This term can
equally be seen as a conformal factor multiplying the
metric gµν . Therefore, the action of this generalized EiBI
theory is

S =
1

κ

∫

d4x
[
√

|gµν + κFµν | − λ
√−g

]

+ Sm, (2.1)

where

Fµν = αRµν(Γ) + βgµνR. (2.2)

The theory is formulated within the Palatini formalism,
in which the metric gµν and the connection Γ are treated
as independent variables. In addition, Rµν(Γ) is chosen
to be the symmetric part of the Ricci tensor and the con-
nection is also assumed to be torsionless. Note that g is
the determinant of the metric and Sm stands for the mat-
ter Lagrangian, where matter is assumed to be coupled
covariantly to the metric g only. α, β and λ are dimen-
sionless constants. The parameter κ is a constant with
inverse dimensions to that of a cosmological constant (in
this paper, we will work with Planck units 8πG = 1 and
set the speed of light to c = 1).
In the low energy limit (κ → 0), the gravitational ac-

tion (2.1) becomes

Sg ≈ 1

2

∫

d4x
√−g

[

(α + 4β)R− 2Λ

+ (
1

4
α2 + αβ + 2β2)κR2

− 1

2
α2κRµνR

µν +O3(R)
]

, (2.3)

where the effective cosmological constant is defined by
Λ ≡ (λ− 1)/κ. Therefore, the dimensionless constants α
and β should satisfy:

α+ 4β = 1 (2.4)

to ensure the recovering of Einstein GR at the low cur-
vature limit. Moreover, it can be easily seen that the

EiBI theory is regained when α = 1 and β = 0. On the
other hand, this theory becomes an R2 theory with its
gravitational action part being

Sg|α=0 =
1

2

∫

d4x
√−g

(

R +
κ

8
R2 − 2Λ

)

, (2.5)

when α = 0 and β = 1/4 [81]. Note that this constitutes
the sole of f(R)-like action that can be derived from the
determinantal structure, which is also valid for f(T )-like
action in the teleparallel representation [15]. Therefore,
the dimensionless constants α and β in this theory can be
used to quantify the extent of the interpolation between
the Palatini R2 theory and the EiBI theory.
Actually, one can also add the so called zeroth or-

der curvature term; i.e., γgµν , to the determinant based
on the structural completeness. However, This addi-
tional term can be rescaled by a conformal transforma-
tion gµν → (1+γ)gµν and then can be absorbed into the
cosmological constant term. In this sense this additional
term is not expected to affect our results significantly,
especially at the high energy regime in which the influ-
ence caused by high curvature terms is dominant. In fact,
one can easily see from the gravitational action that the
higher order curvatures term will dominate over the ze-
roth order term when curvature gets large. Therefore,
we will omit this possible additional term in this work.
Within the Palatini approach we are assuming here, we

have to vary the action (2.1) with respect to the metric
and the connection independently to derive the complete
field equations. After varying the action with respect to
gµν , we derive the first field equation

√−q√−g
qµν(1 + κβR)− λgµν

−
√−q√−g

κβqαβgαβg
µρgνσRρσ = −κT µν, (2.6)

where qµν ≡ gµν + κFµν and qµν is the inverse of qµν .
T µν stands for the energy momentum tensor. Because
the matter is assumed to be coupled covariantly to the
metric g only, the energy momentum tensor is conserved
like in GR [16].
The second field equation can be obtained by varying

the action (2.1) with respect to the connection

∇ν

[√−q(αqµν + βqαβgαβg
µν)

]

= 0. (2.7)

Note that the covariant derivative ∇ν is defined through
the connection Γ.

III. MODIFIED EIBI GRAVITY: A

PARAMETRIC FRIEDMANN EQUATION

To analyse the behavior of the cosmological solutions
in the generalized theory defined in Eqs. (2.1) and (2.2),
we follow an approach similar to the one proposed in
Ref. [37] to our model. More precisely, we will rewrite
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the field equations in an algebraic form and express the
quantities of interest using a single variable x, then we
will represent the behavior of the cosmological solutions
graphically. We assume q̂ and q̂−1 denoting qµν and its
inverse qµν , respectively. From now on, a hat will denote
a tensor without making explicit reference to the tensor
components. We further define Ω̂ = ĝ−1q̂ and Ω̂−1 =
q̂−1ĝ to rewrite the first field equation (2.6) as follows

|Ω̂| 12 Ω̂−1(1 + κβR)− |Ω̂| 12 Tr(Ω̂−1)κβ( ˆg−1R)− λÎ

= −κT̂ , (3.1)

where ( ˆg−1R) ≡ gµαRαν(Γ) and T̂ ≡ T µαgαν . Note that

Î is the identity matrix and TrÂ denotes the trace of a
matrix Â.
After taking a trace of both sides of Eq. (3.1), we get

|Ω̂| 12Tr(Ω̂−1) = 4λ− κT. (3.2)

Moreover, according to the definition of q̂ and Ω̂ and
Eq. (2.4) we have

TrΩ̂ = 4(1 + κβR) + καR = 4 + κR, (3.3)

( ˆg−1R) =
Ω̂− (1 + κβR)Î

ακ
. (3.4)

Note that equation (3.4) is valid only for α 6= 0. Com-
bining Eqs. (3.1), (3.2), (3.3) and (3.4), and after some
algebra, we obtain

α(α + βTrΩ̂)

Tr(Ω̂−1)
Ω̂−1−βΩ̂+

αT̂

T̄
+
[

β(α+βTrΩ̂)−αλ

κT̄

]

Î = 0,

(3.5)
where T̄ ≡ 4λ/κ− T .
To analyse the solutions within a cosmological scale;

i.e., we assume the cosmological principle, we first assume
that the Universe is homogeneous and isotropic at large
scale and that it is filled with an effective perfect fluid
with energy density ρ and pressure p. Then Ω̂ becomes
a diagonal tensor with

Ω0

0 ≡ ω1,

Ωi
j ≡ ω2δ

i
j . (3.6)

Therefore, the non-vanishing components of Eq. (3.5)
read,

α[α+ β(ω1 + 3ω2)]ω2

ω2 + 3ω1

− βω1 −
αρ

T̄

=
αλ

κT̄
− β[α+ β(ω1 + 3ω2)], (3.7)

and

α[α + β(ω1 + 3ω2)]ω1

ω2 + 3ω1

− βω2 +
αp

T̄

=
αλ

κT̄
− β[α+ β(ω1 + 3ω2)]. (3.8)

Next, we introduce a constant equation of state w for
the perfect fluid, i.e. it satisfies p = wρ. Combining

Eqs. (3.7) and (3.8), the energy density as functions of
ω1 and ω2 can be written as:

κρ =
4λX(ω2 − ω1)

α(1 + w) −X(ω2 − ω1)(1− 3w)
, (3.9)

where

X =
α[α + β(ω1 + 3ω2)]

ω2 + 3ω1

+ β. (3.10)

Then, we introduce a dimensionless parameter x,
which satisfies

ω1 = x3|Ω̂| 14

ω2 =
|Ω̂| 14
x

. (3.11)

Therefore, according to Eq. (3.3), we have

x3 +
3

x
= 4z, (3.12)

where 4z = (4 + κR)/|Ω̂| 14 .
Next, by adding Eq. (3.8) to Eq. (3.7) after being mul-

tiplied by w, the terms involving ρ are cancelled out, and
an algebraic equation for x and |Ω̂| 14 is obtained:

α(α + 4βz|Ω̂| 14 )
1 + 3x4

(w + x4)− β(wx3 +
1

x
)|Ω̂| 14

+β(α+ 4βz|Ω̂| 14 )(w + 1) =
αλ(w + 1)x3

(1 + 3x4)|Ω̂| 14
.

(3.13)

After some rearrangements we derive a quadratic equa-
tion for |Ω̂| 14 which reads

R1|Ω̂|
1

2 +R2|Ω̂|
1

4 +R3 = 0, (3.14)

where

R1 = 4αβz(w + x4)− β(wx3 +
1

x
)(1 + 3x4)

+ 4β2z(w + 1)(1 + 3x4), (3.15)

R2 = α2(w + x4) + αβ(w + 1)(1 + 3x4), (3.16)

R3 = −αλ(w + 1)x3. (3.17)

The solution to this quadratic equation, expressed in
terms of x, reads

|Ω̂| 14 =

{

−R2±

√
R2

2−4R1R3

2R1

, R1 6= 0

−R3

R2

, R1 = 0.
(3.18)

In addition, after factoring R1(x) we find that if β = 0
(EiBI limit) or w = 1/3 (radiation domination), R1(x)
vanishes, which means the second equation in Eq. (3.18)
is valid. Furthermore, it should be stressed that the ap-
proach mentioned above can not be applied to the case
in which α = 0 (see Eq. (3.4)). Actually, x is fixed to be
x = 1 in this case, thus x is no longer a changing variable.



5

However, this fact is not a real problem because one can
easily derive the cosmological solutions for a pure R2 ac-
tion without the need of the approach we are following
[81].
We have now derived the expression of the energy den-

sity as a function of x in Eq. (3.9). If we can further
express the Hubble rate as a function of x, the graphi-
cal relationship between the Hubble rate and the energy
density can be completed.
As was already assumed at the beginning of this sec-

tion, we focus on a cosmological symmetry and choose
a spatially flat Friedmann-Lemâıtre-Robertson-Walker
(FLRW) space-time:

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (3.19)

where t is the cosmic time and a(t) is the scale factor.

We then define two tensors Σ̂ and hµν such that√−qΣ̂qµν =
√
−hhµν , and Σ̂ = αÎ + βTr(Ω̂−1)Ω̂. Note

that hµν denotes the inverse of hµν . According to the
field equation (2.7), the tensor hµν is the auxiliary met-
ric which is compatible with the physical connection of
this theory. After some calculations, we obtain |q||Σ| =
|h|. Inserting it back we have hµν = Σ̂q̂−1/|Σ̂|1/2, and
hµν = |Σ̂|1/2ĝΩ̂Σ̂−1. The non-vanishing components of

Σ̂ and hµν read

Σ0

0 ≡ σ1 = α+ β(1 + 3x4),

Σi
j ≡ σ2δ

i
j =

[

α+ β(
1

x4
+ 3)

]

δij, (3.20)

and

h00 = −
√

σ2
3

σ1

ω1 ≡ −h1,

hij =
√
σ1σ2ω2δija

2 ≡ h2δija
2. (3.21)

Once we have obtained the components of the aux-
iliary metric hµν which is compatible with the physical
connection of the theory, we can derive the components of
the connection and the Ricci tensor. After some lengthy
calculations, we obtain

R00 +
h1

h2a2
Rijδ

ij =
3

2

( ḣ2

h2

+ 2H
)2

=
3

2

[

2− 3

h2

dh2

dρ
ρ(1 + w)

]2

H2,

(3.22)

where H = ȧ/a is the Hubble rate and the dot denotes
the cosmic time derivative. Note that the conservation
equation ρ̇ = −3H(ρ+ p) has been applied in the above
equation. Finally, we arrive at the expression of H2 in
terms of the variable x:

1

2
κH2

=
α+ |Ω̂| 14 (4βz − x3) + 3σ2

σ1

[|Ω̂| 14 (x3 − 4βzx4)− αx4]

3α[2− 3

h2

dh2

dρ ρ(1 + w)]2
,

(3.23)

In the next section, we will combine Eqs. (3.9) and (3.23)
together with the definitions (3.6), (3.12), (3.20) and
(3.21) to analyse the past/future asymptotic behavior of
a FLRW universe in this type of model when filled with
a perfect fluid with constant w. Eqs. (3.9) and (3.23)
correspond to a parametric Friedmann equation being x
the free parameter.

IV. THE HUBBLE RATE IN AN EXPANDING

UNIVERSE

In the previous section, we derive the expressions of
ρ (Eq. (3.9)) and H2 (Eq. (3.23)) as functions of a sin-
gle variable x. Therefore, we can graphically obtain the
representations of κH2 as a function of κρ to exhibit the
behaviors of the cosmological solutions of interest. From
now on, we will assume a vanishing cosmological constant
to simplify the analysis, that is, we assume λ = 1.

A. The original EiBI theory: β = 0

-2 -1 1 2 3 4 5
ΚΡ

-0.3

0.3

0.6

0.9
ΚH2

FIG. 1. Graphical representation of κH2 as a function of κρ
in the EiBI theory in which β = 0. Different curves represent
different equation of state w. The solid blue, red, green, and
dashed blue curves show the plots for w = 1/3, 1/5, 0, and
w = −1/3, respectively.

As a first glance, we consider the original EiBI theory
in which β = 0 and α = 1. The representations of κH2 as
a function of κρ are shown in FIG. 1. One can see that the
evolution of the energy density terminates at a bounce
where H2 = 0 and dH/dρ 6= 0 at |κρ| = 1 for κ < 0.
This bouncing solution is robust against the change of the
equation of state w. However, if κ > 0 it can be seen that
the behavior of the Hubble parameter is highly sensitive
to the choice of w. There are loitering solutions where
H2 → 0 and dH/dρ → 0 at κρ = 1/w for w > 0, and
divergent solutions for w ≤ 0. Furthermore, it can also
be easily seen that the behaviors of the different curves
focus around H2 = ρ/3 when ρ ≈ 0. This property is not
a surprise because of the prior criteria shown in Eq. (2.4),
and it can be affirmed in all results shown in the rest of
this paper; i.e. we recover GR at low energies. Note that
the results summarized in this subsection are compatible
with those concluded in the literatures [16, 17].



6

B. Radiation dominated universe

In this subsection, we analyse if the original loitering
behaviors and the bouncing solutions within the EiBI
theory can be altered with the addition of a pure trace
term gµνR to the determinantal Lagrangian, i.e., β 6= 0,
for a radiation dominated universe. The analysis could
be easily extended to other equation of state but for sim-
plicity we stick to a radiation dominated universe.

1. β & 0

-3 -2 -1 1 2 3 4
ΚΡ

-1

-0.5

0.3
ΚH2

FIG. 2. Graphical representation of κH2 as a function of
κρ for a radiation dominated universe (w = 1/3). Different
curves represent different values of β. The solid blue, red, and
dashed blue curves show the plots for β = 0, 10−3, and 10−2,
respectively.

We first consider the region in which β is slightly larger
than zero. One should be reminded that in Refs. [37–39]
the authors concluded that the bouncing solutions in the
EiBI theory for negative κ are robust against the amend-
ment to the EiBI action through an additional f(R) term
or some functional extents. However, the situations are
different in our model. One can see from FIG. 2 that
the bouncing solutions for negative κ are quite sensitive
to the increase of β from zero by even a small amount.
More precisely, the asymptotic behavior of H2 at large
ρ is H2 ∝ ρ. This implies the occurrence of a big bang
singularity in the past.
On the other hand, for positive κ the loitering effect

in the EiBI theory becomes a bounce in this model, in
which H2 ∝ δρ ≡ ρ−ρmax with ρmax being the maximum
energy density at the bounce. This gives a much regular
behavior as compared with the asymptotic past behavior
for κ < 0.

2. 0 < β ≤ 1/4

As the value of β increases and gets closer to β ≈ 1/4,
one can see from FIG. 3 that the behaviors of the big bang
solutions gradually converge to those within the R+R2

gravity (β = 1/4), that is, H2 = ρ/3, for negative κ. On
the other hand, if κ > 0 the loitering behaviors within

-2 2 4 6
ΚΡ

-1

-0.5

0.5

1

1.5

2
ΚH2

FIG. 3. Graphical representation of κH2 as a function of
κρ for a radiation dominated universe (w = 1/3). Different
curves represent different values of β. The solid blue, red,
dashed blue, dotted blue, and dotted red curves show the
representations for β = 1/10, 3/25, 7/50, 1/5, and 21/100,
respectively. The straight line crossing the origin represents
H2 = ρ/3, which is the solution within R + R2 gravity
(β = 1/4) for a radiation dominated universe. Note that
the vertical lines (from left to right) indicate the maximum
values of the energy density for β = 1/5 and 21/100, where
the Hubble rate blows up, respectively. These singular events
correspond to a big freeze singularity in the past.

the EiBI theory can be substituted by other interesting
cosmological solutions. For example, we find that for
β = 1/10 and β = 3/25, the asymptotic behaviors of H2,
when ρ approaches its maximum value ρmax, become

H2 ∝ δρ, (4.1)

where δρ = ρ−ρmax. Combining it with the conservation
equation ρ ∝ a−4, one can see that this event corresponds
to a bounce in the past.
Furthermore, we have also found that the absolute

value of dH2/dρ, which is proportional to Ḣ in this model
as the energy momentum tensor is conserved, is a growing
function of β. As β approaches β ≈ β⋆ = 7/50, |dH2/dρ|
gets very large at a finite past cosmic time. Therefore,
this singular event can be regarded as a quasi-sudden sin-
gularity in the past on the sense that while H is finite,
Ḣ almost blows up in a finite past cosmic time. 4

However, if β > β⋆, i.e. larger than the value cor-
responding to a quasi-sudden singularity, the situation

4 We gave in the introduction the definition of the sudden sin-
gularity and the other cosmological singularities related to dark
energy. In our case this singular event happens in the finite past
of the Universe.



7

changes drastically. For β = 1/5 and 21/100, we find
that the asymptotic behavior of H2 reads

H2 ∝ δρ−2, (4.2)

when ρ approaches ρmax. Therefore, this event takes
place at a finite scale factor and a finite cosmic time,
with both H and its cosmic time derivative blowing up.
These facts highlight the emergence of a finite big freeze
singularity in the past. 5

As a summary, we find that the original loitering ef-
fect for positive κ can be substituted by a point with a
minimum scale factor am, where a bounce (H2 = 0 and
dH2/dρ remains finite), a past quasi-sudden singularity
(H2 = 0 and dH2/dρ nearly diverges) or a past big freeze
singularity (H2 and dH2/dρ diverge) may emerge.

3. β < 0

-1 1 2 3 4
ΚΡ

-0.3

0.3
ΚH2

FIG. 4. Graphical representation of κH2 as a function of
κρ for a radiation dominated universe (w = 1/3). Different
curves represent different β. The solid blue, red, and dashed
blue curves show the representations for β = −10−2, −1/10,
and −3/10, respectively.

In FIG. 4, we show the representations of κH2 as a
function of κρ for β < 0. We find that, unlike what
we concluded previously, the loitering effects (H2 ∝ δρ2)
and the bouncing solutions (H2 ∝ δρ) are robust against
the decrease of β below zero. Furthermore, we also find
that the smaller the value of β, the smaller the value of
|κρ| at the loitering event or the bounce.

4. β > 1/4

On the other hand, in FIG. 5 and FIG. 6 we show the
representations of κH2 as a function of κρ for β > 1/4 (or

5 Please see Section I for the definition of a big freeze singularity
and the classification of the other cosmological singularities re-
lated to dark energy. In our case this singular event happens at
a finite past of the Universe.

α < 0) in a radiation dominated universe. The straight
line H2 = ρ/3, which represents the solution within R+
R2 gravity (β = 1/4), is also exhibited. One can see that
the bouncing solutions for negative κ are robust against a
change of β. However, the loitering solutions for positive
κ in the EiBI theory become big bang solutions where
H2 ∝ ρ for large ρ. These solutions converge toH2 = ρ/3
when the value of β approaches β ≈ 1/4.

-3 -2 -1 1 2 3
ΚΡ

-1

-0.5

0.5

1
ΚH2

FIG. 5. Graphical representation of κH2 as a function of κρ
for a radiation dominated universe (w = 1/3) with β > 1/4.
The solid, dashed, and dotted curves represent the solutions
for β = 3/10, 7/20, and 37/100, respectively. Note that the
solution H2 = ρ/3, which is the solution within R+R2 gravity
(β = 1/4), is also shown in this figure.

0 1 2 3 4 5
ΚΡ

0.3

0.6

0.9

ΚH2

FIG. 6. Graphical representation of κH2 as a function of
κρ for a radiation dominated universe (w = 1/3) with β >
1/4 and κ being positive. The solid blue, red, and green
curves represent the solutions for β = 7/10, 4/5, and 9/10,
respectively. The dashed blue, red and green curves represent
the solutions for β = 19/20, β = 1 and β = 6/5, respectively.

Interestingly, we also find from the dashed blue and
solid green curves in FIG. 6 that for larger values of β,
there could be a plateau in the H2 function for positive
κ, for a radiation dominated universe. This stage may
correspond to a de Sitter inflationary expansion phase
after the big bang singularity. This inflationary phase
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is then followed by a classical expansion described well
in the context of GR. Furthermore, when β ≥ 1, the
solutions with a loitering effect are again recovered (see
the dashed red and dashed green curves in FIG. 6).

Before concluding, we notice that because this theory
reduces to GR at the low energy limit, all the radiation
dominated universe will be asymptotically flat at that
limit.

V. CONCLUSIONS

Since the proposal of the Born-Infeld action for clas-
sical electrodynamics, modified theories of gravity in-
spired on such a proposal and with an elegant determi-
nantal structure in their actions have been widely in-
vestigated (see Refs. [5–10]). Despite the large amount
of works in this subject, the very interesting generaliza-
tion through the addition of a pure trace term into the
gravitational Lagrangian in the Palatini formalism has
not been considered before. This modification gives rise
to the most general action constructed from a rank two
tensor that contains up to first order terms in the cur-
vature. Such a theory is expected to not only preserve
the great achievement of GR at low energies, but also to
generate more drastic deviations from GR than those ac-
complished within the original Born-Infeld-inspired the-
ories at high energies. Modified theories with this term
have only been investigated in the pure metric formal-
ism [5] and in the teleparallel representation [15]. The
former inevitably suffers from troublesome fourth order
field equations for the metric or from ghost instabilities
[4], which suggests the need of some alternative approach
to overcome these problems. The latter, which flees from
the ghosts and results in second order field equations,
leads in most of the cases to the substitution of the big
bang by smoother cosmological singularities [47] or a de
Sitter inflationary stage [15].

Inspired by these motivations, in this paper we gen-
eralize the EiBI theory, which is formulated within the
Palatini formalism, by adding a pure trace term into the
determinantal Lagrangian, and analyze the cosmological
solutions of this theory by assuming a homogeneous and
isotropic universe for its largest scale. As we expect, the
early cosmological expansion to be modified as compared
with GR or EiBI theory, we assume that the Universe

is filled with radiation. Following a similar approach to
that proposed in Ref. [37], the behaviors of the cosmolog-
ical solutions are analyzed using a parametric Friedmann
equation.
As a summary, we find that if κ < 0, the big bang

is substituted by a bounce except for the regions of the
parameter space 0 < β ≤ 1/4 where the big bang sin-
gularity exists. Note that in Refs. [37–39] the authors
showed that the bouncing solutions in the EiBI theory
are robust against the changes of the Lagrangian through
an additional f(R) term or some functional extensions.
On the other hand, if κ > 0, we find that the big bang
singularity can be altered by a loitering effect (β ≤ 0 or
β ≥ 1), a bounce (0 < β < β⋆), what we named a quasi-
sudden singularity (β = β⋆), or a big freeze singularity in
the past (β⋆ < β < 1/4). However, for 1/4 ≤ β < 1, the
big bang singularity remains. Most interestingly, the big
bang singularity may be followed by a de Sitter inflation-
ary stage for β . 1. This can be verified by the plateau
in the H2 function as shown in FIG. 6. The inflationary
phase is superseded by a standard cosmological expan-
sion. We summarizes our results in TABLE I. Moreover,
we should emphasize that the cosmological solutions that
emerge in this theory are all stemmed from pure geomet-
rical effects. Only a radiation dominated universe is as-
sumed and there is no need of any additional fields or
exotic matters to drive these cosmological solutions.
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