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We study the quantum Andreev oscillation induced by interference of the edge chiral Majorana
fermions in junctions made of quantum anomalous Hall (QAH) insulators and superconductors
(SCs). We show two chiral Majorana fermions on a QAH edge with SC proximity generically have
a momentum difference Ak, which depends on the chemical potentials of both the QAH insulator
and the SC. Due to the spatial interference induced by Ak, the longitudinal conductance of QAH-
SC junctions oscillates with respect to the edge lengths and the chemical potentials, which can be
probed via charge transport. Furthermore, we show the dynamical SC phase fluctuation will give
rise to a geometrical correction to the longitudinal conductance of the junctions.

PACS numbers: 73.20.-r 73.40.Cg 74.45.+c

Quantum anomalous Hall (QAH) state is known as
a two-dimensional (2D) topological state which has an
integer number N, of chiral fermions at the edge and
exhibits a quantized Hall conductance in the absence
of an external magnetic field!*. For non-interacting
fermionic systems, N}, is the total Chern number of the
occupied electronic bands. The QAH state with N, =1
has been experimentally realized in both Cr-doped!2>
and V-doped!® (Bi,Sb),Tes magnetic topological insula-
tor thin films. When the QAH state is proximity-coupled
with a normal s-wave superconductor (SC), the system
becomes a chiral topological SC (TSC) and the edge chi-
ral Majorana fermions arise}”22. Such systems may ex-
hibit exotic transport phenomena due to the existence of
electrically neutral Majorana edge states?*3Y, However,
not much effort has been made to understand how exactly
the electric current flows from a QAH insulator into an
adjacent normal SC (or TSC), both of which are conduc-
tive and dissipationless. This is crucial to the study of
coupled QAH/SC transport experiments.

In this Letter, we show the conductance of a QAH/SC
junction exhibits an Andreev oscillation due to the in-
terference of the chiral Majorana fermions on the QAH
edge proximity-coupled to the SC. Such an interference
is induced by the momentum difference Ak between the
two chiral Majorana fermions on the same edge, which
can be tuned by the chemical potentials of both the QAH
insulator and the SC. As a result, the two-terminal longi-
tudinal conductance of the QAH/SC junction oscillates
with respect to the length of the proximity-coupled edge
and the chemical potentials of QAH and SC, while the
Hall conductance is quantized. Similar Andreev oscilla-
tion in the longitudinal conductance occurs for the other
junctions of QAH insulator and SC shown in Fig. [3] while
the Hall conductance always remains quantized. Further-
more, we consider the QAH/TSC/QAH junction, where
there is only a single chiral Majorana fermion on each su-
perconducting edge. The dynamical phase fluctuation of

SC will have a 1/d3 geometric correction to the previ-
ously predicted half-quantized longitudinal conductance
e? /2h2228 where dgc is the size of TSC in the junction, e
is the electron charge and h is the Plank constant. All the
conclusions discussed here also hold for integer quantum
Hall (IQH) insulator/SC junctions.

The basic mechanism of the edge chiral Majorana
fermions interference in a QAH/SC junction can be eas-
ily understood in the geometry shown in Fig. [I[a), where
a QAH insulator and a normal SC (NSC) are attached
into a y-direction translational invariant cylinder. Since
a QAH with Chern number N, is topologically equiva-
lent to a chiral TSC with Bogoliubov-de Gennes (BdG)
Chern number N = 2Ny, the N, chiral fermions on the
QAH edge will become 2Nj, chiral Majorana fermions
under the proximity effect of the NSC. For simplicity,
we restrict ourselves to QAH with N, = 1. In this case,
the two chiral Majorana fermions on the same QAH edge
are related to each other by the particle-hole symmetry
(PHS). In general, the energy dispersions of these two chi-
ral Majorana fermions will not coincide with each other.
To show this, we take the two-band lattice Hamiltonian
for the QAH:

Hoan = > _ ol [C(k) -0 — pn] ek (1)

and the s-wave BAG Hamiltonian for the NSC:

Hnsc = Y cf [e(k) — ] et (Ascpioye g +He.) . (2)
k

Here, the basis cx = (ckt, cx))?, (k) = (M —B(cos kya+
coskya), Asinkza, Asinkya), o = (04,0,,0,) are the
Pauli matrices, e(k) = B(2 — cos kga — cos kya) is the ki-
netic energy, up, and ps are the chemical potentials of the
QAH and the NSC, respectively, a is the lattice constant,
and Ay is the pairing amplitude. The QAH insulator is
realized in the regime |M| < 2|B| and |un| < 2|B| — |M]|.
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In Fig. b), the BdG spectrum of the cylinder is cal-
culated as a function of k, with parameters a = 0.8,
B =1.5625, M = 2.625, A = 1.25, A, = 0.3, pup = 0.2
and ps = 0.5. The distinction between the dispersions of
two chiral Majorana fermions 17 and ¥ on the same edge
is clearly seen, where the momentum difference between
11 and 1y at zero energy is denoted as Ak.

Now we consider a QAH/NSC junction as shown in
Fig. [[{c), where the length of the QAH edge (the right
edge) in contact with NSC is dgc. The low energy physics
in the QAH is dominated by the gapless edge electrons.
When an edge electron denoted by ¢ in the lower edge
enters into the right edge of the QAH, it splits into
two chiral Majorana fermions v and 5. Whenever 1
and Y9 have a momentum difference Ak, a phase dif-
ference ¢ = Akdsc will be accumulated between them
after propagating along the edge of length dsc. For
¢ # 2mm (m € Z), the outgoing state in the upper edge
will become a superposition of electron and hole ucy +’UEL,
where |u|? + [v|?> = 1 due to the unitarity. Therefore, an
incident electron from the lower QAH edge has a prob-
ability |v|? turning into a hole at the upper QAH edge,
which is denoted as the Andreev reflection probability
R4 = |v]?. Accordingly, the normal reflection probabil-
ity is R = |u|?> = 1— R4. R4 can be calculated by solving
a 2D Shrédinger equation numerically®!. Here we give an
approximate expression for R4 via a simplified picture as
follows. Due to the PHS, the two edge chiral Majorana
modes 1)1 2 at zero energy take the generic form

1 = acax + 8 an s =BT ar+atEy, , (3)
2 2

where |a|2+|8]2 = 1, while ¢, and &, are the edge electron
annihilation and creation operators, respectively. When
As = 0, we recover the QAH edge state and get a = 1,
B = 0. For convenience the QAH edge is parameterized
as £, where the origin ¢ = 0 is set at the lower right corner
of QAH. The chiral edge mode for an incident electron
with momentum k; is then U(¢) = &, = &(£)e?*1¢ on the
lower edge ¢ < 0, and W () = uc(f)e*1¢ 4 vel (£)e= kit
on the upper edge ¢ > dsc. The vanishing hole proba-
bility at £ = 0 requires ¥(¢) = N[a*1(£) — Biba(£)] on
the right edge 0 < ¢ < dgc, where N is a normalization
factor. The continuity condition for ¥(¢) at ¢ = dsc of
junction is ¥(d&,) o« ¥(dg.), then the Andreev reflec-
tion probability R4 = |v|? is found to be?l:

4|ap|* sin®(¢/2)
(lo?| = 182])% + 8|a|? sin®(¢/2)

with ¢ = Akdsc. From Eq. , firstly, Ra oscillates
as a function of dsc with a period 27/Ak. Secondly,
0 < Ra < 1/2, which agrees well with the numerical
results shown later. For an illustration, R4 and R are
plotted with respect to dsc for |a?> =1 —|8]> = 0.7 in
Fig. [1{d) based on Eq. (4).

Physically, due to the charge conservation, such a
process must have a Cooper pair created and injected

Ra(¢) = (4)

2 3
| uc+ve* I=ds pd
1l Cooper {
n i
\ N\,\/\" pair
n
d,
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FIG. 1. (color online). (a) The QAH/NSC junction in cylin-
der geometry. (b) The BAG spectrum of the junction in (a),
where the two chiral Majorana modes have a momentum dif-
ference Ak. (c) Ilustration of a QAH/NSC junction with an
edge length dsc. (d) The Andreev reflection probability Ra
and the normal reflection probability R of the junction with
respect to dsc.

into the NSC with a probability R4%283  The junc-
tion therefore has a nonzero conductance when a cur-
rent [ is applied between leads 1 and 3 as shown in
Fig. [[{c). We employ the Landauer-Biittiker formula
I, = (e2/h) >-;(T;;V; — Tj;V;) to calculate the conduc-
tance, where I; is the current flowing out of lead i, V;
is the voltage of lead 4, and T;; is the generalized trans-
mission probability from lead ¢ to lead j contributed by
both the normal scattering and the Andreev scattering=.
In this 4-terminal junction, Tys = T35 = 2R4 = t rep-
resents the charge transmitted between QAH and NSC,
Tio =1—2R4 = r is the charge reflected from lead 4 to
234 T, =Ty =1, and all the other T;; are zero. One
finds
I e? I e?

N3 = =2Ra+, v v (5)
Therefore, the two-terminal longitudinal conductance o3
exhibits an Andreev oscillation with respect to ¢, while
the Hall conductance os4 remains quantized.

In order to observe the oscillatory o13, one needs to
tune the phase difference ¢. One way is to continu-
ously tune the length dgc of NSC in contact with QAH,
which is not quite feasible in experiments. The other way
is to tune the momentum difference Ak, which can be
achieved by tuning the chemical potential of either the
QAH or the NSC. Since states 1; and 19 form a PHS
pair, their dispersions will shift oppositely in energy (up
and down, respectively) as the chemical potential varies,
which results in a change of Ak. To verify this argument,
we have calculated Ak numerically as a function of puy
and ps for the model and parameters mentioned above,
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FIG. 2. (color online). (a) Ak as a function of p, with ps =
0.5. (b) Ak as a function of ps with pp = 0.2. (c) Ra of an
edge electron wave packet with respect to dsc calculated for
(h, pts) = (0.2,0.8). (d) Ra of an edge electron wave packet
with respect to uj, calculated for pus = 0.8 and dsc = 50a.

which are presented in Fig. 2[a) (us = 0.5) and Fig. 2{(b)
(un, = 0.2), respectively. The results show Ak depends
almost linearly on u, and ps. Thus, one should be able to
observe the conductance oscillation by tuning pp, or pus.
As a numerical check, we further calculated the real space
evolution of an edge electron wave packet in a low energy
window F € [—0.1,0.1] from lead 4 to 2 in the junction,
where we chose a lattice size 30 x 50 for the QAH side and
18 x L for the NSC side with 0 < L < 50, and adopted
a sine-square deformation to reduce the finite size ef-
fect31539%36 The contact edge length dgc = La. Fig. (c)
shows R4 as a function of dsc for (up, ps) = (0.2,0.8),
where one finds the fundamental oscillation period of
2n/Ak ~ 1la. We note the R4 oscillation does not
reach zero and varies in the amplitude, because Ak is
dispersive in the energy window of the wave packet. We
further plot R4 vs. pp for ps = 0.8 and dsc = 50a in
Fig. d), where again one can identify the predicted os-
cillation period (27/dsc)|0Ak/Oun|~* ~ 0.08. As shown
in the supplementary material3l, the oscillation in R4 is
robust against disorders. The only difference is that Ak
will acquire a spatial dependence under disorders, and

the phase difference ¢ will become ¢ = fodsc Akdl.

In realistic QAH materials like magnetic (Bi,Sb)sTes
and graphene, Ak usually does not exceed 0.17/a with
a being the lattice constant. Thus, the spatial oscilla-
tion period in dgc is usually between 10a and 10%a. The
slope |0Ak/Oun| ~ vp' ~ 0.5 (eV-A)~! with vp the
Fermi velocity of the QAH edge state, and |0Ak/Ous| ~
0.1|0Ak/Ouyp| is smaller according to our numerical re-
sults above. If we take a contact edge length dgc =
1 pm and tune pp and pg, the oscillation periods of up
and pg will be of order of 1 meV and 10 meV respec-
tively, in the accessible range of transport experiments.
Due to the dispersion of Ak in energy, the oscillations
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FIG. 3. (color online). (a)-(c) Hlustration of three examples
of 6-terminal QAH/SC junctions. (d) o14 and o6 of junctions
(a) and (b) (which are the same) with respect to ¢1 for ¢o =
nm/5(mod 27) (1 < n <5 from lower to higher). Note their
o023 are different. (e) 014 and o2 of junction (c) vs. ¢1 for
A¢12 = 0,7/2, respectively.

become decoherent and invisible above a temperature
scale kpT = [27/(dsc|0vy'/Oun])]*/2. Typical values
of [Ovn'/Oun| ~ 0.5 eV-2A~1 and dsc = 1pm would
require T' < 300 K, which is feasible in experiments.

All the above analysis of Majorana fermion interfer-
ence can be generalized to other QAH/SC junctions.
Fig. B(a)-(c) shows three examples of 6-terminal junc-
tions, each of which have two QAH edges proximity-
coupled to SC. The chiral Majorana fermions (dashed
lines) on these two edges (left and right in junctions
(a) and (b), upper and lower in junction (c)) may have
distinct phase differences ¢, and ¢, and therefore dis-
tinct Andreev reflection probabilities Ra1 = Ra(¢1) and
Ras = Ra(¢2). Junctions (a) and (b) can be imple-
mented by attaching QAH and NSC samples together,
while the N = 2 TSC in junction (c¢) can be realized
via SC proximity on top of the middle region of a QAH
sample®. With a current I flowing between leads 1 and
4, the conductances o;; = I/(V; — V;) can be similarly
derived from the Landauer-Biittiker formula®l as listed
in Table m The Hall conductance oo is quantized for all
the three junctions. In particular, we note that junction
(a), which is just the QAH system in a standard Hall bar
with SC leads®”, has no difference in o9¢ and o3 with
the Hall bar with metallic leads. However, o4 of such a
junction with SC leads is oscillatory with ¢; and ¢2. In
junctions (a) and (b), ¢1 and ¢2 can be tuned indepen-
dently by the gate voltages Vg1 and Vg, respectively.
The blue curves in Fig. [B[(d) show o14 vs. ¢ for fixed
¢2 = nm/5(mod 27) (1 <n < 5) and |o|? = 0.7. In junc-
tion (¢), ¢1 and ¢o can be tuned together by the gate



TABLE I. The conductances of junctions (a)-(c) shown in
Fig. [ calculated by the Landauer-Biittiker formula.

Junction 14 023 026
2 2 2

(a) Ra1Ra2 e 0o e’
Ra1+Ra2—2RA1RA2 h h

(b) 2RA1RAs e? 2RA1R A2 e &
Rpg1+Ra2—2RA1Ra2 b Rai1+Ra2—4R51Ra2 h h

2 2 2

Ra1+Ra2—4RA1Ras e e

(C) Ra1+Ras—4RA1 Rao
Rpg1+Ra2—2RA1RA2 h

=

2R 1R A2

voltage Vg, with A¢1o = ¢1 — ¢ approximately fixed.
In this case, o14(¢1) for Ag12 = 0 and 7/2 are shown in
Fig. [B(e).

Finally, we discuss the QAH/TSC/QAH junction as
shown in Fig. @] where the TSC has only a single chi-
ral Majorana state ¢; (1 < 4 < 4) on the i-th edge.
At the BdAG level, an electron incident from lead 1 will
split into 7 which is totally reflected and o which is
perfectly transmitted to lead 2, resulting in a half quan-
tized longitudinal conductance o5 = 62/2h25"28. Here
we show when the dynamical fluctuation of the SC phase
0 is considered, 015 is no longer exactly quantized but has
a geometry-dependent correction doq2. Such dynamics of
the 2D TSC can be described by the effective Hamilto-
nian3!

1

Hog=—
eff 29 Mo

4
—1 iiping - VO)
WF; {(w Yipin; - Vo), +/a

where 5 = —11, M. and 9; M. are the bulk and i-
th edge of the TSC, and the vector potential A = 0
gauge is chosen. The Ginzburg-Landau theory gives
g = poh?/16m2¢*wB? and vy = h/4m&, where g is the
vacuum permeability, m is the electron effective mass, £
is the coherence length, B, is the critical magnetic field3%,
and w is the thickness of the TSC??2. The vector n; shown
in Fig. 4] characterizes the interaction between Majorana
fermions 1; and the supercurrent j; o< V6 at x;, and |n;]|
is of the order of the Majorana edge state width. As a
result, 11 (v2) will have a nonzero scattering amplitude
into 3 (¢4) via js (wavy lines in Fig. , leading to a
correction to the longitudinal conductance?!

d*x [(0:0)* + v2(V)?]

d€¢i6€¢i] , (6)

i Mse

¢ gh
2h  2h 1672w,

do12 = 012 — Z flpdx +qdy), (7)
p,q€l

where dx y are vectors along the TSC edges as shown in

Fig. {4 The function f(x) is given by

(—=1)"77(1 — &ij)
VIx =t 2+ o2ty [2 /v

fo) =D (V) (V)

where t;; equals dx /2 for i — j odd and dy /2 for i — j
even. Therefore, do1o depends on the aspect ratio 7 2:

Xy \V4 X3

v

FIG. 4. Illustration of the QAH/TSC/QAH junction.
The fluctuating supercurrent (the wavy lines) contributes a
geometry-dependent correction to the conductance oi2.

dy /dx of the TSC, and scales as 1/d% for a fixed 7.
In particular, o153 > 0 for 7 > 1, and do15 < 0 for
7 < 1. For a 2D TSC with w = 5 nm, £ = 10 nm,
B, = 0.01 T and an edge state width 10 nm, one has
|6012| ~ 107%(e?/h) for dxy ~ 1 pum. Therefore, this
geometric correction is generically small in experiments.

To conclude, we have proposed transport experiments
to detect the Andreev oscillation due to the edge chiral
Majorana fermion interference in the QAH/SC junctions.
We emphasize that all the conclusions here also apply to
ordinary IQH/SC junctions, provided the magnetic field
realizing the IQH state is smaller than the upper critical
field of the SC. Candidate materials include graphene
and Niobium. Moreover, the longitudinal conductance
may have multiple oscillation periods if the IQH (QAH)
insulator has N}, > 1 edge chiral fermions, which remains
to be studied in details in the future.
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I. SUPPLEMENTAL ONLINE MATERIAL

A. Derivation of the Andreev reflection probability R4(¢)

In the simplified one-dimensional (1D) picture given by Eq. (3) and the corresponding paragraph of the main text,

we have shown the edge chiral wave function ¥(¢) of an incident electron is given by

U(l) =

c(l)etkrt |

uc(£)et*t 4 vef (£)e=ikit |

(L <0)

Nla*1(0) = Bipa(0)] = N (|af?e™ 82 — |B2e88/2) &(0) + 2ia* Bsin(Ake/2)et (0)] , (0 <L < dsc) (8)

(ﬁ > dsc)

where A is a normalization factor. However, this 1D wave function ¥(¢) cannot be continuous simultaneously at £ = 0
and ¢ = dgc. This is due to the fact that the edge chiral wave function is intrinsically a 2D wave function (which
is continuous) and does not exist in 1D systems. To make our 1D picture work, we relax the junction conditions at
{=0and { =dgc as ¥(0T) oc ¥(07) and ¥(di.) o ¥(dg.), where (* denotes the right/left limit of position ¢. The
condition at £ = 0 is already satisfied, while that at ¢ = dg¢c requires

uetkrdsc
a2ei%/2 — |Be—i#/2

ve~tkrdsc

2ia*Bsin(p/2)
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Together with the unitarity condition |u|? + |v|> = 1 we find
e—ik,dsc(|a|2ei¢/2 _ |ﬁ|2€_i¢/2), 2ia*ﬁsin(¢/2)eik’dsc)
. 1/2
[(Jo] = |82)? + 8las|? sin®(¢/2)]

Therefore, we find Ra(¢) = |v|? as given in Eq. (4) of the main text.

(u,v) = (

B. 2D lattice numerical calculations for the QAH/NSC junction

To verify the R4 oscillation induced by the momentum difference Ak, we calculate the propagation of an edge
electron wave packet in a 2D lattice QAH/NSC junction as shown in Fig. [5| and use the model and parameters as
presented at the beginning of the main text. The size of the QAH lattice is 30 x 50, while that of the NSC lattice
is 18 x L with 0 < L < 50. We therefore have dgc = La. The wave packet is restricted inside an in-gap low energy
window E € [—0.1,0.1], and is initially localized at the lower QAH edge around lead 4. After a certain time ¢, the
wave packet will propagate to the upper QAH edge around lead 2 and become a superposition of electron state and
hole state. We then extract the hole probability as the Andreev reflection probability R 4.

To reduce the finite size effect and prevent the wave packet from flowing back via the left QAH edge, we em-
ploy the sine-square deformation technique®*3% which is to deform the Hamiltonian H(z,y) at position (z,y) into
H(z,y)sin?(rz/L,) where L, is the system size in the z direction. This makes the hopping on the left QAH edge
(and the right edge of NSC) zero, so that the wave packet cannot propagate back to lead 4 from lead 2. Physically,
this method simulates the effect of the conducting wires at lead 1 and lead 3.

The oscillation of R4 with respect to L for (g, ps) = (0.2,0.8) is shown in Fig. 2(c) of the main text. For fixed
L =50 and fixed ps = 0.8, the oscillation of R4 with respect to up, is as shown in Fig. 2(d) of the main text. This
oscillation is robust against disorders, as the chiral Majorana edge states inducing the oscillation are topologically
protected. To see this, we have done another numerical calculation in Fig. [6{a) below with disorders in chemical
potentials up, s and pairing amplitude A, added. The contact length is fixed at L = 50, the average SC pairing
amplitude is A, = 0.3, and the average SC chemical potential is ji; = 0.8. The chemical potential on each site i is
wn (i) = iy +0p; for the QAH side and ps(i) = fis +dp; for the NSC side, where du; is a random potential obeying the
Gaussian distribution with standard deviation o, = 0.05 ~ 1/10 of the QAH gap. The pairing amplitude on the NSC
side is A4(7) = As + 6A;, where §A; obeys the Gaussian distribution with standard deviation oo = 0.1A, = 0.03.
The chemical potential disorder dpu; is fixed throughout the calculation to simulate static inhomogeneities. On the
other hand, the pairing fluctuation §A; is regenerated before the calculation of R4 at each [y, and for each fj we
calculate R4 three times and take the average, so that the results simulate a dynamical fluctuating pairing amplitude
A. In comparison with the homogeneous result shown in Fig. 2(d) of the main text, one sees that the R4 oscillation
pattern is quite robust under disorders.

Such R4 oscillation can also be seen by tuning the SC chemical potential ps. Fig. @(b) in the below shows R4 vs.
s with fixed L = 50 and pj, = 0.25. Though the amplitude varies a lot with respect to us, we can see an oscillation

FIG. 5. (color online). Junction geometry used in the 2D lattice numerical calculations.



pattern in agreement with the predicted oscillation period (27 /dsc)|0Ak/Ous| 1. The oscillation in both py, and p

will become clearer if the system size dg¢ is larger, because more oscillation periods will be seen, as will be the case
in the experiments.

C. Derivation of the conductivities with the Landauer-Biittiker formula

The conductances of the 6-terminal junction shown in Fig. 3(a) can be easily calculated by writing down the
transmission coefficients which we denote as Ti(ja):
T =T =2R , TS =1-2Ruy , T =T = 2Ry , T =1-2R4y , TV =T =1,  (10)
and all the other Ti(f) = 0. The current is given by Iy = —I1 = I and I3 356 = 0. The Landauer-Biittiker formula
I, = (e*/h) >_;(Ti;Vy — Tj;V;) then yields

€2 e2
1= E2RA1(V1 - V) = Z2RA2(V3 —VWa)
0=2RA,Vi+ (1 —2RA,)Vo —Va=2RA,Vi+ (1 —2R4)V3 - Vs =V5 = Vo=V — V5.
If we set V7 = 0, we find

1 h 1—2RA1£ 7RA1+RA2—2RA1RA2£

Vi=Vo=—c—=I, Vo=Va=—-—"—"""——10T, V3= I.
g 6 2RA1 62 P2 3 2RA1 62 e 2RA1RA2 62
Therefore, the conductances of junction (a) is
O14 = ! = 2R Rz ﬁ 093 = 71 =00, 095 = ! = 6—2 (11)
YTV Vi T R+ Ras—2RuRaz b T Ve —Ve o T T o=V

The transmission coefficients Ti(;)) of junction (b) are not so straightforward. A cooper pair in the NSC has a
probability 71 = 1 — 2R41 (r2 = 1 — 2R 2) to be reflected by the left (right) edge. Accordingly, the transmission
probability at the left (right) edge is t1 = 2R 41 (t2 = 2R 42). Therefore, we have

(b) _ (b - n tita 2R 1 Ras
Te! =T =1t to = = .
05 32 ! lz(rﬂl) ] *“1—rry  Rai+ Ras—2Ra Ray

n=0
Similarly, one finds

O) O) ) _ Ra1+Ras—4Ra1Ra
62 3 %5 7 Rp1+ Raz —2Ra1Ra2

b b b b
Tl(ﬁ) = T5(4) = T4(3) = T2(1) =1,

(@) 0.09 10% Disorder in py, , (b)
I pe and A, 0.0l 2n[pak |
Ra 0.06|
0.03}

0 0302 01 0 0.1 02 03

Uy

FIG. 6. (color online). (a) Ra vs. fin calculated with static disorders of 10% QAH gap in chemical potentials (un, pus) and
10% dynamical fluctuations of the SC pairing amplitude Ay, at fixed ds¢ = 50a and s = 0.8. The oscillation pattern is
topologically robust when compared to the homogeneous result shown in Fig. 2(d) of the main text. (b) Ra of an edge electron
wave packet with respect to ps calculated for homogeneous crystals with p, = 0.25 and dsc = 50a.



and all the other coefficients are zero. By setting V; = 0 and solving the equations, we find

h Ra1+Ra2 —2Ra1Ra2 h Ra1+Raz —4RaRa2 h

Va=Vi=0,Ve=—=3I,Vs=V,=— =1, Vs=— =T
2 1 » Ve 2t Vs=h SR Bns PORIIRE SRai Rt o2
So the conductances of junction (b) are given by
o4 = 2l < o3 = 2R Rz G s = & (12)
Y Rai+Raz—2RuRaz b’ " Rai+ Ras —4RaRas b’ oy

Junction (c) is quite analogous to junction (b), except that the transmission coefficients become

c c c c = 2*RAI*RA2
T =TE =1-T¢ =1-T35) =t "ty = .
62 35 65 32 1 2(7’27“1) 2 Rar + Ras — 2Ra1 Ras

n=0
As a result, the conductances of junction (c) are

_ Rai+Ras —4RsiRaz €

_ Rar+Ras —4RsiRaz e
Rai+ Raz —2Ra1Raz b’

2RA1R a2 h’

62
014 023 026 — ﬁ . (13)

D. Contribution of the dynamical SC phase fluctuation to the conductance of a QAH/TSC/QAH junction

It can be shown that H.s; in Eq. (6) of the main text is the only gauge invariant Hamiltonian one can write down
for the QAH/TSC/QAH junction of Fig. 4 in the main text. We have defined 15 = —; when writing the interactions
since fermions are known to satisfy the anti-boundary condition on a 1D edge when the enclosed flux is zero. The
interaction Hy = vp ), (¥ithip1m; - VO)y, corresponds to the process in which a normal current j, o< 9;%;11n; on the
edge turns into a supercurrent j; o< V8 in the bulk TSC. Microscopically, the vector coupling strength n; which has
a dimension of length is given by

_ 8 2 £
n; =5 — d"x; (x)j(x)pit1(x) (14)
VF JMsc

where ¢;(x) is the 2D wave function of the edge chiral Majorana mode v; at zero energy (which is a plane wave in
the edge direction), and

sy O0HTsc

(x) =i . 0Hrsc
J SVe(x)

e(x) —1 V) cf(x)

is the fermion current operator, with Hrgc the BAG Hamiltonian of the TSC. The integration mainly comes from
the vicinity of x; where the two Majorana wave functions overlap (within a radius of the edge state width £). As a
result, n; points more or less along the bisector of the angle formed by the two edges, and its norm |n;| is of order of
the edge state width &.

When a current is flowing from lead 1 to lead 2, it will enter the TSC at x; or x4, and leave the TSC at x5 or x3. To
determine the conductivity of the junction, we need to calculate the scattering matrix between the charged edge states
at the four corners x; of the TSC. According to the edge state chirality given in Fig. 4 of the main text, the basis of
the incident edge states is ¥;, = (61763,617 E:Z)T, and the basis of the outgoing edge states is U,y = (62,64,65,61)71,
where ¢; annihilates the edge chiral electron on the QAH/vacuum edge that is connected to the corner x; of the TSC.
They are related to the four Majorana edge states v; in the following way:

El:w = P3 + 1 _ Y3 + iy B :w.

) & ) & ) &
V2 ’ V2 ’ V2 ! V2

Therefore, to find out the scattering matrix, we need to calculate the scattering amplitude M;; between Majorana
states 1; and 1); given by

(15)

i T — i [Z° Hp(t)dt |, —
2m8(k — k)M, (k) = lim wi’k/efz'mff%j?_k) _ (Wi exp[ Zfoo 1(t) }%, k) ,
t—o0 (Texp[ —i [ HI(t)dt]>
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where k > 0 and &’ > 0 are the incident and outgoing momentum of the edge Majorana state, 1; , = [ daap;(z)e” e,

{Vik,Vjpr} = 2m0;;0(k + k'), and T stands for time ordering. The particle vacuum is given by %; 5|0y = 0 for all
k> 0. It is easy to see that to the lowest order M,;(k) = d;;. If we keep up to the second order, Mi3 and My, will
become nonzero. The first part of M3 comes from the scattering from 7 to 13 via 15, which is given by

26~ )M () = o (s [t [ @t [Ta(a,t (e, hma - F0ca, )1 (1, i s - V01, 0)] 1,0

We shall calculate this part first as an illustration. By defining the Green’s functions for the Majorana fermion and
the supercurrent

G;(x,x',t) = —i(TY;(x,0)0;(x', 1)) , D(x,x' t) = —i{T(x,0)0(x', 1)) ,

one finds
; dw
M%)(k-) — _e—lkdXUF / gGg(Xg,Xl,w)Dgl(Xg,Xl, —W — ’UF]C) s (16)

where the integration is in the frequency w space, and we have defined D;;(x,x’,t) = (n; - Vx)(n; - Vi )D(x,x,t).
The Green’s function Gs can be readily calculated:

dk eik(w1—w2) .e—iw(ﬂh—l‘z)/UF
O(z1 — 22)0O(w) — O(z2 — 21)O(—w)] ,

Ga(x2,X1,w) = —/

27 w — vpk + i6sgn(k) - vp

where O(z) is the Heavyside’s step function. In our setup here, x93 — 1 = dx > 0. The Green’s function D can be
easily calculated if the TSC is an infinite 2D plane without a boundary, which we shall call D(©):

where Jy(x) is the zeroth Bessel function. For a rectangular TSC bounded by four edges in our setup, the Green’s
function D can be calculated by the method of images as

D(x',x,w) ZD(O)XX w) ,

x(1)

d2k geikA(xfx’) g
=- Jo(—iw|x" — s)
2m)2 w? — w? 416 27v2 o(—iwlx’ = x|/vs)

S

where x() runs over the infinite images of point x including itself.
Now we can proceed to calculate M%)(k) Since we are interested in the low energy scattering, we shall take the
limit & — 07 in Eq. and denote M%)(k: —0T) = /\/l(lé) Therefore, we find

dw
(1) = _'UFZ . sz) o GQ(XQ,X:[’UJ)D(O)(XQ,X:([I)7—w) = 167‘(21} Z f12 de -l—qdy) s (17)

D p,q€”
1

where
2

Peb0 == e V) = T P

Similarly, one can calculate the second part ./\/l 3 coming from the scattering from 7 to 3 via 4. The total

scattering amplitude is then M3 = /\/ll3 + M%) The calculation of My, follows the same procedure.
When rewritten in terms of the charge basis in Eq. , we find the scattering matrix to be

C2 1+ Mqs 1—Msoy —14+Mis 1+ Moy 1

Cy4 _1 1—M24 —1—M13 1+M24 1—M13 c3 (18)
_T 2| 1+ Miz T4+ My 1-Miz 1 —My EJ{ ’

T 1+ Moy 1—-Mi3 1—-—Moyy —-1-—Mgys Eg

where we have assumed M3 and My, are small. Accordingly, we find the normal transmission probability (¢; — ¢2)

to be T = |1 + M;3/?/4, and the Andreev reflection probability ((¢; — 64)) to be R4 = |1 4+ Mayy|?/4. Therefore, we
find the longitudinal conductance®*2%

012 = %(T-l-RA) ~ ﬁ(l + M3 +M24) .



The correction is given by

where

2
0012 = %(M13 + May) =

4
fx)=> (n;-V)(n;-

ez gh

% 167T2U Z f(de + qu) )
s P,qEZ

) (=1)"7(1 = dy)

VIx =t + 02t 2 /vr
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(19)
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