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Using an exact numerical solution and semiclassical analysis, we investigate quantum oscillations
(QOs) in a model of a bilayer system with an anisotropic (elliptical) electron pocket in each plane.
Key features of QO experiments in the high temperature superconducting cuprate YBCO can be
reproduced by such a model, in particular the pattern of oscillation frequencies (which reflect “mag-
netic breakdown” between the two pockets) and the polar and azimuthal angular dependence of
the oscillation amplitudes. However, the requisite magnetic breakdown is possible only under the
assumption that the horizontal mirror plane symmetry is spontaneously broken and that the bi-
layer tunneling, t⊥, is substantially renormalized from its ‘bare’ value. Under the assumption that

t⊥ = Z̃t
(0)
⊥ , where Z̃ is a measure of the quasiparticle weight, this suggests that Z̃ . 1/20. Detailed

comparisons with new YBa2Cu3O6.58 QO data, taken over a very broad range of magnetic field,
confirm specific predictions made by the breakdown scenario.

Quantum oscillations (QOs) are a spectacular conse-
quence of the presence of a Fermi surface. Their obser-
vation in the high Tc cuprate superconductors1–15 com-
bined with recent observations of charge density wave
correlations16–31, have led to a compelling view of the
non-superconducting “normal” state of the underdoped
cuprates at high fields, H > Hc, and low temperatures,
T � Tc. In this regime, small electron-like Fermi pockets
arise from reconstruction of a larger hole-like Fermi sur-
face presumably due to translation symmetry breaking in
the form of bidirectional63 charge-density-wave (CDW)
order32–43.

However, to date, no theory of Fermi-surface recon-
struction by a simple CDW can simultaneously account
for the Fermi pockets and the relatively small magnitude
of the measured specific heat,44,45 which presumably re-
flects the persistence a pseudo-gap that removes other
portions of the original (large) Fermi surface.64 Thus,
rather than trying to infer the origin of the Fermi pock-
ets, we explore a generic model of a single bilayer split
pocket to elucidate general features that can most easily
account for the salient features of the QOs.

Specifically, we focus on the bilayer cuprate YBCO, in
which quantum oscillations have been studied in great-
est detail. The frequency of the QOs and the negative
values of various relevant transport coefficients2 establish
the existence of an electron pocket enclosing an area of
order 2% of the Brillouin zone. A typical spectrum of
QOs in underdoped YBCO is shown in Fig. 1. While
there is some suggestive evidence of more than one basic
frequency—which might suggest more than one pocket
per plane38,46,47—we instead adopt and further elucidate
a suggestion of Harrison and Sebastian10,34,36 that the
“three-peak” structure of the spectrum of oscillation fre-
quencies reflects magnetic breakdown orbits associated
with a single, bilayer-split pocket. In refining this sug-
gestion, we show that, although many aspects of the
QO experiments can be successfully accounted for in this
way, the requisite magnetic breakdown is forbidden in the
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FIG. 1: Typical Fourier transform of QOs of the magnetic
torque for underdoped YBa2C3O6.58 (Tc = 60 K, p ≈ 11%)
showing the characteristic symmetrically split “three peak”
structure. Raw torque data is shown in the inset, taken at
T ≈ 1.5K, for a field range of 31 to 62.6 T. Structure above
700 T in the Fourier transform is harmonic content.

presence of a mirror symmetry that exchanges the planes
of the bilayer; thus, a heretofore unnoticed implication is
that the high field phase must spontaneously break this
symmetry. Other striking features of the quantum os-
cillations are the existence of prominent “spin zeros”9

and a strong C4 symmetric dependence of the oscillation
amplitudes on the in-plane component of the magnetic
field with no evidence of the enhancement at the “Ya-
maji angle” expected from the simplest “neck and belly”
structure of a quasi-2D Fermi surface13.65

We show that all these experimental features are con-
sistent with a simple model in which there is an ellipti-
cal Fermi pocket in each of the planes of a bilayer, with
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their principal axes rotated by π/2 relative to each other.
In terms of broken symmetries, this is consistent with a
“criss-crossed-nematic” component of whatever ordered

state exists in this range of T and B. We assume a ~k in-
dependent coupling between the layers within a bilayer,
t⊥, and we neglect all inter-bilayer coupling, t′⊥ ≈ 0. As
we will discuss in Sec. IV, both these assumptions seem
more natural in the context of experiments and band-
structure calculations of YBCO than those made by Se-
bastian et al. in their pioneering treatment of this same
problem. Specifically, Sebastian et al. assumed a strong
~k dependence associated with a presumed vanishing of
t⊥ in certain crystallographic directions, a significant role
from a non-zero t′⊥, and broken translation symmetry in
the c-direction66; these do not feature in our minimal
model.

Finally, we have uncovered a quantitative issue with
potential qualitative implications for magnetic break-
down. The magnitude of t⊥ sets the size of the gap
between bilayer split Fermi surfaces thus controlling the
importance of magnetic breakdown orbits. Because our
numerical approach treats magnetic breakdown exactly
(rather than using a Zenner tunneling approach), we are
uniquely placed to examine this effect. We have found
that in order for magnetic breakdown to play a signif-
icant role in the relevant range of B, it is necessary to
assume that t⊥ is a factor of 20 or more smaller than

its “bare” value t
(0)
⊥ , which can be estimated either from

band-structure calculations48,49 or from angle resolved
photoemission (ARPES) studies of overdoped YBCO.50.
As was emphasized both in ARPES measurements50 and

previous theoretical studies51–53, the ratio, Z̃ ≡ t⊥/t
(0)
⊥ ,

is a measure of the degree of single particle interlayer co-
herence, and so is related67 to the quasiparticle weight.
This implies that the quasiparticles responsible for the
QOs are very strongly renormalized, with Z̃ . 0.05,
which in turn suggests that they are likely to be rather
subtle, emergent features of the high field, low tempera-
ture state. One should be cautious in interpreting higher
energy or temperature phenomena in terms of a Fermi
liquid of these excitations.

Logic and Organization of the Paper

In Sec. I, we define an explicit lattice model of non-
interacting electrons with a band-structure engineered to
produce the desired small elliptical electron-like Fermi
pockets (shown in Fig. 2), and describe the numerical
algorithm we have used to obtain exact results for this
model as a function of an applied magnetic field. To ori-
ent ourselves, in Sec. II we sketch the semiclassical anal-
ysis (including the effects of magnetic breakdown) which
will allow us to associate the oscillation frequencies we
will encounter with the geometry of the Fermi surface.
We then present results of the numerical analysis of the
model in Sec. III: In Fig. 3 we present the ideal QO spec-
trum, while in Fig. 4 we exhibit the way in which higher
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FIG. 2: The Fermi surface of the bilayer system in (a) the
absence (t⊥ = 0) and (b) the presence (t⊥ = 0.005ta) of an
isotropic interlayer tunneling t⊥. The parameters used are
tb = ta/3 and µ = −2.5306ta. Note that we have zoomed in
to an area that is one quarter of the full (unreconstructed)
Brillouin zone.

harmonics are rapidly suppressed by a non-infinite quasi-
particle lifetime. We then present spectra that result
when the range of magnetic fields analyzed is confined to
realistically accessible values, discussing both qualitative
and quantitative trends as parameters are tuned (see Fig.
5). We also study the polar and azimuthal angular de-
pendence of the QOs (see Fig. 6 and 7), and develop ac-
curate semiclassical arguments to interpret our numerical
results (see Figs. 7 and 8). Finally, in Sec. IV we discuss
the implications of our results for the interpretation of
experiments in the cuprates, including comparison with
newly presented QO data taken on YBa2Cu3O6.58, which
is used to test key features of the magnetic breakdown
scenario discussed here. We also discuss the connection
with other related theoretical work.

I. THE MODEL

We study a tight-binding model of electrons hopping
on two coupled layers, each consisting of a square lat-
tice with purely nearest-neighbor hopping elements. In
the presence of an arbitrarily oriented magnetic field the
Hamiltonian of this model has the form

H =
∑

〈~ri,~rj〉;σ

∑

λ

−t~ri−~rj ;λ

(
eiΦijc†~ri,λ,σc~rj ,λ,σ + H.c.

)

+
∑

~ri;σ

∑

λ

4πg̃Bσc†~ri,λ,σc~ri,λ,σ (1)

−
∑

~ri;σ

t⊥
(
eiΦ

z
i c†~ri,1,σc~ri,2,σ + H.c.

)

where c†~ri,λ,σ is an electron creation operator at position

~ri in layer λ = 1, 2 with spin σ = ±1/2, and t~ri−~rj ;λ de-
notes the appropriate hopping matrix element in layer λ,
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while t⊥ is the (isotropic) hopping between each layer in
the bilayer and g̃ controls the strength of Zeeman split-

ting. Here, Φij =
∫ ~ri
~rj

A(r)dr is the phase obtained by

an electron hopping from site ~rj to ~ri in units in which
~c/e = 1, while Φzi is the phase obtained upon tunnel-
ing from one layer to the next at position ~ri. To ob-
tain perpendicularly oriented elliptical pockets we set
tx̂;1 = tŷ;2 = ta, and tŷ;1 = tx̂;2 = tb. In the absence
of a magnetic field this Hamiltonian can be diagonalized
to give the spectrum E±(k) where k = (kx, ky) is a two
dimensional Bloch wavevector, with

E±(k) = ε+(k)±
√
ε2
−(k) + t2⊥ (2)

ε±(k) = −(ta ± tb) cos(kx)− (tb ± ta) cos ky. (3)

The Fermi surface with and without interlayer tunneling,
with the choice of tb = ta/3 and a chemical potential of
µ = −2.5306ta is shown in Fig. 2.

In the absence of t⊥, the addition of a magnetic field
maps Eq.1 to two copies of the Hofstadter problem. Upon
coupling the layers, and for fields at arbitrary polar (θ)
and selected azimuthal angles (φ), we can always pick
a gauge that preserves translation symmetry along the
in-plane direction of the magnetic field, ê. This allows
us to take the Fourier transform along ê, and map Eq. 1
to a modified Harper’s equation. For simplicity, we will
consider the case in which the magnetic field lies in the
y− z plane, with the generalization to arbitrary orienta-
tion deferred to Appendix A. With B = B (0, sin θ, cos θ),
we can choose the gauge

A = (0, 2πΦx,−2πΦx tan θ) , (4)

where Φ = B cos θ is the density of magnetic flux quanta
per x−y lattice plaquette (in units in which the plaquette
area is 1).

Upon Fourier transforming the Hamiltonian in the ŷ
direction we have H =

∑
ky,σ

Ĥky,σ:

Ĥky,σ =
∑

x,λ

{
tx̂,λ

(
c†(x+1,ky);λ;σ + c†(x−1,ky);λ;σ

)

+

[
2tŷ,λ cos (2πΦx− ky) +

4πg̃Φσ

cos θ

]
c†(x,ky);λ;σ

}
c(x,ky);λ;σ

+
∑

x

t⊥
(
e−i2πΦac tan θc†x,ky ;2;σcx,ky ;1;σ + H.c.

)
(5)

where ac is the ratio of inter-bilayer spacing to the in-
plane lattice constant. Eq. 5 has three properties that
make it particularly amenable to numerical analysis: (i)
the two spins σ = ±1/2 are decoupled and can be studied
independently; 2) for arbitrary (irrational) values of Φ,
the spectrum of H are independent of ky in the thermo-
dynamic limit54, allowing us to suppress the ky summa-
tion; 3) the resulting one-dimensional problem concern-

ing Ĥky,σ is a block tri-diagonal matrix, whose inverse
(and by extension, the Green’s function) can be calcu-
lated recursively as described in Appendix C, allowing

efficient evaluations of its physical properties on system
sizes as large as Lx ∼ 107 sites along the x̂ direction. In
the remainder of the paper, we will be presenting calcula-
tions of QOs in the density of states (DOS) ρ at chemical
potential µ, defined as

ρ(µ) = − 1

πLx
Tr
(

Im[Ĝ]
)

= − 1

πLx

∑

x,λ

Im[G(x,λ),(x,λ)(µ)]
(6)

where G(x,λ),(x,λ)(µ) represents the diagonal entry of the
Green’s function

Ĝ(µ) =
[
(µ+ iδ) Î − Ĥky,σ

]−1

, (7)

The small imaginary term iδ gives a finite lifetime to the
electrons and broadens the Landau levels.

Choice of Parameters

For a range of values, the qualitative aspects of our
results do not depend sensitively on the values of most of
the parameters that enter the model (with the exception
of the pattern of magnetic breakdown, which we shall
see is extremely sensitive to the value of t⊥). However,
to facilitate comparison with experiment, we chose pa-
rameters so that the k-space area enclosed by the ellipti-
cal Fermi pockets in the absence of interlayer tunneling
is S0 ≈ 530T = 1.91%BZ, the mean cyclotron effective
mass m∗ ∼ 1.6me, and the electron’s spin g factor is
g = 2. (See Appendix D for further discussion.) In the
absence of any direct experimental information concern-
ing the ellipticity of the Fermi pockets, we have arbitrar-
ily adopted a moderate anisotropy,

√
3 (i.e. the major

axis of the ellipse is
√

3 times larger than its minor axis.)
These considerations lead us to take tb = ta/3, µ =
−2.5306ta, and g̃ = 0.87. Since all our calculations
are carried out at T = 0, the overall scale of energies
is unimportant, but when referring to quantitative fea-
tures of the electronic structure of YBCO, we will take
ta = 400meV, in which case a characteristic inverse
lifetime is δ = 0.005ta ≈ (2 ps)−1. We convert flux
quanta per unit cell, Φ, into units of the actual mag-
netic field B, by using a unit cell area of YBCO to be
νunit cell = 3.82Å× 3.89Å. This means that B is related
to the flux per unit cell (in units of the flux quantum) by
B = (h/e)× (Φ/νunit cell) ≈ Φ×27800. The values of the
interlayer tunneling, t⊥, and the inverse lifetime δ are
treated as unknowns; exploring the changes in the QO
spectrum which occur as they vary is one of the principle
purposes of this study.

II. SEMICLASSICAL CONSIDERATIONS

Before undertaking the numerical solution of this
model, it is useful to outline the results of a semiclassi-
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FIG. 3: QOs of the DOS for very small broadening δ =
0.0001ta (long lifetimes) and t⊥ = 0.005ta, in the absence of a
Zeeman coupling (g̃ = 0). Panels (a) and (b) show the calcu-
lated DOS ρ vs. B and 1/B; panel (c) is the Fourier transform
of panel (b). Each peak indicates a characteristic frequency of
QOs and the corresponding semiclassical orbits are also illus-
trated above. The number of equivalent semiclassical orbits,
n, is indicated below each orbit, and we have explicitly shown
the two distinct classes of γ orbits. A relatively large range
of magnetic field is used 4T < B < 1000T to capture all of
the QO frequencies. The system size is Lx = 223.

cal analysis to anticipate the basic structure of the QOs
in the simplest situation in which B is perpendicular to
the planes. As we are considering weakly coupled bi-
layers, we will always assume that t⊥ � t ≡ √tatb, so
the bilayer split Fermi surfaces have narrowly avoided
crossings at four symmetry related points, as shown in
Fig. 2b. Electrons adhere strictly to semiclassical orbits
only so long as ~ωc � t2⊥/t since magnetic breakdown
at these four points becomes significant otherwise. (Here
ωc ∼ φt is the cyclotron frequency.) Taking this magnetic
breakdown into account, there are five distinct classes
of semiclassical orbits, as shown in the middle panel of
Fig. 3, each enclosing a k-space area which, when con-
verted into an oscillation frequency, correspond to five
oscillation frequencies separated by ∆f ≈ 90T for the
model parameters we have defined. (These correspond
to the frequencies labeled α, β,γ, δ, and ε in the spec-
trum in the lower panel of the figure, whose calculation
is discussed in the next section).
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tunneling t⊥ = 0.005ta and the rest of the parameters are
detailed at the end of Sec. I.

The largest and smallest orbits represent the true
structure of the Fermi surface, so these two frequen-
cies (α and ε) must dominate the QO spectrum when
~ωc � t2⊥/t. Conversely, in the limit ~ωc � t2⊥/t,
where to good approximation we can set t⊥ = 0, the
spectrum is dominated by the central frequency (γ1), in
which the electron orbits are confined to a single plane
of the bilayer, and hence correspond to the ellipses in
Fig. 2a.68 More complex spectra, including those with
the three peak structure seen in experiment, occur only
when ~ω ∼ t2⊥/t. This, we shall see, allows us to estimate
the magnitude of t⊥ directly from experiment.

We will return again to a semiclassical analysis, below,
in order to understand still more subtle features of the
QO spectrum which appear when the magnetic field is
tilted relative to the Cu-O plane.

III. NUMERICAL RESULTS

In presenting our results, we will adopt two comple-
mentary approaches. We first study an idealized theo-
retical limit of infinitesimally small broadening (δ → 0,
i.e. infinite quasiparticle lifetime) and without Zeeman
splitting, where a sharp Landau level structure of the
density of states is present and easy to interpret. These
numerical ‘experiments’ are done for a very large range of
field strengths. We subsequently study the model over an
experimentally realistic range of magnetic fields with the
inclusion of Zeeman splitting, while tuning the broaden-
ing and interlayer tunneling t⊥, and subsequently exam-
ining the angular dependences. While we predominantly
highlight the robust qualitative features of this model, we
also focus on the quantitative aspects of magnetic break-
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FIG. 5: The raw Fourier transform the density of states oscillations as the interlayer tunneling t⊥ is increased (left to right),
and the inverse lifetime δ is increased (top to bottom). Larger values of t⊥ suppress the central frequencies and enhance the
satellite frequencies which correspond to orbits of the true bilayer split Fermi surface. Shorter quasiparticle lifetimes (larger δ)
lead to decreased harmonic content. The field range used here is 20T < B < 100T , with 210 data points.

down, which are treated exactly in our numerical studies.
In Fig. 3 we show the density of states as a function

of magnetic field strengths for a c-directed field. The top
panels show data where the broadening is infinitesimal at
δ = 0.0001ta and there is no Zeeman splitting. Each Lan-
dau level is split due to the presence of two coupled layers,
while the peaks in the density of states rise linearly with
B as expected for free fermions. The lower panel of Fig. 3
shows the Fourier transform of this data over a large
range of magnetic fields (4T < B < 1000T ). Here the
high harmonic content of the oscillations is clearly seen,
with comparable-in-magnitude first and second harmon-
ics. For the first harmonics, there are five peaks clustered
around a central frequency of f = 530T , as expected from
semiclassical considerations, while at higher frequencies
there are all the expected harmonic combinations giving
rise to a complicated spectrum.

A. Dependence on interlayer tunneling and lifetime

We now study the model over an experimentally realis-
tic range of magnetic fields with a finite Zeeman coupling,
g̃ = 0.87. Fig. 4 and 5 show the evolution of the QOs as
the interlayer tunneling t⊥ and Landau level broadening
δ are varied, where we have reduced the range of mag-
netic field to 20T < B < 100T to conform roughly with
the range explored by current experiments in YBCO. The
figures are constructed from 210 data points. As is clear
from Fig. 4 the form of the oscillations is radically al-
tered as the lifetime is decreased (δ in Eq. 7 is increased),
with the sharp Landau level structure of the spectrum be-
coming broadened. This leads to oscillations with little
harmonic content, while the amplitude of the oscillatory
signal is also sharply suppressed.

Fig. 5 shows the Fourier transform69 of ρ as both the
interlayer tunneling t⊥ is increased (from left to right)
and the inverse lifetime δ is increased (from top to bot-
tom). Several qualitative features of the results are im-

mediately apparent. (1) As the inverse lifetime δ is in-
creased (and the oscillations of ρ become less singular),
the peaks in the Fourier transform are also broadened
while the higher frequency peaks are preferentially sup-
pressed in amplitude, leading to oscillations with little
harmonic content. This has a simple semiclassical inter-
pretation: higher frequency peaks correspond to longer
semiclassical orbits and so are suppressed in amplitude
by the decreasing quasiparticle lifetime.55 (2) The com-
petition between different semiclassical orbits is sensi-
tively controlled by the interlayer tunneling t⊥: as t⊥ is
increased, the gaps between bonding and anti-bonding
Fermi surfaces increase, and the weight of QOs rapidly
shifts from the central frequency at 530T (corresponding
to the 3rd orbit in Fig. 3 which involves two magnetic
breakdowns across the true Fermi surface of the bilayer)
to the side frequencies at (530± 90)T (corresponding to
the second and fourth semiclassical orbits in Fig. 3),
and is eventually dominated by the outermost frequen-
cies at (530 ± 180)T (reflecting the ‘true’ bonding and
anti-bonding Fermi surfaces of the bilayer).

Indeed, a particularly appealing feature of our ap-
proach is its exact treatment of magnetic breakdown.
The immediate quantitative observation from Fig. 5 is
that maintaining the large (experimentally observed) ra-
tio of the amplitude of the central 530T frequency to
that of the satellite frequencies at 530±90T requires very
small values of the interlayer tunneling t⊥ < 0.01ta. This
is at least an order of magnitude below the typical values
of t⊥ ∼ 0.1ta assigned by band structure studies48,49 and
ARPES studies50 on overdoped YBCO, but agrees re-
markably with ARPES measurements of the underdoped
regime. We discuss the consequences of this observation
in Sec. IV.
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been arbitrarily offset). (b)-(d) Extracted peak heights in the
Fourier transform (we have used both amplitude and phase
information) versus the polar angle θ. The parameters are δ =
0.005ta, t⊥ = 0.005ta. The dashed lines are the theoretical
fits of the angular dependence due to spin splitting (Eq. 8)
which is caused by Zeeman effect.

B. Polar angle (θ) dependence of the QOs

We now move on to cases where the magnetic field is
tilted away from the principal c-axis of this model and
study the dependence of the QOs on the polar and az-
imuthal angles, θ and φ; we also comment briefly on the
corresponding dependence seen in YBCO. Key experi-
mental features include the presence of spin zeroes near
θ ≈ 51.5◦ and θ ≈ 63.5◦, with the notable absence of a
Yamaji angle that is typical of simple s-wave warping of
a three dimensional Fermi surface. Spin zeros (as well
as the general θ dependence) arise due to Zeeman split-
ting of spinful electrons. This coupling effectively shifts
the chemical potential (and hence the area of each or-
bit) oppositely for each species σ, by an amount that is
proportional to the applied field δf = σγB. Such a B
dependent shift of the Fermi surface area for each spin
species becomes a shift of the bare (spinless) frequency
f0 of oscillations, so that the amplitude of oscillations
for the p’th harmonic acquires a field independent (but

θ dependent) amplitude:

ρ

(
1

B
, θ

)
∝

∑

σ=±1/2

cos

(
2πp

(f0 + σγB)

B cos θ

)

= 2 cos
( πpγ

cos θ

)
cos

(
2πp

f0

B

)
.

(8)

A more careful analysis shows that this field indepen-

dent amplitude takes the form A(θ) = cos
(
πpg m∗

2me cos θ

)

where in practice the factor πpgm∗/2me is related to our
definition of g̃ as discussed in Appendix D.

Fig. 6(a) shows the polar angle θ dependence of the
Fourier transform of QOs for the model system in Eq.
1. The azimuthal angle is fixed at φ = 45◦ throughout
the calculation. As expected, no Yamaji-like resonance is
seen because of the absence of a truly three-dimensional
dispersion. Fig. 6(b)-(d) shows the θ dependence of the
QO amplitude A(θ) at the three main frequencies. We
see characteristic spin-zeroes in the primary frequency
f = 530T near θ0 = 51.5◦ and θ1 = 63.5◦. The dashed
lines show fits of the amplitude to the form given in Eq.
8 - remarkable agreement is found. We note that the
positions of the spin zeroes are different for the QOs
at frequencies 440T , 530T and 620T , despite the fact
that the g-factor (our parameter g̃) has been defined
to be the same for all orbits. This robust feature of
our model can be attributed to the different effective
mass of the these three orbits which enters the form
cos (πpgm∗/2me cos θ), and is explored further in Ap-
pendix D.

C. Azimuthal angle (φ) dependence of the QOs

Another notable feature of QO experiments in YBCO
is the dependence of the amplitude of the oscillations on
the azimuthal angle φ. The oscillation amplitudes exhibit
a four-fold anisotropy, which increases with increasing
polar angle θ. Here, we show that these features can
be reproduced in our model of a single bilayer, with the
caveat that strong anisotropy is only natural for selected
orbits that involve both layers of the bilayer (β orbit at
440T , δ orbit at 620T and γ2 orbit at 530T ).

In analyzing the behavior of QOs for different az-
imuthal angles, much information can be gleaned from
semiclassical intuitions. First, note that the semiclassi-
cal orbits γ1 at the central 530T frequency in Fig. 3 are
predominantly confined to a single layer of the bilayer.
Such 2d orbits are only affected by the field perpendic-
ular to the layer, therefore no observable azimuthal de-
pendence is expected. On the other hand, all other semi-
classical orbits shown in Fig. 3 involve tunneling events
from one layer to the next, upon which electrons may ob-
tain a phase proportional to the horizontal magnetic field
B sin θ. This means that there is weak four-fold depen-
dence arising from γ2 orbits, wherever the signal is domi-
nated by the 530T frequency; conversely, a large four-fold
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B sin ✓ sin�

z

kx

ky

�k

c

Trajectory in Layer 1

Trajectory in Layer 2

(a)3D Cartoon plot of semiclassical orbit in the bilayer

(b)Corresponding φ dependence of the QOs at 620T
and 440T given in Eq. 9

FIG. 7: (a) A schematic diagram showing how the in-plane
component of the flux enclosed by a given semiclassical or-
bit (δ orbit in Fig. 3) is determined. The red curve is the
semiclassical orbit, while grey ellipses are the Fermi surfaces.
Note that the in-plane directions are in momentum space,
while the vertical separation is in real space. The vertical re-
gion enclosed (shaded gray) has a (real space) area of δk`2Bc.
(b) The φ dependence of QO amplitude A1(φ) as in Eq. 9 for
various values of the polar angle θ for δk = 0.6417 defined in
our model as well as the case of a larger δk = 0.8417. The
anisotropy is clearly more apparent for larger θ and/or δk.

modulation arises from the 530±90T frequencies, and so
is pronounced near to spin zero angles {θ0, θ1} of the
main 530T frequency.

Within the semiclassical framework, we can obtain an
analytic expression for the amplitude as a function of az-
imuthal angle φ by determining the amount of in-plane
directed magnetic flux enclosed by a given breakdown
orbit. Fig 7(a) shows the geometry of a particular break-
down orbit for QOs at 620T , where the total horizontal
flux is the real space area corresponding to the shaded
region, multiplied by the field component B sin θ sinφ.
Semiclassically, we find the real space area enclosed by
the orbit to be δk`2B × c, where `2B = h/eB cos θ is the
square of the magnetic length, and δk is the distance be-
tween the (avoided) crossings of the Fermi surfaces (see
Fig. 7(a)). Thus, the in-plane flux enclosed by this orbit
is Φyz = δk ~

eB c×B tan θ cosφ = cδk tan θ sinφ with our

FIG. 8: The relative amplitude of the QOs at frequency 620T
for polar angles θ = 63.5◦ and θ = 51.5◦, respectively. The
QO amplitude at φ = 0 is maximal and set as the unit 1
for each of the data sets. The solid curve is the theoretical
expectation value according to Eq. 9 and the expected C4

rotation symmetry is clearly present. The parameters used in
our numerical calculations of the DOS QOs are t⊥ = 0.005,
δ = 0.001 and 11T < B < 100T .

FIG. 9: The relative amplitude of the QOs at frequency 530T
for polar angles θ = 60◦. The solid curve is the fit to theo-
retical form given by Eq. 10 with M = −13.5. The parame-
ters used in our numerical calculations of the DOS QOs are
t⊥ = 0.005, δ = 0.001 and 11T < B < 100T .

choices of units. Similarly, there are three other possi-
ble enclosed fluxes related by C4 rotations, and given by
Φ−yz = −Φyz, and Φ±xz = ±cδk tan θ cosφ. The result-
ing Φj , j = ±xz,±yz each give an additional constant
initial phase to the in-plane fluxes that determine the
QOs of the corresponding reconstruction, which add up
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to give the overall amplitude:

A1(φ) ∝
∑

j

exp (iΦj) ∝ 2 cos Φxz + 2 cos Φyz (9)

∝ 2 cos (cδk tan θ cosφ) + 2 cos (cδk tan θ sinφ)

Examples of the azimuthal angular dependence given
by Eq. 9 are shown in Fig. 7(b), whose form guarantees
C4 rotation symmetry. For smaller values of the polar
angle θ (and thus a smaller overall factor cδk tan θ), the
φ angular dependence is suppressed. We note that the
magnitude of the anisotropy depends sensitively on δk.
An example of the QO amplitude variation for a larger
δk = 0.8417 as compared to the original δk = 0.6417 is
also included in Fig. 7(b).

It is straightforward to verify that the angular depen-
dence of the QOs at 440T has the same result as Eq. 9,
while at 530T we need to consider both the γ1 and γ2

orbits:

A′1(φ) ∝M + 2 cos (cδk tan θ(cosφ+ sinφ))

+ 2 cos (cδk tan θ(cosφ− sinφ)) (10)

where M is a complex constant for the contribution from
γ1 orbits and sensitively depends on the parameters in-
cluding t⊥ and B.

Another immediate consequence of this expression is
that the maximum in QO amplitudes at the side fre-
quencies at (530± 90)T occurs when the field is aligned
with the principal axes of the ellipses. Given that exper-
imentally, the maximum of the oscillation amplitudes is
seen to occur for fields along the a and b crystallographic
directions, it is natural that the principal axes of such
elliptical pockets must lie along the a and b directions,
i.e. such azimuthal dependence seemingly rules out pro-
posals where the principal axes of the Fermi pockets are
oriented at 45◦ to the a and b crystallographic directions.

Returning to the model at hand, we calculated numeri-
cally the density of states QOs with selected values of the
azimuthal angle tanφ = 0, 1, 2, 3, 4 (plus symmetry re-
lated values) and various polar angles. The resulting QO
amplitudes at frequency 620T and polar angles θ = 63.5◦

and θ = 51.5◦ are shown in Fig. 8 and is fully consistent
with the semiclassical expression derived in Eq. 9. In
particular, the selected θ values are the spin zeros of the
central frequency at f = 530T of the QOs, where the ef-
fect of the side frequencies at (530± 90)T are enhanced.
In addition, four-fold anisotropy is also seen for the QO
amplitudes at frequency 530T and polar angle θ = 60◦ as
shown in Fig. 9, and fits well to Eq. 10 with parameter
M = −13.5.

IV. IMPLICATIONS FOR THE CUPRATES

We have shown that a simple model of criss-crossed
elliptical electron pockets can reasonably account for the
most striking experimental observations of QOs in the

bilayer cuprate YBCO. In particular, we have shown
that a three peak structure in the Fourier transform
of QOs follows naturally from the ansatz of broken
mirror symmetry70 and weak bilayer splitting. The
choices of tight-binding and Zeeman-splitting parameters
that best capture this physics have been analyzed semi-
quantitatively. We have also demonstrated that major
features of both the azimuthal and polar angular depen-
dence of the QOs can be qualitatively reproduced by this
simplified model of a single bilayer.

A central feature of our analysis involves the small ef-
fective interlayer tunneling t⊥ required to account for
the prominence of the central 530T frequency relative
to those at 530 ± 90T . In certain situations, a singu-
lar k dependence48,49,56 of the bare interlayer tunnel-

ing, t
(0)
⊥ (k) ≈ t

(0)
⊥ (cos kx − cos ky)2, arises due to the lo-

cal quantum chemistry. In this case the small value of
the effective t⊥ could reflect the location of the electron
pockets along the “nodal” direction in the Brillouin zone
where |kx| = |ky|, rather than any non-trivial many-body
effect. However, there are strong reasons to doubt that
the bilayer tunneling in YBCO has such strong k depen-
dence. On theoretical grounds, LDA studies48,49 have
found that the tunneling between the ‘dimpled’ planes
of a YBCO bilayer remains substantial even along the

nodal direction with t
(0)
⊥ (kn) ≈ 120meV, compared to an

antinodal value of t
(0)
⊥ (kan) ≈ 150meV.

This LDA prediction is supported by ARPES measure-
ments on YBCO in the overdoped regime50 where an
almost isotropic bilayer splitting of ∆εkn

= 2t⊥(kn) =

2Zt
(0)
⊥ (kn) ≈ 130meV in the nodal direction, compared

to an antinodal splitting ∆εkan ≈ 150meV leads to a
near isotropic quasiparticle weight of Z ≈ 0.5. This is
in sharp contrast to underdoped samples, where despite
the theoretical (LDA) prediction of a doping indepen-

dent t
(0)
⊥ , the nodal bilayer splitting is difficult to re-

solve. These experiments give an upper bound of the
nodal quasiparticle weight in the underdoped regime of
Zn < 0.065, while an estimate based on the rescaled val-
ues of the spectral weight yields Zn ≈ 0.03. Such es-
timates agree remarkably well with our estimate of the
effective value of t⊥ necessary to account for the QO’s
in underdoped YBCO. The constraint of the quasiparti-
cle weight Z̃ . 0.05, strongly suggests that the effective

Fermi liquid parameter t⊥ = Z̃t
(0)
⊥ is renormalized signif-

icantly downwards.

A. Comparison with previous proposals

There have been many proposals32–43 for the origin of
the Fermi surface reconstruction in the cuprates. Given
recent observations of (seemingly ubiquitous16–31) incom-
mensurate CDW order, a prime candidate for the Fermi
surface is one where nodally located electrons pockets
are produced by incommensurate CDWs which are at

least bi-axial, involving ordering at ~Qx = (Q, 0, 1/2)
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and ~Qy = (0, Q, 1/2). This idea, along with the invo-
cation of breakdown orbits due to bilayer splitting to ac-
count for the three peak structure of the Fourier trans-
form, was first advanced by Harrison, Sebastian and co-
workers10,34. In this scenario, a diamond shaped, nodally
located electron pocket is split by bilayer tunneling (with
the above mentioned (cos kx−cos ky)2 form factor), with
all three observed frequencies involving orbits where the
electron tunnels from one layer to the next. The nodal
location also serves to suppress simple isotropic (s-wave)
hoping in the c axis direction, leading to an absence of a
Yamaji resonance.

The model discussed in the present paper, while simi-
lar in spirit to that of Harrison and Sebastian, possesses
crucial differences of symmetry and effective dimension-
ality. Under the assumption that QO experiments probe
the physics of a single bilayer, mirror symmetry between
the two layers of this bilayer must be broken in order for
breakdown orbits to be present in a purely c-axis directed
magnetic field – otherwise a conserved bilayer parity as-
sociated with the split Fermi surfaces would prevent all
magnetic breakdown (see Appendix B). Indeed, there is
evidence for such broken symmetry in the low field charge
order.31,42 Once mirror symmetry is broken, a natural
consequence is that the central 532T frequency reflects a
semiclassical orbit where electrons are confined to a sin-
gle layer of the bilayer, and if so, is naturally the most
prominent in the regime of small interlayer tunneling.71

We have demonstrated that the experimental observa-
tions can be generally accounted for in the context of a
minimal model of a single bilayer. In contrast to previous
proposals, this model requires no specific 3d-structure
of the Fermi surface, and makes no specific assump-
tions about the nature of the order that reconstructs the
Fermi surface; given that recent high field X-ray scatter-
ing experiments57 have given evidence of an unexpected,
distinct high-field character of the CDW order, we view
this lack of specificity as a virtue.

B. Further tests from experiments in YBa2Cu3O6.58

The magnetic breakdown scenario makes two specific
predictions for QO experiments in bilayer cuprates:

1. Oscillations taken over a sufficiently large field
range should show five spectral features distributed
symmetrically about the main frequency, plus mul-
tiple higher harmonics from combination orbits.

2. The weight of the various frequency components of
the quantum oscillations should be field-dependent,
with orbits that require fewer breakdown events
dominating at low fields.

Fig. 10 shows torque magnetometry data taken on
YBa2Cu3O6.58 at 1.5 kelvin. Multiple spectral compo-
nents, beyond the three main peaks identified in previous
studies but consistent with those presented in section III,

18.5 → 62.6 Tesla

18.5 → 26.0 Tesla
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FIG. 10: Fourier transform of torque quantum oscillation in
YBa2Cu3O6.58. Analysis of the full field range, from 18.5 to
62.6 Tesla (red curve), reveals spectral features not present in
Fig. 1, but that correspond well with the frequencies shown
in Fig. 3. Analysis of the oscillations between 18.5 and 26
Tesla only (blue curve) show that spectral weight is shifted
away from the main γ peak, and toward the sidelobes. The
blue curve has been multiplied by a factor of 10 and trun-
cated at 700 T for clarity. Note that spectral features below
≈ 150 T are removed as part of the background-subtraction
procedure, and thus this data does not address the possibil-
ity of a 90 T frequency that has been reported in transport
measurements46.

are clearly visible with this extended field range (18.5 to
62.6 Tesla). Appendix E demonstrates that these peaks
(particularly α and ε) are not artifacts of the Fourier
transform, but are instead physical components of the
oscillatory signal.

Transforming the data over a limited low-field range,
from 18.5 to 26 T (blue curve in Fig. 10), shows that
the main 530 T peak is indeed no longer dominant.
Semiclassically58, the probability of tunneling through
any one of the four junctions between the bilayer split
Fermi surfaces (Fig. 2) is P = e−B0/B , where B0 is the
characteristic breakdown field. The probability of avoid-
ing breakdown (Bragg reflection) at a junction is (1−P ).
While this expression is not exact (unlike the breakdown
treatment in section III), particularly at fields large com-
pared to B0, it gives intuition as to why the spectral
weight shifts at lower fields: the γ orbit shown in Fig.
3 requires four breakdown events, while the α (ε) orbit
requires none and the β (δ) orbit requires two. Note that
the field range used to obtain the blue curve in Fig. 10
is insufficient to resolve the splitting of these peaks. Fi-
nally, the dominance in amplitude of lower frequencies
over higher frequencies originates55 in the suppression of
larger orbits due to quasiparticle scattering72.
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Appendix A: Form of the Hamiltonian for general angles φ

For additional azimuthal angles as tanφ = 1/M where M ∈ Z (or equivalently tanφ = M by symmetry):

~B = B
(
ẑ cos θ + x̂ sin θM/

√
M2 + 1 + ŷ sin θ/

√
M2 + 1

)
(A1)

we can no longer keep the translation symmetry along the ŷ direction for arbitrary B with the chosen Landau gauge,

however, we can define the new magnetic unit cell with the new lattice vectors x̂′ = x̂, and ŷ′ = Mx̂ + ŷ along ~B in
plane or equivalently x′ = x−My, y′ = y. Once again we can choose a proper gauge so that the translation symmetry
along the ŷ′ direction is preserved:

A =
(

0, 2πΦ(x−My),−2πΦac tan θ(x−My)/
√
M2 + 1 tan θ

)

=
(

0, 2πΦx′,−2πΦx′ac tan θ/
√
M2 + 1

)
(A2)

where Φ = B cos θ is the magnetic flux through the plaquette in the x − y plaquette, and Φac tan θ/
√
M2 + 1 is the

flux through the x − z plaquette. The hopping matrix elements no longer depend on y′, therefore we can Fourier
transform into the corresponding k′y momentum basis. The resulting Hamiltonian (for each k′y and spin σ) becomes:

Ĥk′y,σ
=
∑

x,λ

tx,λ

[
c†x+1,λcx,λ + H.c.

]
+

4πg̃Φσ

cos θ
c†x,λcx,λ (A3)

+
∑

x,λ

ty,λ

[
c†x−M,λcx,λ exp

(
i2πΦx− k′y

)
+ H.c.

]

+
∑

x

t⊥
[
c†x,2cx,1 exp

(
i2πΦxac tan θ/

√
M2 + 1

)
+ H.c.

]

where we have suppressed the k′y and σ labels in the fermion operators. The Hamiltonian is still block tri-diagonal
and its physical properties including DOS can be efficiently calculated using recursive Green’s function method.

Appendix B: Mirror symmetry and the absence of breakdown frequencies

Here we discuss in further detail the absence of magnetic breakdown when a mirror symmetry relating the two
planes of the bilayer is present. The essence of this symmetry argument is the following: in the presence of a
magnetic field semiclassical dynamics correctly captures the motion of electrons, while magnetic breakdown is allowed
as long as there exist matrix elements that take electrons from one orbit to the next. However, if there is a mirror
plane perpendicular to the magnetic field, the mirror parity of the states remains a good quantum number even in
the presence of a magnetic field. There are necessarily no matrix elements between states with different quantum
numbers, and so breakdown processes are forbidden by this symmetry. We emphasize that this argument is also
applicable in the limit of a single bilayer, i.e. when kz is not a good quantum number.

This symmetry may be viewed at a more operational level by considering the Hamiltonian of a bilayer with identical
dispersions ε(k) in each layer. In the absence of a field, this takes the form

H =
∑

k

ΨkĤkΨk =
∑

k=kx,ky

(c†k,1 c†k,2)
(
ε(k) t⊥(k)
t⊥(k) ε(k)

)(
ck,1
ck,2

)
(B1)

where t⊥(k) is the (in general) momentum dependent tunneling between layers.
Mirror symmetry relating the two layers of the bilayer is akin to the statement that the Hamiltonian commutes

with the x-Pauli matrix, τ̂x:

[
Ĥk, τ̂x

]
= 0, where τ̂x =

(
0 1
1 0

)
(B2)

It should be clear that this operation swaps the two planes of the bilayer, and so implements that mirror operation
that we are referring to. The addition of a magnetic field B is typically implemented via a Peierls substitution,
resulting in a dramatic change to the structure of the Hamiltonian and eigenstates. In particular, working in Landau
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FIG. 11: Fourier transforms of QOs in the density of states for two models (a) with mirror symmetry and (b) without mirror
symmetry. In (a) we consider identical Fermi surfaces with an interlayer tunneling of the form t⊥(k) = t⊥ cos2(2ky), while in
(b) the mirror symmetry is weakly broken by considering orthogonal Fermi surfaces with a weak mass anisotropy (tb = 0.95ta)
and the interlayer tunneling is once more t⊥(k) = t⊥ cos2(2ky). The bilayer bonding and anti bonding Fermi surfaces are
almost identical in both cases, yet the QO frequencies are dramatically different: mirror symmetry forbids breakdown orbits
in (a).

gauge we only preserve translation invariance in a single direction, so in general the eigenstates will be labeled by a
generalized Landau level index, n, and transverse momentum, ky. However, as long as the magnetic field does not

break this mirror symmetry, i.e. B = Bz ẑ, it remains the case that eigenstates of Ĥ are also eigenstates of τ̂x, i.e.

[Ĥ, τ̂x] = 0 (B3)

Ĥ|n, ky,±〉 = E(n,ky,±)|n, ky,±〉 (B4)

τ̂x|n, ky,±〉 = ±|n, ky,±〉 (B5)

Note that these are the exact eigenstates of the system, and they are necessarily orthogonal. Also notice that none of
these statements depend on the form of the interlayer tunneling t⊥(k).

The absence of magnetic breakdown is then most easily understood by considering the structure of the energy
spectrum. Oscillations in any physical quantity arise because of periodicity in the structure of the energy spectrum as
a function of 1/B. The discrete two-fold mirror symmetry means that the Hamiltonian separates into two independent
blocks, so that the energy spectrum for these + and − sectors can be solved independently. Because these sectors
can be treated as independent systems, as the magnetic field is varied, each sector produces a single fundamental
frequency in quantum oscillations. This results in two (possibly degenerate) quantum oscillation frequencies, with
neither magnetic breakdowns nor beat (sum or difference) frequencies.

Fig. 11(a) and 11(b) provide confirmation of these symmetry arguments. In Fig. 11(a) we have considered identical
dispersions ε(k) = −2t(cos kx + cos ky)− µ with t = 1 and µ = −2.8t, and t⊥(k) = −0.1t cos2 (2ky). This form of the
interlayer tunneling is both technically simple to implement, and produces nodes in the bilayer splitting. As is clear
from the Fourier transform, no magnetic breakdown is present, and only two fundamental frequencies are seen when
the interlayer tunneling is present. In Fig. 11(b) we weakly break the symmetry by considering dispersions of the
form ε(k) = −2(ta cos kx + tb cos ky)− µ in one layer, and ε(k) = −2(tb cos kx + ta cos ky)− µ in the next layer, with
tb = 0.95ta. In the absence of interlayer tunneling, only one frequency is seen in QOs (these pockets have identical
areas), but a finite interlayer tunneling leads to multiple breakdown orbits.
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Appendix C: Recursive Green’s function method for the DOS of a tri-diagonal block Hamiltonian

As is shown in the main text, the Hamiltonian in ky and σ basis only involves finite-range coupling and is block
tri-diagonal

Ĥky,σ =




. . .
...

. . . ĥx−1,σ t̂

t̂ ĥx,σ t̂

t̂ ĥx+1,σ . . .
...

. . .



, (C1)

ĥx,σ =

(
2ty,1 cos(2πΦx− ky) + 4πg̃Bσ

cos θ t⊥ exp(i2πΦacx tan θ)

t⊥ exp(−i2πΦacx tan θ) 2ty,2 cos(2πΦx− ky) + 4πg̃Bσ
cos θ

)
, (C2)

t̂ =

(
tx,1 0
0 tx,2

)
(C3)

We are interested in the DOS ρσ(µ) of spin σ electrons at chemical potential µ defined as

ρσ(µ) = − 1

πLx
Tr
(

Im[Ĝσ(µ)]
)

(C4)

Ĝσ(µ) =
[
(µ+ iδ)I− Ĥky,σ

]−1

(C5)

where we have used the fact that the physical quantities are independent of ky in the thermodynamic limit to suppress
the summation over the ky index.

To obtain the diagonal elements of the Green’s function Ĝσ(µ), we note the inverse of the following block tri-diagonal
matrix may be calculated recursively

Ĝ−1
σ (µ) = (µ+ iδ)I− Ĥky,σ =




a1,1 a1,2

a2,1 a2,2 a2,3

a3,2 a3,3 a3,4

. . .
. . .

. . .


 (C6)

where ai,i = (µ+ iδ)I− ĥx,σ and ai,i+1 = ai,i+1 = t̂. This is accomplished by the following recursive algorithm, which
consists of two independent sweeps (and hence the computation is linear in the size Lx):

For increasing i = 1, 2, . . . , N − 1 we define

cLi = −ai+1,i(d
L
i )−1, (C7)

with dL1 = a1,1 and dLi = ai,i + cLi−1ai−1,i; for decreasing i = N,N − 1, . . . , 2 we define

cRi = −ai−1,i(d
R
i )−1, (C8)

where dRN = aN,N and dRi = ai,i + cRi+1ai+1,i, then the diagonal blocks of Ĝσ(µ) =
[
(µ+ iδ)I− Ĥky,σ

]−1

are given

by

Ĝi,i = (−ai,i + dLi + dRi )−1, i = 1, 2, 3, . . . , N (C9)

Appendix D: Effective masses of electron pockets and Zeeman splitting coefficient g̃

1. Value of g̃ coefficient for Zeeman splitting in our tight-binding model

The effective mass of a band structure is defined as

m∗ =
~2

2π

∂Sk
∂µ

(D1)
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FIG. 12: Different slopes of Sk versus µ suggest the effective masses are different for the different orbits. The areas of α, γ and
ε orbits are obtained from exact calculations of the Fermi surface, while for β and δ orbits the areas are based on interpolation
between the α, γ and ε orbits (shown as the thinner lines). The vertical line is the value of µ = −2.5306ta chosen throughout
our calculations.

where Sk is the k-space area enclosed by the Fermi surface at chemical potential µ.
The dispersion relation in our tight-binding model in one of the single layers is (equivalent to the 3rd orbit in Fig.

3)

εk = −2ta cos kxa− 2tb cos kyb h −2ta − 2tb + tak
2
xa

2 + tbk
2
yb

2 (D2)

near the bottom of the band, where a and b are the sizes of the unit cell. At chemical potential µ the Fermi surface

is close to an ellipsis with k0
x =

√
µ

taa2
and k0

y =
√

µ
tbb2

, thus the area enclosed by the Fermi surface

Sk = πk0
xk

0
y =

πµ

ab
√
tatb

(D3)

The effective mass of the model near the band bottom is

m∗ =
~2

2ab
√
tatb

(D4)

By definition, the Zeeman splitting is

EZeeman = ±g
2
µBB = ± gπ~2

2abme

Φ

cos θ
= ±π

√
tatb

gm∗

me

Φ

cos θ
(D5)

where µB = e~/2me is the Bohr magneton and Φ is the dimensionless quantity of the number of magnetic flux
quantum Φ0 = h/e per x− y plaquette.

Note that g = 2 for electron spin and m∗/me h 1.6 in YBCO, ta = 1 and tb = 1/3,

EZeeman h ±0.92× 2πΦ/ cos θ (D6)

In fact, the quadratic approximation in εk in Eq. D2 underestimates the effective mass m∗ due to the higher
order terms we have neglected. A more careful treatment and comparison between the numerical and theoretical θ
dependence suggests the best choice is

EZeeman h ±0.87× 2πΦ/ cos θ (D7)

suggesting g̃ = 0.87 in connection with Eq. 5.

2. Effective mass for different semiclassical orbits

While g̃ = 0.87 determines the effective mass of the electron pocket in a single layer and the central peak in the QO
power spectrum, it is conceivable that the effective mass of the other viable semiclassical cyclotron orbits associated
with the side peaks be different, as their enclosed areas are necessarily modified - Fig. 12 shows the enclosed areas of
these orbits as the chemical potential is varied, and the effective mass extracted from the corresponding slope according

to Eq. D1 is fully consistent with that obtained from the fit to QO amplitude versus θ angle of the magnetic field ~B
in Fig. 6.
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FIG. 13: The inset shows two simulated data sets: one is apodized with a boxcar function (black), and the other uses equation
E1 with α = 1.7 (red). The Fourier transform of the boxcar-apodized data shows multiple side-lobes introduced from the sharp
cut-off. The data apodized with the Kaiser window has a main peak suppressed by about a factor of two, but with the first
side-lobe suppressed 20 times more than that in the box-car data.

Appendix E: Fourier Transform Analysis

Fast-Fourier transforms of finite data sets are known to introduce frequency ‘artifacts’ into power-spectrum plots.
These artifacts originate in the choice of how the data is truncated. For example, a ‘boxcar’ function—whereby the
signal is simply truncated at the start and end—introduces high-frequency components due to the sharp cutoffs at
the data boundaries. Modern signal processing solves this through ‘apodization’, whereby the data is brought to
zero in some way at the boundary. The choice of apodization function depends on what features in the data are of
interest.

The data in Fig. 10 were processed using a Kaiser window, designed to resolve closely-spaced frequencies while
suppressing side-lobes (at the expense of absolute amplitude determination, which was not important for this analysis).
The weighting function w for N data points is defined as

w (n) =

I0

(
πα

√
1−

(
2n
N−1 − 1

)2
)

I0 (πα)
, (E1)

where I0 is the zeroth modified Bessel function of the first kind and α controls the roll-off of the weighting function
(chosen to be 1.7 for this work). Fig. 13 shows the effect of such a windowing function on a signal and its Fourier
transform.

Simulated QO data is shown in the inset of Fig. 14. The data contains only the three central frequencies: 440, 530,
and 620 T. Specifically, the function is

τ = e−150/B

(
cos

(
2π 440

B
− π

)
+ cos

(
2π 530

B
− π

)
+ cos

(
2π 620

B
− π

))
. (E2)

Note the lack of side-lobes near 350 and 710 T: this demonstrates that the α and ε peaks in Fig. 10 are not artifacts
of the data analysis.
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FIG. 14: The inset shows simulated data from equation E2 before the window is applied. The Fourier transform uses the Kaiser
window with α = 1.7—the same as the red curve in Fig. 13 and in Fig. 10 in the main text. Note that there are no extraneous
side-lobes.
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