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Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically
been done in the limit of small deviatoric stresses. Although these methods are well suited for
experiments conducted near hydrostatic conditions, more robust models are required to diagnose
the large strain anisotropies present in dynamic compression experiments. A method to predict
Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain)
limit [A. Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here we present a method to calculate
Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-
stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite
orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The
effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared
to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented
to illustrate how this model can be applied and demonstrates the importance of including material
strength when interpreting diffraction in dynamic compression experiments.

I. INTRODUCTION

The behavior of materials under dynamic compression
is of interest to several fields including the modeling of
planetary interiors and meteor impact events,1 exploring
high pressure phase changes,2–4 and understanding the
initial compression phase of inertial confinement fusion
implosions.5,6 Accurate measurements of the strength of
materials at high strain rate is critical in predicting their
response to the dynamic loading conditions present in
these studies. X-ray diffraction provides a powerful tech-
nique for probing the structure of crystalline materials
and can be used to directly measure lattice strains and
material strength.

Free electron lasers (FELs), such as the Linac Coher-
ent Light Source, enable compressed states to be probed
with high peak brightness and ∼40 fs time resolution.7,8

The pulse duration of these x-ray pulses is shorter than
the smallest phonon period in shocked systems, allowing
lattice dynamics to be studied without temporal smear-
ing. FELs produce nearly monochromatic x-rays, requir-
ing polycrystalline samples to produce Debye-Scherrer
diffraction rings from a compressed lattice.

By varying the pressure source, dynamic compression
experiments can access a wide range of pressure-density
space. These include accessing Hugoniot states via shock
compression8–19 as well as off-Hugoniot states using
ramp laser drive pulses,20–22 pulsed-power devices,23–25

or laser-driven plasma loaders.26,27 Additionally, large-
scale laser facilities have recently demonstrated the abil-
ity to study material properties of dynamically com-
pressed solids up to five TPa.21 Analyzing diffraction
data from crystalline materials at such high pressures re-
quires a method capable of predicting diffraction beyond

the small-strain limit.

Analytical models of the stress-strain relationship for
polycrystalline materials require assumptions on the be-
havior at the grain boundaries. The Voigt limit28 as-
sumes strain is continuous across grain boundaries while
the Reuss limit29 assumes continuous stress. Diffrac-
tion from compressed crystalline materials has commonly
been analyzed using a method originally presented by
Singh30 in the small-strain limit. For the highly strained
conditions present in dynamic compression experiments,
a method to model diffraction in the Voigt limit has been
presented,31 but no method in the Reuss limit has been
published.

A Reuss limit model would be particularly impor-
tant for polycrystalline materials with elastic anisotropy,
which have directionally-dependent stress-strain relation-
ships. In these cases, a distribution of strain states would
be expected to be present for a nonhydrostatic stress ap-
plied to the sample. This behavior is not included in
Voigt limit models, which assume that the same strain
tensor is applied to all crystallites, regardless of orienta-
tion within the sample.

Here, we present a method to calculate the diffraction
pattern and lattice strains polycrystalline samples in the
Reuss limit for highly stressed materials. This method
takes the set of all initial crystallite orientations, defined
by the initial texture of the sample, and applies the trans-
formed stress tensor to each orientation before calculat-
ing the resulting diffraction pattern. With this method,
we fit the applied stress tensor to diffraction data, en-
abling direct comparison to pressures measured exper-
imentally or calculated using equation-of-state models.
We present examples illustrating how probing geome-
try, deviatoric stresses, and sample texture affect Debye-
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FIG. 1. (color) Definition of the coordinate systems used in
this paper. The laboratory frame is unprimed and the co-
ordinate system of the crystal lattice for a given crystallite
within the sample is primed. The x-ray probe and diffracted
wave vectors are k0 and k and the angle between them is de-
fined as 2θ. The stress directions for the Cauchy stress tensor
in the crystallite coordinate system, where shear stresses are
nonzero after transformation from the laboratory frame, are
also shown.

Scherrer diffraction patterns. Finally, we show an exam-
ple of diffraction from shock compressed polycrystalline
diamond using elastic constants calculated using density
functional theory (DFT) combined with pressure calcu-
lations from Rankine-Hugoniot equations to demonstrate
how the technique can be applied.

II. APPLICATION OF THE STRESS FIELD

The critical component of the method presented here is
the proper application of the stress tensor to a polycrys-
talline material. This requires the stress tensor, which
is defined in the laboratory frame, to be applied to each
crystallite within the sample by transforming the tensor
into the frame of each crystallite. We define three coor-
dinate systems: the unprimed laboratory frame coordi-
nates and the primed crystal lattice coordinate system as
shown in Fig. 1, as well as a diffraction coordinate sys-
tem denoted by double primes described in the diffraction
calculation section.

The applied stress tensor is defined in the laboratory
frame by the Cauchy stress tensor, which includes com-
pressive and shear stresses. It is defined as

σ =

σx τxy τxz
τyx σy τyz
τzx τzy σz

 , (1)

where σi is a compressive stress in the i direction and τij
is a shear stress applied to the i face in the j direction.
These stresses are illustrated in the crystallite coordinate
system in Fig. 1.

Transforming the stress tensor from the laboratory
frame to the crystallite frame is required to correctly
predict the lattice strains for materials with elastic
anisotropy and enables the use of elastic constants to
calculate lattice strains. The tensor is transformed by
applying a rotation to the stress in the lab frame using a
rotation matrix, R, defined between the two frames. The
Cauchy stress tensor is transformed between coordinate
systems by

σ′ = RσRT . (2)

The rotation matrix is chosen to use proper Euler an-
gles using a z-y-z rotation,

R(α, β, γ) = Rz(γ)Ry(β)Rz(α), (3)

where Ry and Rz are the standard rotation matrices
about the y and z axes,

Ry(φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 (4)

and

Rz(φ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 . (5)

where the angles between the coordinate systems depend
on the orientation of each crystallite.

Calculating the lattice strains created by the stress
tensor in the crystallite frame requires knowledge of the
stress-strain relationship for the material. In principle, if
this relationship is known for all stress states (including
for all rotations) this method can be used to calculate
the diffraction patterns for any stress. In practice, the
stress-strain relationship is only known for specific con-
ditions. In this paper we assume that the stress-strain
relationship for the material is known under hydrostatic
compression, and elastic constants are used to calculate
lattice strains for deviatoric stresses.

III. DIFFRACTION CALCULATION

For each compressed crystallite, the Laue diffraction
condition can be used to determine which crystal planes
will contribute to the diffraction signal. This analysis
is done in reciprocal space, where the reciprocal lattice
vectors are calculated by the following:
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a∗ =
2π

V
b′ × c′ (6)

b∗ =
2π

V
c′ × a′ (7)

c∗ =
2π

V
a′ × b′, (8)

where a′, b′, and c′ are crystal lattice vectors in real
space and V is the volume of the unit cell. The reciprocal
lattice vector for a crystal plane with Miller indices (hkl)
is defined as G′ = ha∗ + kb∗ + lc∗ and d spacing of the
crystal plane is given by d = 2π/G′.

The condition for Bragg scattering for a crystal plane
with spacing d is given by nλ = 2d sin θB , where n is the
diffraction order, λ is the x-ray wavelength, and θB is the
Bragg angle. The Laue diffraction condition is given in
the laboratory frame by k − k0 = G, where k0 and k
are the probe and scattered x-ray wave vectors, respec-
tively. The magnitude of the probe wave vector is given
by k0 = 2π/λ and x-ray diffraction is an elastic scattering
process, so we can assume |k0| = |k|. By transforming
G′ to the laboratory frame (G = RT · G′) and using
these conditions, the scattering intensity from a plane
can be evaluated by calculating ∆θB , the deviation from
the ideal Bragg angle, given by

∆θB = arcsin

(
n
G

2k0

)
+ arcsin

(
n
k0 ·G
k0G

)
, (9)

and sampling the rocking curve of the material at this
value. The spectral bandwidth and divergence of the
probe source can be modeled in this step by sampling a
distribution of k0 vectors.

Diffraction patterns can be visualized by plotting the
diffracted rays on a plane normal to the k0 with coor-
dinates denoted by double primes. Scattered wavevec-
tors, k, transformed into this frame are used to calculate
the angular position around the diffraction ring, given by
φ = arctan(k′′y/k

′′
x). The diffraction pattern is converted

by Cartesian coordinates using

x′′/L = tan 2θ cosφ (10)

y′′/L = tan 2θ sinφ (11)

where L is the distance between the sample and the (xy)′′

plane. For the compressed crystallites contributing to the
diffraction pattern, the lattice strains, diffraction angles,
and diffracted intensities can be recorded.

IV. UNIAXIAL COMPRESSION

Uniaxial compression is a common way to study mate-
rials at high pressure and is relevant to both diamond
anvil cell and dynamic compression experiments. In

uniaxial compression, off-diagonal stress tensor compo-
nents in the laboratory frame can be disregarded and
the Cauchy stress tensor can be decomposed into two
components: a hydrostatic component and a traceless
deviatoric component. The hydrostatic component pro-
vides the mean stress and the deviatoric component al-
lows additional stress to be applied in the direction of
compression. The decomposed stress tensor in the labo-
ratory frame can thus be written30

σ = σh + σd =

σh 0 0
0 σh 0
0 0 σh

+

−t/3 0 0
0 −t/3 0
0 0 2t/3

 ,

(12)
where σh and σd are the hydrostatic and deviatoric stress
tensors and t is the uniaxial stress component.

The compression of the crystallites is calculated in two
steps. First, the hydrostatic stress component is ap-
plied to all crystallites, scaling the crystal lattice by the
compression calculated using a hydrostatic compression
curve, which does not depend on crystallite orientation.
For this step, each crystal lattice vector transforms as

v′h =
ρ0
ρh

v′0, (13)

where vh and v0 are the hydrostatically compressed and
uncompressed lattice vectors and ρh and ρ0 are the hy-
drostatically compressed and initial densities. For high
pressure conditions or materials with low strength this
will provide the majority of the compression of the crys-
tal lattice. It is important to do this step before ap-
plying the deviatoric component, which requires the use
of elastic constants and therefore should be treated as a
perturbation on the compressed cell to minimize error.

Next, the deviatoric component is calculated by apply-
ing the elastic constants, which are calculated using DFT
as a function of hydrostatic pressure, to the compressed
cell. For a linear system, the lattice strains are calculated
using

σ′d = Cε′d (14)

where εd
′ is the deviatoric strain tensor and C is the

elastic stiffness tensor. For high-strength materials the
deviatoric strains can be large and higher order elastic
constants may be needed to properly model the system.

The strain tensor is applied to each crystal lattice vec-
tor in the hydrostatically compressed system by

v′ =

1 + ε′xx ε′xy ε′xz
ε′yx 1 + ε′yy ε′yz
ε′zx ε′zy 1 + ε′zz


d

v′h (15)

Combining the two steps, the lattice vectors transform
following
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FIG. 2. (color) Debye-Scherrer diffraction patterns calculated
for uniaxially compressed diamond with σh = 200 GPa and
t = 100 GPa probed with a collimated 10 keV x-ray source
a) aligned with the direction of compression (χ = 0◦) and
b) at 30◦ off-normal. When χ 6= 0◦ the compression of the
diffracting planes depends on φ and the diffraction pattern
becomes asymmetric.

v′ =
ρ0
ρh

(
C−1σ′d

)
v′0. (16)

The direction of the probe vector in uniaxial compres-
sion experiments using a collimated x-ray source can be
defined by a single parameter, χ, which is the angle be-
tween the direction of compression and the probe vector.
In this case, the diffracted rays are transformed into the
diffraction coordinate system by k′′ = Ry(−χ) · k.

Figure 2 shows examples of the diffraction patterns cal-
culated for polycrystalline diamond with no texture un-
der uniaxial compression with σh = 200 GPa and t = 100
GPa probed with a collimated 10 keV x-ray source a)
aligned with the direction of compression (χ = 0◦) and
b) for χ = 30◦. When χ 6= 0◦ the compression of the
diffracting planes depends on φ as a result of the dis-
tribution G vector orientations satisfying the diffraction
condition. The direction of G is normal to the diffracting
plane, and thus the compression of the plane is related
to G · ẑ.

V. EXAMPLE: SHOCK COMPRESSED
DIAMOND

Diamond has been the focus of a number of recent dy-
namic compression studies.11,13,20,21,32 We consider the
case of polycrystalline diamond uniaxially compressed to
σh = 200 GPa probed with a collimated 10 keV x-ray
probe to illustrate how this analysis can be applied.

A. Coordinate transformation

First, the rotation matrix between the sample coor-
dinate system and a crystallite with the vector [hkl]′

aligned along the z direction is calculated. This geom-
etry and the orientations sampled are shown in Fig. 5.
The rotation of the crystallite about this vector is given
by the angle α, where we define α = 0 when x′ lies in the
xz plane, fully constraining the coordinate system with-
out loss of generality. Given these conditions the rotation
angles between the two coordinate systems are

β = cos−1
(

l√
h2 + k2 + l2

)
(17)

γ = cos−1
(

h√
h2 + k2

)
. (18)

and α ranges from 0 to 2π radians.

B. Lattice strain calculations

Here we assume a sample compressed to a mean stress
of 200 GPa shocked in the z direction. The applied stress
tensor is given by

σ =

200 0 0
0 200 0
0 0 200

GPa +

−t/3 0 0
0 −t/3 0
0 0 2t/3

 ,

(19)
where the uniaxial stress component, t, has been left as a
variable to demonstrate how the deviatoric stress affects
the diffraction pattern.

We assume the initial properties of polycrystalline di-
amond, ρ0 = 3.515 g/cm3 and a0 = 3.56683 Å. Follow-
ing the method described for uniaxial compression, the
hydrostatic component is applied, which gives the new
lattice parameter of the cell. Using the hydrostatic DFT
results shown in Fig. 3, the density is found to be 4.65
g/cm3, or a compression of 1.32, corresponding to a com-
pressed lattice vector of a = a0(ρ0/ρ)1/3 = 3.25 Å.

Next, the deviatoric stress tensor is applied to the hy-
drostatically compressed diamond crystallites. The sym-
metry of cubic crystal systems reduces the number of in-
dependent elastic constants to three: C11, C12, and C44.
The stress-strain relationship is thus


σ′xx
σ′yy
σ′zz
τ ′yz
τ ′zx
τ ′xy

 =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




ε′xx
ε′yy
ε′zz
ε′yz
ε′zx
ε′xy

 .

(20)
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FIG. 3. (color) DFT calculations of the a) hydrostatic cold
curve and b) elastic constants as a function of hydrostatic
pressure for diamond.

The elastic constants from DFT as a function of hydro-
static pressure shown in Fig. 3 can then be used to cal-
culate the lattice stains and compressed lattice vectors.
Accounting for shearing, the strained cubic unit cell is a
parallelepiped, with a volume given by V = a′ · b′ × c′

and the compression of the unit cell for each initial ori-
entation can be calculated using ρ/ρ0 = a30/V .

C. DFT calculations

The computation of the elastic constants of diamond at
various hydrostatic pressures is performed using the DFT
implementation as available in the package abinit.33 We
performed all calculations with a parallel implementa-
tion of abinit at the National Energy Research Scientific
Computing Center (NERSC).34 The results of these cal-
culations are shown in Fig. 3.

The actual calculation of the elastic constants relies
on a linear response formalism.35 We have used norm-
conserving Troullier-Martins type pseudopotentials from
the Fritz-Haber-Institute (FHI) database with four elec-
trons taken into account explicitly.36 The electronic wave
function was represented using plane waves with a cut-
off of Ecut = 35 Ha. The self consistency loop for the
electronic density was enforced to 10−18 in the residual
of the potential and 10−20 in the wave function conver-
gence, respectively. The exchange correlation potential
was taken in PBE parametrization of the generalized
gradient approximation.37 Standard Monkhorst-Pack k-
point sampling with 32 × 32 × 32 k-points was invoked.
The lattice constant was adjusted so as to give the desired
hydrostatic pressure on the diamond unit cell consisting
of two atoms (space group Fd3̄m) before invoking the
response function calculation of the elastic constants.

For diamond at σh = 200 GPa the values calculated
were C11 = 1670 GPa, C12 = 446 GPa, and C44 = 1090
GPa.
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FIG. 4. (color) Diffraction calculations for polycrystalline di-
amond for σh = 200 GPa and t = 0, 50, and 100 GPa probed
with 10 keV x-rays with χ = 30◦. 2θ plotted as a function
of φ for a) {111} and b) {220} diffraction. The width of the
peaks in 2θ broadens with increasing t as a result of the distri-
bution of strain states created by the increasingly anisotropic
stress on the range of initial crystallite orientations, which is
not present in the Voigt limit prediction (dashed).

D. Diffraction calculation

With the compressed lattice vectors defined, the
diffraction pattern is calculated with t as a parameter.
Figure 4 shows the calculated diffraction for diamond
compressed to a hydrostatic pressure of 200 GPa and
t = 0, 50, and 100 GPa. When t = 0 (hydrostatic com-
pression) all crystallites are compressed identically, re-
sulting in a single 2θ diffraction angle with no φ depen-
dence. When t is nonzero the compression of the crystal-
lites depends on initial orientation, creating a φ depen-
dence and broadening diffraction in 2θ. This broadening
is a result of the distribution of strain states created by
the anisotropic stress applied to the polycrystalline sam-
ple. The Voigt limit prediction is shown for the strain
tensor calculated for the unrotated stress tensor using
the DFT results. The strains used in the Voigt calcu-
lations are εz = εx = 0.937 for t = 0 GPa, εz = 0.121
and εx = 0.0805 for t = 50 GPa, and εz = 0.148 and
εx = 0.0667 for t = 100 GPa, where all strains are given
in compression and it is assumed that the strains in the
transverse directions are equal (εx = εy).

E. Texture effects

The texture of a polycrystalline material defines the
distribution of crystallite orientations within the sample.
Methods used to produce polycrystalline materials, such
as chemical vapor deposition growth or rolling, often cre-
ate characteristic textures. The properties of a crystalline
material, such as strength and wave propagation, can be
significantly affected by texture.38
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FIG. 5. (color) Crystallites with different initial orientations
are sampled to calculate the diffraction from the polycrys-
talline sample. a) Each iteration calculates diffraction from
a crystallite with lattice vector [hkl]′ aligned with z. Three
texture cases were analyzed and their orientation distribution
functions were represented by inverse pole figures. The three
cases were: b) no texture, where all crystallite orientations
are sampled equally, c) preferred [001] texture, and d) pre-
ferred [111] texture where the shaded regions represent the
orientations included in each case.

Including texture in the prediction of diffraction from
highly-strained polycrystalline materials has been ex-
plored in the Voigt limit.39 Here we work in the Reuss
limit, thereby including the effects of elastic anisotropy
when calculating the response of each crystallite orien-
tation within the sample. In doing so, we avoid having
to measure or calculate the bulk and shear moduli for
each texture case to accurately model the stress-strain
relationship of the material. In this method the elastic
constants are calculated only once and can be applied to
any texture case.

Material texture can be characterized using an orien-
tation distribution function (ODF), defining the prob-
ability distribution of crystallite orientations. In this
method, the ODF is used to weight the scattering inten-
sity from each initial crystallite orientation. We define
crystallite orientation by the [hkl]′ vector aligned with
the surface normal, z.

The cubic symmetry of diamond reduces the possi-
ble crystallite orientations to the projection into a space
bound by [001], [011], and [111] directions. Figure 5
shows inverse pole figures illustrating the three example
textures examined in this study: b) no texture, defined
by a completely random distribution of crystallite orien-
tations, c) a sample with [001] texture, and d) a sample
with [111] texture where the shaded regions indicate the
initial orientations present in each texture case. It should
be noted that diffraction from the complete set of equiv-
alent planes must be calculated when utilizing crystal
symmetry to reduce the set of initial orientations. For
example, diffraction from the {111} family of planes in a
cubic system must include diffraction from (111), (111̄),
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FIG. 6. (color) Diffraction patterns from {111} and {220}
planes for polycrystalline diamond under uniaxial compres-
sion with σh = 200 GPa and t = 100 GPa probed with 10
keV x-rays at χ = 30◦ shown in detector coordinates for a)
[001] sample texture and b) [111] sample texture and c) {220}
diffraction plotted for both texture cases as a function of φ
and the Voigt limit for the untextured case. The difference in
2θ for the two texture cases results from different final com-
pression states for the initial textures.

(11̄1), (1̄11), etc.
Diffraction from 10 keV probe x-rays at χ = 30◦ for

each of these texture cases with σh = 200 GPa and
t = 100 GPa is shown in Figure 6. Diffraction pat-
terns are plotted in Cartesian coordinates for a) the [001]
and b) [111] texture cases. These plots show gaps in
the diffraction patterns, demonstrating the importance
of knowing the initial texture of the sample when choos-
ing detector locations. Diffraction from the {220} planes
is shown as a function of φ for each texture case as well
as the Voigt limit for the untextured case, showing the
differences in 2θ from the elastic anisotropy of diamond.
The [111] texture case has a larger range of 2θ angles,
suggesting that compressing diamond along the [111] di-
rection creates a larger distribution of strains than when
compressed along the [001] direction.

F. Strength calculations

Material strength is an important material property
that can be studied using dynamic compression. The
strength of a material describes its ability to support
shear stresses and deviate from the hydrostat in response
to an anisotropic stress. Using the von Mises yield crite-
rion, the yield strength, σY , and shear strength, τY , are
given by

σY = 2τY = t. (21)

If the stress tensor applied to a material can be deter-
mined using time resolved x-ray diffraction the strength
is obtained by calculating t in Eq. (12).
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Here we consider a shock compression experiment
where the time-resolved x-ray diffraction from the {111}
planes and the plastic deformation wave velocity are
measured. If the conditions of the elastic precursor
are known (pressure and shock velocity), the Rankine-
Hugoniot shock conditions can be used to calculate the
post-shock stress of the plastic wave in the shock direc-
tion as a function of plastic wave velocity40

σz2 = ρ0D1u1 + ρ1 (D2 − u1) (u2 − u1) (22)

where σ is stress, ρ is density, D is shock velocity, and u
is particle velocity, and the subscripts 0, 1, and 2 denote
the unshocked material, elastic precursor, and plastic de-
formation wave, respectively. Here we have specified the
stress in the shock (z) direction because the shocked ma-
terial is not under hydrostatic compression and stresses
in the orthogonal plane are not governed by this equa-
tion. The particle velocities are given by

u1 = D1

(
1− ρ0

ρ1

)
(23)

u2 = D2

(
1− ρ1

ρ2

)
+D1

(
ρ1 − ρ0
ρ2

)
. (24)

These equations define the pressure in the shock direc-
tion as a function of densities and shock velocities. The
pressure-density curve is plotted in Fig. 7 for a plastic
wave velocity of 16 km/s with elastic precursor conditions
of D1 = 20 km/s and σz1 = 80 GPa, which have been pre-
viously measured in shock-compressed diamond.13 The
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talline diamond probed at 10 keV and χ = 0 under hydrostatic
compression (blue) and mean 2θ diffraction angles calculated
for a plastic deformation wave velocity of D2 = 16 km/s and
an elastic precursor with D1 = 20 km/s and σz1 = 80 GPa
(orange). The difference in inferred density for a measured 2θ
of 37.9◦ with and without strength is illustrated.

dashed line shows the elastic response of diamond and
the solid line is defined by Eq (22).

The hydrostatic behavior of diamond calculated using
DFT is shown in Fig. 7 by the solid blue line. The hydro-
static response gives σh and Eq. (22) defines the stress
in the shock direction, which is σh + 2t/3. These two
stress values fully define the stress tensor in the labora-
tory frame given by Eq. (12) as a function of material
density.

For simplicity, we consider the case of normal probe
incidence (χ = 0), where 2θ has no φ dependence. The
mean 2θ diffraction angle for each density and is shown
in Fig. 8. If the probe is not normal to the drive surface
(χ 6= 0) the strength can be inferred by the φ dependence
on 2θ, as illustrated in Fig. 4.

The measured 2θ diffraction peak from the {111}
planes can be compared to Fig. 8 and the material den-
sity can be inferred. The difference in density inferred
with strength compared to hydrostatic compression can
be rather large as illustrated by the example of a mea-
sured 2θ of 37.9◦, resulting in a 5.5% difference in density.
The stress tensor applied to produce the inferred density
state is known from Fig. 7 and the yield strength and
distribution of lattice strains can be calculated for the
applied stress tensor. In this example we calculate the
yield strength to be σY = t = 68 GPa and σh = 200
GPa.

VI. CONCLUSION

We have presented a method to calculate Debye-
Scherrer diffraction patterns from highly stressed poly-
crystalline materials. Example diffraction patterns for
cases with different probe geometries, deviatoric stresses,
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and initial sample textures illustrate the robust nature of
this method. Comparisons to the Voigt limit show where
the Voigt and Reuss limits differ and the validity of these
models could be tested. By working in the Reuss limit
and applying stresses to all initial crystallite orientations,
peak widths resulting from elastic anisotropy can be cal-
culated. Additionally, the Reuss limit allows pressure
measurements and equation-of-state models to be com-
pared directly to diffraction measurements. This flexible
analysis enables diffraction from materials with any tex-
ture and a wide variety of stress conditions to be modeled
within the Reuss limit.

We have shown how this method can be applied to the
case of polycrystalline diamond under uniaxial compres-
sion. Using the elastic constants calculated with DFT
and shock Hugoniot equations, we demonstrated how this
analysis can be applied to calculate strength from diffrac-
tion measurements when a limited number of diffraction

lines are available. These results illustrate how strength
can have a significant impact on material density inferred
from diffraction measurements.
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S. LePape, T. Ma, A. Pak, M. J. MacDonald, S. Ali,
B. Barbrel, R. Falcone, D. Kraus, Z. Chen, M. Mo, M. Wei,
and S. H. Glenzer, , 11.

8 L. B. Fletcher, H. J. Lee, T. Döppner, E. Galtier, B. Na-
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