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I. INTRODUCTION

Quantum Chromodynamics is a renormalizable non-Abelian gauge
field theory of quarks and gluons, based on the principle of exact
local SU(3)-color symmetry.! From the experimental standpoint,
there is now impressive evidence? that QCD is a viable theory of
hadronic phenomena. The most important phenomenological evidence
for QCD comes from inelastic lepton scattering, e’e” annihilation
processes, and those high momentum transfer exclusive and inclusive
reactions where the structure of perturbative quark and gluon sub-
processes can be studied in relative isolation from the bound state
dynamics of the hadrons. From the theoretical standpoint, the
elegant structure of QCD makes it appear almost compelling as a
fundamental theory of hadronic phenomena, even though many crucial
questions concerning quark and gluon confinement, and the effects
of non-perturbative phenomena remain unanswered.

A critical feature of QCD is asymptotic freedom,” i.e., the
logarithmlc decrease of the effective quark and gluon coupling cons-
tant a (Q ) with momentum transfer which implies that the strong
1nteract10ns become weak, and even calculable in perturbative theory
at short distance. The fact that the annihilation ratio
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is empirically® close to the zeroth order QCD prediction R® =3 )e?

for energies above the heavy quark thresholds is a crucial g 1
check of asymptotic freedom and the color, charge, and spin assign-
ments of the quark quanta in QCD. Critical features of QCD are
also confirmed by the observed logarithmic breaking of scale-
invariance in deep inelastic lepton-scattering? and the measure-
ments of two-jet and three-jet structure of e'e™ annihilation
final states.® The recent observations of jet structure® in two-
photon reactions (consistent with Yy +qq subprocesses), and measure-
ments’ of the photon structure function also provide fundamental
checks of predictions which are essentially unique to QCD. However,
despite these successes, there is no direct experimental evidence
for (near) scale-invariant quark-quark, quark-gluon, or gluon-gluon
scattering amplitudes as predicted by QCD; the cross section for
large transverse momentum hadron production in hadron-hadron colli-
sions appears to reflect much more complicated dynamical mechanisms.
On the other hand, as we discuss in Section IV, the fact that the
proton form factor GM(QZ) scales as (Qz)_2 reflects the fact that
the minimum Fock state in the nucleon contains 3 quarks, and that
the internal quark-quark interactions which control the nucleon
wavefunction at short distances are consistent with scale invar-
iance.8:? Thus far experiments are not sufficiently sensitive to
distinguish a logarithmically decreasing aS(QZ) from a constant;
i.e., fixed point behavior. The sensitivity of the nucleon form
factors to the form of as(Qz) is discussed in Section VI.

Although there have been remarkable technical achievements in
perturbative QCD calculations in the past few years,l’z’10 there
has also been the realization that precise and detailed comparisons
with experiment require consideration of effects and phenomena not
readily computable with present methods. There are, in fact, only
a very few large momentum transfer processes which can be studied
rigorously to all orders in perturbation theory such as Re+e-.(s),1
the meson form factors FM(QZ)11 (and FY+M(Q2))’ the two photon
processes!? yy >MM at large momentum transfer, the photon structure
function,13 and the Q2-evolution of the hadron structure functioms.
Although, in principle, these processes can be calculated to arbi-
trary orders in perturbation theory, in practice, there are serious
complications involving the dependence of predictions made to
finite order on the choice of renormalization scheme and the scale
parametrization chosen for the argument of as.2’13 We discuss a
new method for avoiding the ambiguities in Reference 14. Aside
from this, there is always the question of the radius of conver-
gence of the perturbation expansion. Even for processes which can
be calculated to arbitrary orders in a_, there are (presently)
uncalculable power-law suppressed (higher twist) contributions!®
which must be included in detailed fits to experiment, especially
at the edge of phase space.l6

In the case of jet production, QCD-based predictions based on
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the elementary features of e+e'-+q§ and qdg, YY rqq, etc. must
also take into account higher twist contributions, model-dependent
non-perturbative effects intrinsic to hadron formation and decay,
and possibly dynamical effects due to quark confinement.3 In the
case of some exclusive processes such as the baryon form factor
there are non-leading QCD contributions which are asymptotically
suppressed by Sudakhov form factors.2°10 The precise evaluation
requires an all orders resumption of perturbation theory. QCD
predictions for elastic hadron-hadron scattering are complicated
by the presence of Landshoff!’ pinch singularity contributions
which are only partially suppressed by Sudakhov form factors. 10
Despite these complications, we can still derive general properties
for exclusive reactions such as hadron-helicity conservation!® and
the leading power-law behavior. !9

An even more interesting (and perplexing) situation occurs
for all inclusive high momentum transfer inclusive reactions in-
volving hadronic initial states such as Drell-Yan massive lepton
pair production, direct photon production, and large py hadron
production. As shown in Reference 20, initial state interactions
violate the usual QCD factorization theorem order by order in per-
turbation theory and affect the normalization and transverse
momentum dependence of the inclusive cross sections. In addition,
final state interactions also affect the associated multiplicity
and transverse momentum dependence of the outgoing jets in deep
inelastic lepton scattering reactions. A detailed report on these
effects is given in Reference 20.

Perhaps the most serious complication to QCD phenomenology is
the presence of higher twist subprocesses, since power-law sup-
pressed contributions can often mimic (and thus confuse the iden-
tification) of the logarithmic modifications predicted for the
leading twist contributions.!® Examples of this for deep inelastic
structure functions and fragmentation distributions are discussed
in References 21 and 22 and Section V. 1In the case of three-jet
production in ete™ annihilation, higher twist terms give contribu-
tions?3 dN/dki ~(k2)_2 for the hadron transverse momentum distri-
bution in quark ané gluon jets. These hard components can compli-
cate the separation of the e’e” >qgg and ete™ >qg subprocesses.

In the case of hadron production at large transverse momentum,
"direct-coupled" higher twist subprocesses such as ggq->mq actually
dominate?” the leading twist qq ~qq +qmq subprocess at large Xp =
ZPT//;' Evidence for direct-coupled mq >Y*q subprocesses in
wp+u+h'x reactions is discussed in Section V and Reference 22.

Present QCD phenomenology is also incomplete in the sense that
although much attention is paid to the Q% evolution of hadron
structure functions there is no real understanding of the basic
x-dependent form of the quark and gluon distribution in hadrons,
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or, how to relate them to other hadronic phenomena. The relation
of the x ~1 behavior of structure functions to the exclusive fixed
w2, high Q? domain is only roughly understood.2® The x ~0 behavior
of structure functions and the connection to the photoabsorption
cross section at fixed Q2, high v, and nuclear shadowing phenomena
is also not well understood.?2®

These lectures are part of a series presented in this volume
by G.P. Lepage, G. Bodwin and myself. Our purpose is to begin to
extend QCD phenomenology by taking into account both the physics
of hadronic wavefunctions27 and the effects of initial and final
state interactions.?? The work presented here on the construction
and parametrization of wavefunctions in QCD was done in collabora-
tion with Tao Huang. The work on initial state effects is presented
in the chapter by G. Bodwin. Our eventual goal is to obtain a
parametrization of the wavefunctions which will bridge the gap
between the non-perturbative and perturbative aspects of QCD.

The lack of knowledge of hadronic matrix elements is the main
difficulty in computing and normalizing dynamical higher twist
contributions for many processes.

In these lectures we emphasize the utility of a Fock state
representation of the meson and baryon wavefunctions as a means
not only to parametrize the effects of bound state dynamics in
QCD phenomena, but also to interrelate exclusive, inclusive, and
higher twist processes. It is particularly convenient to choose
a momentum space Fock state basis!9»27
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defined at equal "time" T = t +2z on the light-cone. Here x; =
(k°-+k3)i/(p°-+p3), Kli’ and A; specify the longitudinal and trans-
verse momenta and spin projection S, of each (on-mass-shell) quark
and gluon in the n-particle Fock state (n > 2 for mesons and n > 3
for baryons). We also choose the light-cone gauge At=A%4+43 =0
so that only physical polarizations of the gluons occur. The color
singlet wavefunctions are regulated so that they are finite in both
the infrared and ultraviolet regimes.?

There are a number of reasons why this representation of
hadrons in terms of the quark and gluon degrees of freedom is
useful:

(1) In light-cone perturbation theory, the perturbative vacuum
is also an eigenstate of the total QCD Hamiltonian on the light-
cone; perturbative calculations are enormously simplified by the
absence of vacuum to pair production amplitudes.
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(2) All form factors, charge radii, magnetic moments, etc.
have exact expressions in terms of the ¥,.

(3) The structure functions G,(x,Q) and G_,(x,Q) (and more
general multiparticle distributionsg)which control large momentum
transfer (leading and higher twist) inclusive reactions, and the
distribution amplitudes ¢(x,Q) which control large momentum transfer
exclusive reactions (and directly coupled inclusive reactions) are
each specific, basic measures of the Y. Examples of these calcu-
lations are schematically illustrated in Figs. 1 through 3.

(4) Other physical quantities such as decay amplitudes provide
rigorous sum rule or local constraints on the form of the valence
components of meson and baryon wavefunctions. 2
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Fig. 1. Calculable large momentum transfer meson processes in QCD,
and their connection to the meson Fock state wavefunction
Vqg and distribution amplitude $(x,Q). Only a representa-
tive diagram for the hard scattering amplitude Ty is shown.
(a) The Y > 7° transition form factor (measurable in single
tagged ee ~ee Tm° experiments), (b) the meson form factor,
(c) the yy >MM scattering amplitude. Details are discussed
in Section 1IV.
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The plan of these lectures is as follows. The basic deriva-
tions of (1) light-cone quantization, (2) the Fock state description
of hadrons, (3) the meson form factors at large momentum transfer
and distribution function evolution, (4) extensions to heavy atoms,
and (5) the avoidance of scale and scheme ambiguities are presented
in Lepage's lectures.?® The main emphasis of the lectures in this
chapter will be on novel methods and tools to probe hadronic struc-
ture, and the implications of phenomenological constraints on
hadronic wavefunctions. 1In Sections II-IV we discuss measures of
the hadronic wavefunction (form factors, magnetic moments, etc.),

Fig. 2. Baryon processes at large momentum transfer in QCD and the
connection to the baryon Fock state wavefunction. (a)
Baryon form factors, (b) heavy quarkonium decay T-»pp, (c)
deep inelastic lepton-baryon scattering. Only representa-
tive contributions are shown. The inclusive cross section
and structure function G g(%,Q) is computed from the square
of the baryon wavefunction summed over all contributing Fock
states.
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Fig. 3.

Example of QCD-computable higher twist 'direct-coupled' sub-
processes for inclusive reactions. The subscript D indicates
that the hadronic wavefunction is involved directly in the
high momentum transfer subprocesses. (a) Direct production
of high py mesons in hadron-hadron cross section. The
predicted cross section is proportional to the meson form
factor FM(p%) times the leading twist cross section. (b)
Higher twist contribution to meson-induced massive lepton
pair production. The predicted cross section is equivalent
to a contribution FL(x,QZ) ~C/Q?to the longitudinal struc-
ture function of the meson. (c) Direct meson production

of quark jets in meson-baryon collisions. All of the meson
energy is used to produce jets at large transverse momentum.
The cross section is proportional to FM(PT) times the lead-
ing twist qq +qq cross section. (d) Direct production of
anti-quark jets in BB collisions. The cross section is
proportional to GM(p%) times the leading twist qq -qq cross
section. 1In each case the direct process dominates over

the leading twist contribution in a large x kinematic
region.
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and give an abbreviated analysis of high momentum transfer exclu-
sive processes. We also show how meson distribution amplitudes can
be measured in YY >MM reactions. The connection of the Fock state
basis to leading and higher twist contributions to deep inelastic
scattering is given in Section V. In Section VI we discuss how
many different QCD processes are interrelated (as in Figs. 1 through
3) through the hadronic Fock states. We also discuss a novel type
of QCD subprocesses — direct coupled hadron-induced reactions.29
A new prediction for the proton form factor is also given. 1In
Section VI, we also introduce a simple phenomenology of hadron
wavefunctions and discuss present constraints on the form and nor-
malization of the valence meson and nucleon Fock states. An impor-
tant conclusion is that the valence Fock state as defined at equal
time or the light cone appears to have a significantly smaller
radius than that of the physical hadron;27 higher Fock states thus
play an essential role in low momentum transfer phenomenology.
Applications to quark jet diffraction excitation3? and the hidden

heavy quark Fock state structure of hadrons are also discussed, 3133

II. HADRONIC WAVEFUNCTIONS IN QCD 27

Even though quark and gluon perturbative subprocesses are
simple in QCD, the complete description of a physical hadronic
process requires the consideration of many different coherent and
incoherent amplitudes, as well as the effects of non-perturbative
phenomena?’L+ associated with the hadronic wavefunctions and color
confinement. Despite this complexity, it is still possible to
obtain predictions for many exclusive and inclusive reactions at
large momentum transfer provided we make the ansatz that the effect
of non-perturbative dynamics is negligible in the short-distance
and far-off-shell domain. (This assumption appears reasonable
since a linear confining potential V ~r is negligible compared to
perturbative 1/r contributions.) For many large momentum transfer
processes, such as deep inelastic lepton-hadron scattering reac-
tions and meson form factors, one can then rigorously isolate the
long-distance confinement dynamics from the short distance quark
and gluon dynamics — at least to leading order in 1/Q2.3% The
essential QCD dynamics can thus be computed from (irreducible)
quark and gluon subprocesses amplitudes as a perturbative expansion
in an asymptotically small coupling constant uS(QZ).

An essential part of the QCD predictions is the hadronic wave-
functions which determine the probability amplitudes and distribu-
tions of the quark and gluons which enter the short distance sub-
processes. The hadronic wavefunctions provide the link between
the long distance non-perturbative and short distance perturbative
physics. Eventually, one can hope to compute the wavefunctions
from the theory, e.g., from lattice36738 or bag models,3? or di-
rectly from the QCD equations of motions, as we shall outline below.
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Fig. 4. The n-particle Fock state amplitude defined at equal T.

Knowledge of hadronic wavefunction will also provide explicit con-
nections between exclusive and inclusive processes? and will allow
the normalization and specification of the power law (higher twist)
corrections to the leading impulse approximation results. As we
shall discuss in Section VI, there are a number of novel QCD pheno~
mena associated with hadronic wavefunctions, including the effects
of intrinsic gluons, intrinsic heavy quark Fock components,*l dif-
fraction dissociation phenomena, and '"direct" hadron processes
where the valence Fock state of a hadron enters coherently into a
short-distance quark-gluon subprocess.

The most convenient representation of a wavefunction in a
relativistic field theory is to use a momentum space Fock state
basis defined at equal "time" 1=t +z on the light cone (see
Fig. 4):4%2

W,k x5 A} (2.1)
Momentum conservation requires

n N n

121 k,=0, 121 x, =1, 0<x, <L. (2.2)

The Kl- are the transverse momentum of the (on;mass—shell) consti-
tuents relative to the bound state B:momentum P=P32. The x4 are
the light-cone momentum fractions (k™ =k®+k3 A.B=4(aA*B~ + A~gh) -

L 2L
Ok + k%),
x = % 1 . 2.3)
i P+ PO+P3

(In a frame where P3 »«, the x; are the longitudinal momentum
fractions.) The mass shell condition is k2 =m?, or k'==(ki-km2)/k+.
As we shall see, the equal-t formalism is equivalent to the usual
Schroedinger equal-time theory in the non-relativistic limit.

A unique and remarkable advantage of quantizing a relati-
vistic theory at equal T is the fact that the perturbative vacuum
state ]O> is also an eigenstate of the full Hamiltonian. Matrix
elements where particles are created out of the vacuum are excluded
because of the fact that all particles must have k;’>0. Furthermore,
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the charge operator and the current J*=J° +J3 are diagonal in the
Fock state basis. It is particularly advantageous to choose the
light-cone gauge At =A% +A3 =0 since unphysical degrees of freedom
do not appear. A comparison between time-ordered and t-ordered
perturbation theory is given in Table I.

Calculations in light-cone perturbation theory are often
surprisingly simple since one can usually choose Lorentz frames
for the external particles such that only a few time-orderings need
to be considered.“3”%% All the variables have a direct physical
interpretation. The formalism is also ideal for computing helicity
amplitudes directly without trace projection techniques. A list of
all the gluon fermion vertices which are required as gauge theory
calculations is given in Tables I and II of Reference 19. Further
details and derivations may be found in Lepage's lectures in this
volume.

Table I. Time-ordered perturbation theory.

Equal t Equal 17 = t +2z
2 2
o_ /2 2 particle - _k%+m particle
k Ko4m {masg shell] k= mass shell
2 k conserved 2 ﬁ;,k+ conserved
“uab=vab ”“ab:=vab
1 1
+)V v +IV eV
¢ ac Eko_ Y K%+ ie cb c acZk‘—Zk‘-&-ie cb
a c a c
n! time-ordered contributions kt >0 only
> >
Fock states wn(ki) Fock states wn(kii’xi)
n + n n
z Ei==§ =0 x=:EI-, 2 x, =1, 2 E ,=0
i=1 P g=1 * -1
(0 <x, <1)
i
; o o o R |
E=p" - ] Kk =P (27 - ) k)
i=1 i=1
n o n (k? +m?
= M -~ z kz + m% = M2— z [ L ]
. i i . X
i=1 i=1 /
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It is straightforward to implement ultraviolet renormalization
in light-cone perturbation theory. We define truncated wavefunctions
wK and a truncated Hamiltonian HX such that all intermediate states
with || >«? are excluded.“® Thus k! is analogous to the lattice
spacing in lattice field theory. Since QCD is renormalizable the
effects of the neglected states are accounted for by the use of the
running coupling constant GS(KZ) and running mass m(x2), as long as
k2 is sufficiently large compared to all physical mass thresholds.
Completeness implies

2
nEAi J [4%k ] Jldx]!%f(xi’kli; WI=1- 0@ (2.4)
i n n 425
= 3:2 he a4
[4%k ] = 1635 (ig_l k ) 1_1__11 = (2.5)
and
n n
[dx] = 6(1 - ) x) T dx, . (2.6)
i=1 i=1

The equation of motion for the meson or baryon wavefunction in QCD
is a set of coupled multiparticle equations (see Fig. 5):

o k2 4+m?
2 L K _ K K
[M - ,z ‘"‘?Z“*O.Ju’n - z, Vnn' Yy i @.7
i=1 1 n
where M is the eigenvalue and Von' is the set of diagonal (from
instantaneous gluon and fermion exchange) and off-diagonal (from
the 3 and 4 particle vertices) momentum-space matrix elements dic-
tated by the QCD rules. Because of the k cutoff the equations
truncate at finite n,n'. In analogy to non-relativistic theory,
one can imagine starting with a trial wavefunction for the lowest
lqa> or |qqq> valence state of a meson or baryon and iterating the
equations of motion to determine the lowest eigenstate Fock state
wavefunctions and mass M. Invariance under changes in the cutoff
scale provides an important check on the consistency of the results.
Note that the general solution for the hadron wavefunction in QCD

Fig. 5. QCD equation of motion for meson wavefunction.
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is expected to have Fock state components with arbitrary numbers of
gluons and quark-antiquark pairs.

We can make an (approximate) connection between the equal-time
wavefunction of a composite system and the l:Lght—cone wavefunction
by equating the off-shell propagator &=M2 - ( % k) in the two
frames: i=1

n 2
RN T a,-o0lc.m]
) (1— (1) i=1
b= (2.8)

2 2
n [k’ +m
2_ i T = =
M [ )i, Zkli 0, Ix=1[L.C.] .

i=1
In addition we can identify

xt qo+q3- >
e e VET T 2.9

P 13
Z q(;)

LR 4

For a relativistic two particle state with a wavefunction which is
a function of the off-shell variable & only, then we can identify
- = = 27
(m) =m, =m, x=x, -x,)
2 2
kJ_ +m

_ 2 -5 >2
e AON P El R CRVAS IR (2.10

In the non—relatlvistlc limit this corresponds to the identifica-

tion q kJ_, qa-xzm .

III. MEASURES OF HADRONIC WAVE FUNCTIONS

A. Form Factors of Composite Systems

If we could solve the QCD equation of state [Eq. (2.7)] for
the light-cone wavefunctions ¥, of a hadron then we could (in prin-
ciple) calculate all of its electromagnetic properties. For example,
to compute the elastic form factors <p|J¥(0)|p+q> of a hadron we
choose the Lorentz frame“®

H + - + M
p = (,p ,pl)=(p,;¢,0l)
(3.1)
+ - > 2p. >
" = (a,q7,q) = (0, 1,9
P

2 2 2

where p2 = (p+q)2 =M" and -q =Q =21> Then the only time ordering
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which contributes to the <p[J+|p+q> matrix element is where the
photon attaches directly to the e:d:y us: currents of the constituent
quarks. The spin averaged form factor is“6>19 (see Fig. 6a)

2N _ 2 *K 2, K >,
F(Q )—E JZ e f[dx][d k] Az ULk A (LK Gsa) (3.2)
i

where §+'==E+ + (l—x-)gl for the struck quark and K& —xial (143)
for tthspec ator quarks. (The —xial terms occur because the argu-
ments k' are calculated relative to the direction of the final
state hadron.) We choose k2 >>Q2,M2. We note here the special
advantage of light-cone perturbation theory: the current Jt is

diagonal in the Fock state basis.

Because of Eq. (2.4) the form factor is normalized to 1 at
zero momentum transfer. We can also compute the helicity flip form
factors in the same manner.l19°%7 For example, the anomalous moment
a=F,(0) of any spin 1/2 system can be written'’

a 2 *K 3 9 K
2.V e, |ldx][d’k (i 2 . (3.3)
il [t ta®e 192 I G v,

Fig. 6. (a) Calculation of current matrix elements in light-cone
perturbation theory. (b) Valence Fock state contribution to
the large momentum transfer_meson form factor. Ty is computed
for zero mass quarks q and q parallel to the pion momentum.
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Explicit calculations of the electron anomalous moment in QED using
this result are given in Reference 47. We notice that in general
all Fock states W; contribute to the anomalous moment of a system,
although states with k? much larger than the mean off shell energy
<> are not expected to be important. The general result (3.3)
also includes the effects of the Lorentz boost of the wavefunction
from p" to (p+q)". 1In particular, the Wigner spin rotation contri-
butes to F,(q?) and the charge radius Fi(qz) in the ¢2 -0 limit and
can only be neglected in the limit of non-relativistic binding
<e> <<M?., This effect gives non-trivial relativistic corrections"®
30 nuclear magnetic moment calculations based on simple additivity
W= <) U,>.

3

B. Form Factors of Mesons®

Results such as Eqs. (3.2) and (3.3) are formally exact but
useless unless we have complete knowledge of the hadronic or nuclear
wavefunction. However, by making use of the impulse approximation
and the smallness of the QCD running coupling constant, we can cal-
culate features of elastic and inelastic large momentum transfer
processesl? without explicit knowledge of the wavefunction. For
example, consider the |qq> Fock state component contribution to the
pion form factor. Choosing K2==Q2, we have

1 a’k
F (%) = J dx T lsw; P, % Du K+ (109D

+ higher Fock state contributions . (3.4)

The bound state wavefunctions are peaked at low transverse momentum,
i.e., small off-shell energy & . Igus the leading contribution at

large Q? come from the regimes (a) k2 <<21)'2 and (b) (k +(1-x)q )2<<q%
Thus L iR 1 i L

1
NRICII J ax ¢(x,0) v (x, (1-x)3 ) (3.5)
0
where!?
k.
00,0 = | =3k (3.6)

If we simply iterate the one-gluon exchange kernel V; in the equa-
tion of motion for ¥, then for qi << <Zi>

*Further discussion may be found in Lepage's lectures in this
volume and Refs. 11 and 19.
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2 . Q
d zl WKX,(l-X)ql,y,zl)w (Y,ll)
dy 167°

2

Q
¥ (x, (I-x)q )
L —qi(l—x)/x

VI(X,(l-X)ql;Y,OL)

. .7
—qi(l-x)/x ¢(y,Q) 3.7

R

Thus we can write the gluon exchange contribution to the form fac-
tor in the form;!1:19 [see Fig. 6b)]

1
F (@)= [ dx dy ¢*(y,Q) T,(x,y;Q) ¢(y,Q) (3.8)
0
where )
167 C_a_(Q?) 3
F_ s €] ez
T, = + —= 3.9)
B Q [(1-y><1—x> ny (

is the "hard scattering amplitude" for scattering collinear consti-
tuents q and q from the initial to the final direction. The color

factor is Cp= - (n -1) = 4/3. The "distribution amplitude"
$(x,Q) is the amplltude for finding the |qq> Fock state in the pion
collinear up to the scale Q. (It is analogous to the wavefunction

at the origin in non-relativistic calculations.) The distribution
amplitude enters universally in all large momentum transfer exclu-
sive amplitude and is a process-independent measure of the valence
quark distribution in each hadron; its (logarithmic) dependence on
Q% can be determined directly from the operator product expansion
or the light-cone or from an evolution equation, as we discuss
below.

Thus the simplest estlmate for the asymptotic behavior of the
meson form factor is F (Q ) ~ao (QZ)/Q2 To see if this is correct
we must examine the hlgher order corrections:

(1) Contributions from higher particle number Fock states
qug> Iqqqq> etc. are power-law suppressed since (in light-cone
gauge) the numerator couplings cannot compensate the extra fall-
off in Q2 from the extra energy denominators.

(2) All infrared singularities and contributions from soft
(2 +0) gluons cancel in color singlet matrix elements. [It is
1nterest1ng to note that the quark (Sudakov) form factor falls
faster at large Q2 than F (Q ). 1]

(3) Vertex and vacuum polarization corrections to Ty are higher
order in o (Q ) since we choose KZ-QZ. The effective argument of og
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in Ty is Q%2 =xy Q% or (1-x)(1-y)Q? corresponding to the actual momen—
tum transfer carried by the gluon.

(4) By definition, $(x,k?) sums all (reduciblg) contributions
from low momentum transfer gluon exchange in the qq wavefunction.
Hard gluon contributions with |&| > k2 and the irreducible (cross-
graph, etc.) give contributions to Ty which are higher order aS(QZ)
By analyzing the denominators in Ty one can show that the natural §
cutoff for ¢(x k) which minimizes higher order contributions is k2=

2 1 1—X 4
Qe = @ min { = I

(5) Although Ty is singular at x +0,1, the endpoint behavior

of ¢(x,Q2) ~x%, (1-x)€ (e >0) is sufficient to render this region
harmless.

C. The Meson Distribution Amplitude

The essential predlctlon of QCD for the pion form factor is
the power-law behavior® ~l/Q , with logarithmic corrections from
the explicit powers of a (Q ) in Ty and the Q? dependence of the
distribution amplitude ¢(x,Q ).

N The variation of ¢ with Q2 comes from the upper limit of the
k_L integration (since y ~ 1/k ) and the renormalization scale depen-
dence:

ZZ (Q) Qo >

Q. Ty =
U] (X,kl) = ZZ(QO) U] (X’kl) (3.10)

due to vertex and self-energy insertions. Thus

|

Q® 2 4(x,0) = —°~—— 136,30 450 1og 2, (@eG,0) - (3.1D)
3Q 16 logQ

To order uS(Qz) we can compute Q2y from one-gluon exchange [as in
Eq. (3.7)], and 4 logZ, (Q2)/dlogQ2 a (QZ)YF/4W Setting $(x,Q) =
x(1-x)§(x,Q) = x ¥ ¢ we obtain an evolutlon equation"

a_(Q?)

‘——*J ldy] V(x;,y,)¢(y,Q) (3.12)

XIXZQ . $(xi’Q) R
0

alogQ

where

= _ b
V(xi’yi) - 2CF {xlyze(y1_ Xl)(dhlhz + 1 _xl) + (1 <“"2)} (3.13)

[6h152 =1 when the q and q helicities are opposite] and

A$(yi!Q) = %(yi,Q) - $(X1:Q) . (3.14)
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The ¢(x,,Q) subtraction is due to the Yp$ term — i.e., the infrared
dependence at y; =x; is cancelled for color singlet hadrons. Thus
given the initial condition ¢(x%4,Q,), perturbation theory determines
the evolution of ¢(x,Q) for Q >Q,- The solution to the evolution
equation is

¢(xi,Q) = x X

1 2 n

v 3/2 2, 2.7Y
T a @) ¢¥? (x -x,)(log Q%/A%) '@ (3.15)
n ‘o 172
n=0
where the Gegenbauer polynomials Cg/z (orthogonal on f[dx]xlxz) are
eigenfunctions of V(x;,y;). The corresponding eigenvalues are the
"non-singlet' anomalous dimensions:

C n+l 26, =
- £ 1___Mbh
Y L+4 ) - DGy 20 - ‘ (3.16)

n Bo 2

[These results can also be derived by using the operator product
expansion for the distribution amplitude.™ By definition

_ .+ |dz” ixzT/2 c<al3 Q
om0 " [ e ORI prmazeocrrgy O

(A+ is the positive energy spinor projection operator). The relative
separation of the q and g thus approaches the light-cone z2 =0 as
Q2 +o, Equation (3.16) then follows, by expanding ¢ (z)¥(0) in local

operators. ]

The coefficients a are determined from qa(xi,Qo):

— 1

23
an (log A J n (—2:2:5‘5—%'% J d(xl—xz) Cs/z (xl—xz)cb(xi,Qo). (3.18)

-1

For Q? =, only the leading Yo =0 term survives:

(lzijjwcb(x,Q) = ac’xlx2 (3.19)
where
ag 1 1 Q dzk_L Q
- = f dx ¢(x,Q) = J dx J 3 ¥ (x,kl) (3.20)
b 16w

is the meson wavefunction at the origin as measured in the decay
™ UV

(3.21)

2o 1

6 z/r-::" v

More generally, the leptonic decay (p°->e+e—, etc.) of each
meson normalizes its distribution amplitude by the "sum rule"
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1
f dx ¢ (x,Q) = o (3.22)
0 Z/Ilc

independent of Q. The fact that f,#0 implies that the probability
of finding the |[qg> Fock state in the pion is non-zero. In fact
all the Fock states wavefunctions wﬁ(xi,kl‘) (| &] <k?) are well-
defined, even in the infrared limit x4 >0 (since lé}~'<ki>/xi and
<kf> is non-zero for a state of finite radius).

The pion form factor at high Q2 can thus be writtenl!»19,50

1
P @) = [ ax ¢*(6,0) Ty0e,y3Q) 007,Q)
0 (3.23)
T} ag ((1-x) (1-y)Q?)
H 31 (1) - QP
Thus
=Y _ 12 a_ (@9
2y _ 2y n|~ 1671 s
F (Q) = 'nzo a_(Log Q*/1%) f 3 &
D)
x [1 + O(QLWQ—) + 0(’3—2)] (3.24)

where Q7 = <(1l-x)(1-y)>Q2. Finally, for the asymptotic limit where
only the leading anomalous dimension contributes:>!

2
Lin F_(Q%) = 167 ffr 3‘_5_(8_) ; (3.25)
Q%+ Q

The analysis of the FWY(QZ) form factor, measurable in ee +een®
reactions proceeds in a similar manner. [See Fig. 1(a).] An
interesting result isl®

F Q%)
a (Q%) = uf (l + 0(
s 2 2412
4mQ[F . (@]
which provides a definition of ay independent of the form of the

distribution function ¢,. Higher order corrections to F“(QZ) and
FWY(QZ) are discussed in Reference 50.

2
2, .26

IV. LARGE MOMENTUM TRANSFER EXCLUSIVE PROCESSES 12

The meson form factor calculation which we outlined above is
the prototype for the calculation of the QCD hard scattering con-
tribution for the whole range of exclusive processes at large
momentum transfer. Away from possible special points in the X5
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integrations (see below) a general hadronic amplitude can be written
to leading order in 1/Q? as a convolution of a connected hard-
scattering amplitude Ty convoluted with the meson and baryon dis-
tribution amplitudes:

€] <@? dzkl .
o = [ dak) %.1)
and |&]<q?
65 (x;,Q) = j CRR ICIR DI (4.2)

The hard scattering amplitude Ty is computed by replacing each
external hadron line by massless valence quarks each collinear with
the hadrons momentum P = x,;Pl. For example the baryon form factor
at large Q2 has the form%19 [see Figs.2(a) and 7]

G, (%) = j[dx] [dy] 6*(y,,® T, (x,730%) 0(x, Q) (4.3)

where Ty is the 3q +y»>3q' amplitude. [The optimal choice for Q
is discussed in Reference 19.] For the proton and neutron we have
to leading order [CB==2/3]
12872 cg
T = — T (4.4)
o)
12872 2

T = ———B_ [T -T

] (4.5)
n 2 L4 T2
3(Q2-+M§)

where ) 5 5 5
.- as(x3y3Q )aS«l—xl)(l-yl)Q ) as(xzyzQ )as((l—xl)(l-yl)Q )

+
L x,(1-x,)? y,(1-y)? x,(1-x,)7 y,(1-y,)?

2 2
og (x,5,Q7)a  (x,y,07) .6

- X2X3(1—X3)YZY3(1-Y1)

and 2 >
ag Gy, Q7)o (x,y,07) %.7)

T =
2 xx3(1-%)y;y3(1-y5)

T, corresponds to the amplitude where the photon interacts with the
quarks (1) and (2) which have helicity parallel to the nucleon
helicity, and T, corresponds to the amplitude where the quark with
opposite hglicity is struck. The running coupling constants have

arguments G2 corresponding to the gluon momentum transfer of each
diagram. Only the large Q2 behavior is predicted by the theory;
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we utilize the parameter M, to represent the effect of power-law
suppressed terms from mass insertions, higher Fock states, etc.

The Qz-evolution of the baryon distribution amplitude can be
derived from the operator product expansion of three quark fields
or from the gluon exchange kernel, in parallel with the derivation
of (3 12). The baryon evolution equation to leading order in a
isl

S

1
C
xlxzxs{aciﬁ(x »Q) +——-— ?b(x ,Q)} J [dylV(x;,y,)9(y;,Q).  (4.8)
Bo
0
Here ¢'-x1x2x3¢, = log(log(Qz/AZ) and [see Fig. 7(b)]
Vs Gh.ﬁ. A
V(x,, =2 8(y,-x,)8 (x, - =1 L1
(xi yi) *1%2%3 133 (yl xl) (Xk yk) x4 (xi+xj + yi-xi)
= V(yi,xi) . 4.9)

The infrared singularity at xjy =y; is cancelled because the baryon
is color singlet. The evolution equation has the general solution

B
® 2 =Y
= ¥ X,
$(x,Q) = xxxy L oagd (k) Qog ) (4.10)
n=0
The leading (polynomial) eigensolution ¢n(x ) and corresponding
baryon anomalous dimensions are given in References 19 and 52.
Thus at large Q , the nucleon magnetic form factors have the forrng’19

a_(Q?%)

.y, % @ ! B2
oy (@) > = zm b (log 3 (1400 (@ ),Q—z)}. (4.11)

We can also use this result to obtain results for ratios of various
baryon and isobar form factors assuming isospins or SU(3)-flavor

:(E {E @+{E+...

Fig. 7. (a) Leading contributions to Ty for the baryon form factors
corresponding to the four terms of Egs. (4.6) and (4.7),
respectively. (b) Contributions to the kernel for the
evolution of the baryon distribution amplitude.
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symmetry for the basic wavefunction structure. Results for the
neutral weak and charged weak form factors assuming standard
SU(2) xU(1) symmetry are given in Reference 46.

As we see from Eq. (4.3), the integration over xy and y., have
potential endpoint singularities. However, it is easily seen that
any anomalous contribution [e.g., from the region x,,x3 ~0(m/Q),

x; ~1 -0(m/Q)] is asymptotically suppressed at large Q2 by a Sudakov
form factor arising from the virtual correction to the gyq vertex
when the quark legs are near-on-shell [p2-~ 0(mQ)].12233 This
Sudakov suppression of the endpoint region requires an all orders
resummation of perturbative contributions,5% and thus the deriva-
tion of the baryon form factors is not as rigorous as for the meson
form factor, which has no such endpoint singularity.

The most striking feature of the QCD prediction (4.11) is the
l/Qq power-law behavior of G& as Gﬁ. The power-law dependence
reflects:

(1) The essential scale-invariance of the qq scattering sub-
processes within TH.

(2) The fact that the minimal Fock state of a baryon is the 3-quark
state.

We will discuss the phenomenology of the baryon form factors
and the resulting constraints on the baryon wavefunction in Section

VI.

In the case of hadron scattering amplitudes A+B - C+D, photo-
production, Compton scattering, etc., the leading hard scattering
QCD contribution at large momentum transfer Q2==tu/s has the form!®
(helicity labels and suppressed) (see Fig. 8)

~ ~ . 2
[dx1¢, (x5 Qop (x>, QT (%,3Q%,6 )

2 =
J%&B-+C+D(Q ’ec.m.) J m.

ENCIROLN AN (4.12)

The essential behavior of the amplitude is determined by Ty, com-
puted where each hadron is replaced by its (collinear) quark
constituents. We note again that Ty is '"collinear irreducible,"
i.e., the transverse momentum integrations of all reducible loop
integration are restricted to k? >0(Q?) since the small k, region
is already contained in ¢. If the internal propagators in Ty are
all far-off-shell 0(Q2?) [as in Fig. 8(a)] then a perturbative
expansion in as(Qz) can be carried out. However, this is not true
for all hadron-hadron scattering amplitudes since one can have
multiple quark-quark scattering processes which allow near-on-shell
propagation in intermediate states at finite values of the xi.17
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The classic example is meson-meson scattering, where two pairs of
quarks scatter through the same angle [see Fig. 8(c)]. However,
the near-on-shell region of integration is again suppressed by
Sudakov factors. [Physically this suppression occurs because the
near-on-shell quarks must scatter without radiating gluons.] A
model calculation by Mueller!? for m-m scattering in QCD (using an
exponentiated form of the Sudakov form factor) shows that the lead-
ing contribution comes in fact from the off-shell region [k2I~
0(Q%2)1-% where ¢ = (2c+1)7!, ¢ =8CF/(11 - ng) (for four flavors

€ = 0.281). This region gives the contribution

_ O(Qz)_s/z—c n(2c+1l/2¢)

(Qz)—l.922 (4.13)

M

T ~>TT

1K

compared to (Qz)—2 from the hard scattering |k?| ~0(Q?) region.

Thus even when pinch singularities are present the far-off-
shell hard scattering quark and gluon processes dominate large
momentum transfer hadron scattering amplitudes: Given this result
we can abstract some general QCD features common to all exclusive
processes at large momentum transfer:

(1) All of the non-perturbative bound state physics is isolated in
the process-independent distribution amplitudes.

(2) The nominal power-law behavior of an exchange amplitude is
(1/Q)2~% where n is the number of external elementary particles
(quarks, gluons, leptons, photons in Ty). This immediately implies
the dimensional counting rules:

TH=X+ é25+ ég 4 eee
(a}) (b) (c)

Fig. 8. QCD contributions to meson-meson scattering at large momen-—
tum transfer. Diagram (c¢) corresponds to the Landshoff
pinch singularity which is suppressed by quark form factor
effects.
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99 (A4B > C4D) -~ (i)n_2 £G6 ) (4.14)
dt Q2 :

h =
where n=n, + np + n. + nD, and

n. -1
Fg(@®) - )" (4.15)

where Fy is the helicity-conserving!®8>19 form factor. These power-
law predictions are modified by (a) the Q?-dependence of the factors
of ag in Ty, (b) the Qz—evolution of the distribution amplitudes

and (c) a possible small power associated with the almost complete
Sudakov suppression of pinch singularities in hadron-hadron scatter-—
ing. The dimensional~-counting rules appear to be experimentally
well-established for a wide variety of processes (see Reference 19):

6@ - @72, (@ - @7 (4.16)
and
%g_ Gp > ™) ~ (@77, j—ﬁf (mp ~ m) ~ (@2)7°,
(4.17)
g% (pp +pp) - (@710, %(YP"’YP)/%(YP*"P)~ Q?

at fixed © .
c.m

(3) since the distribution amplitudes ¢y and ¢ are L, =0
angular momentum projections of the hadronic wavefunctions, the
sum of the quark spin along the hadron's momentum equals the hadron
spin:18

Yy os% = sZ ., (4.18)

. i

ieH
(In contrast in inclusive reactions there are any number of non-
interacting quark and gluon spectators, so that the spin of the
interacting constituents is only statistically related to the hadron
spin — except possibly at the edge of phase-space x ~1.) Further-
more since all propagators in Ty are hard, the quark and hadron
masses can be neglected at large Q? up to corrections of order ~m/Q.
The vector gluon interactions conserve quark helicity when all
masses are neglected. Thus total quark helicity is comserved in
Ty at large Q2. Combining this with (4.18), we have the QCD selec-
tion rule:

S A (4.19)
initial final
i.e., total hadron helicity is conserved up to corrections of order

0(m/Q).
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Hadron helicity conservation thus applies for all large momen-
tum transfer exclusive amplitudes involving light meson and baryons.
Notice that the photon spin is not important: QCD predicts that
Yp >7p is proton helicity conserving at fixed 6.  , s>«, indepen-
dent of the photon polarization. Exclusive amplitudes which involve
hadrons with quarks or gluons in higher orbital angular momentum
states are also suppressed by powers of the momentum transfer. An
important corollary of this rule is that helicity-flip form factors
are suppressed, e.g.:

FZ(QZ)/FI(QZ) ~ 0(m?/Q%) . (4.20)

The helicity rule, Eq. (4.19), is one of the most character-
istic features of QCD, being a direct consequence of the gluon's
spin. A scalar or tensor gluon-quark coupling flips the quark's
helicity. Thus, for such theories, helicity may or may not be
conserved in any given diagram contributing to Ty, depending upon
the number of interactions involved. Only for a vector theory,
like QCD, can we have a helicity selection rule valid to all orders
in perturbation theory.

The study of timelike hadronic form factors using e+e— collid-
ing beams can provide very sensitive tests of this rule, since the
virtual photon in e+e_-*y*-*hAEB always has spin *1 along the beam
axis at high energies. Angular momentum conservation implies that
the virtual photon can '"decay'" with one of only two possible angular
distributions in the center of momentum frame: (1 +cos?6) for
fAp =Agl =1, and sin?6 for IXA-—A | =0 where AA g are the helicities
of hadron h, p. Hadronic helicity conservation, Eq. (4.19), as
required by QCD greatly restricts the p0551b111t1es. It implies
that Ay +ig=0 (since the photon carries no "quark helicity'"), or
equivalently that A, -Ag=2X) =-2A3. Consequently, anguler momentum
conservation requires IAA1~|XBI-1/2 for baryons, and [}, = IABI =0
for mesons; furthermore, the transfer distributions are now com-
pletely determined:

do + - = 2
Too5b (e'e » BB) =« 1 +cos28 (baryons) (4.21)
_do (ete™ » MM) « sinZ0 (mesons) (4.22)
d cos® ’

We emphasize that these predictions are far from trivial for vector
mesons and for all baryons. For example, one expects distributions
like 1 +acos?6, ~1<a < 1, in theories with a scalar or tensor
gluon. So simply verifying these angular distributions would give
strong evidence in favor of a vector gluon.

The power-law dependence in s of these cross sections is also
predicted in QCD, using the dimensional counting rule. Such "all
orders' predictions for QCD allowed processes are summarized in
Table II. Processes suppressed in QCD are also listed there; these
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all v1olate hadronic helicity conservation, and are suppressed by
powers of m?/s in QCD. This would not necessarily be the case in
scalar or tensor theories.

The exclusive decays of heavy quark atoms (¢,y',...) into
light hadrons can also be analyzed in QCD.l8 The decay y +pp for
example proceeds via diagrams such as those in Fig. 2(b). Since
¢'s produced in ete” collisions must also have spin *1 along the
beam direction and since they can only couple to light quarks via
gluons, all the properties listed in Table II apply to ¢, ¢', T,
T',... decays as well. There is considerable experimental data for
the ¢y and y' decays.>>

Perhaps the most significant tests are the -decays ¥,v" -»pp,nn,
+++ o The predicted angular distribution 1 +82co0s26 is consistent
with published data.3> This is important evidence favoring a
vector gluon since scalar or tensor gluon theories would predict a
distribution of sln26-+0(a ). Dimensional counting rules can be
checked by comparing the y and y' rates into pp, normalized by the
total rates into light-quark hadrons so as to remove dependence
upon the heavy-quark wavefunctions. Theory predicts

BR(Y > pp) M, /M )8 (4.23)
BR(y' »pP) L

where
BR(Y +pp) = I (y >pp) i 4.24)

r(yp »1light-quark hadrons)

Existing data suggests a ratio (M /Mw)n with n ~6 £3, in good
agreement with QCD.

Many more examples of exclusive reactions which test the basic
scaling laws and spin structure of QCD are discussed in References
18 and 19. The essential point is that exclusive reactions have
the potential for isolating the QCD hard-scattering processes in
situations where the helicities of all the interaction constituents
are controlled. In contrast, in inclusive reactions the absence
of restrictions on spectator quark and gluons allows only a statis-
tical correlation between the constituent and hadronic helicities.

Two-Photon Processes!?

One of the most important applications of perturbative QCD is
to the two-photon processes do/dt (yy+MM), M=rm,k,p,u at large
s = (k; +k,)? and fixed 6 .m,- These reactionms, which can be studied
in ete™ » ete~MM processes, provide a particularly important labor-
atory for testing QCD since these "Compton' processes are, by far,
the simplest calculable large-angle exclusive hadronic scattering
reactions. As we discuss below, the large-momentum-transfer scaling
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behavior, the helicity structure, and often even the absolute nor-
malization can be rigorously computed for each two-photon channel.

Conversely, the angular dependence of the yy +MM amplitudes
can be used to determine the shape of the process-independent meson
"distribution amplitudes," ¢y(x,Q), the basic short-distance wave-
functions which control the valence quark distributions in high
momentum transfer exclusive reactions.

A critically important feature of the yy »MM amplitude is that
the contributions of Landshoffl7” pinch singularities are power-law
suppressed at the Born level - even before taking into account
Sudakov form factor suppression. There are also no anomalous con-
tributions from the x ~1 endpoint integration region. Thus, as in
the calculation of the meson form factors, each fixed-angle helicity
amplitude can be written to leading order in 1/Q in the factorized
form [Q2 = p% =tu/s; Qx =min(xQ, (1-x)Q)] (See Fig. 9):

1 1
My £ dx (j) ay 450HQ )T ss,0, L Ve GuE)  (4.25)

where Ty is the hard-scattering amplitude vy - (qq) (qq) for the
production of the valence quarks collinear with each meson and
¢M(x,Q) is the (process-independent) distribution amplitude for
finding the valence q and q with light-cone fractions of the meson's
momentum, integrated over transverse momenta kL <Q. The contribution

IOO E T T T T T T
E(" Pion, n=2 3
o' E
e Profon, n=3
1o
5? Neutron, n=3
w ol L
- 10 E Deuteron, n=6
= E
o o2 |
Helium 3, n=9
1072 _
f Helium 4, n=12
x0. 1
g3
|O'4 I I | | L 1
0] 2 4 6
q2 (Gev?)

Fig. 9. Hadronic form factors multiplied by (Qz)n_l. (From Ref. 1).
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of nonvalence Fock states are power-law suppressed. Further, the
spin-selection rule (4.19) of QCD predicts that vector mesons M and
M are produced with opposite helicities to leading order in 1/Q and
all orders in aS(QZ).

Dimensional counting® predicts that for large s, s" do/dt
scales at fixed t/s or Oc.m. up to factors of #n s/A?.

Some forty diagrams contribute to the hard-scattering ampli-
tudes for yy >MM (for nonsinglet mesons). These can be derived
from the four independent diagrams in Fig. 10(b) by particle inter-
change. The resulting amplitudes for helicity zero mesons are:

2
T++ ) 16ﬂas 3210 (el - e2) a %.26)
T 3s x(1-x)y (1-y) 1 —c0529c m .
2
T 16ma_ 3970 ((el—ez)(l—a) +eleza(yﬂ—y) +x(1-x))
T 3s x(l-—x)yél—y) kl —COSZ ec.m. aZ —bz COSZGC.m.
(4.27)

where %} = (1-x) (1-y) +xy, the subscripts ++, ——, ... refer to photon
helicities, and e;, e, are the quark charges [i.e., the mesons have

charges t(e;-e,)]. To compute the yy +MM amplitude ,,, Eq.(4.25)],
we now need only know the x-dependence of the meson's distribution

(a) P
K, P
Py
(l - X) DA
=
H-wa
)’PB
k2 Py
Pg

(b

o e o

Fig. 10. (a) Factorized structure of the yy »MM amplitude in QCD at
large momentum transfer. The Ty amplitude is computed
with quarks collinear with the outgoing mesons. (b) Diagram
contributing to Ty(yy *MM) to lowest order in o
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amplltude ¢M(x,Q), the overall normalization of ¢y is fixed by the
'sum rule' (n = 3)

1 £\
dx ¢, (x,Q) = X (4.28)
(J) 2/3

where f,, is the meson decay constant as determined from leptonic
decays. Note that the dependence in x and y of several terms in
Ty)» is quite similar to that appearing in the meson's electro-
magnetic form factor (3.23):

16ma

_ 8
FM(s) = =33 J dx dy
0

where ¢y(x,Q) = ¢(1-x,Q) is assumed Thus much of the dependence
on ¢$(x,Q) can be removed from. by expressing it in terms of the

R,
$3(x>Q )9 (7,Q)
x(1-x)y(1-y)

(4.29)

AA'
meson form factor — i.e.,
2
M <(e; -ey)*> ] 4
++ = 1670 FM(S) _____2_______ (4.30)
i 1 -cos ec.m.J
2
T <(e ‘ez) >
T = 16ma F_(s) —_r +2<e_e >g|6 ) (4.31)
M 1 -cos?g 1 2 c.m. M
Mt c.m.

up to corrections of order ag and m?/s. YNow the only dependence on
¢y, and indeed the only unknown quantity, is in the 6-dependent

factor (%, Q oy (y, Q) aly@L-y) +x(1-x)]
é dxdy x(1-x) y(1-y) a2 -b%cos?6._p.
glo, 30, = i BICRIIIIENY (4.32)
[axdy S amyam

The spin-averaged cross section follows immediately from these
expressions:

_d£'_= 2 do - 1 l 2 I " IZ
dt ~ s dcosO, n  16ms? 4 4 o
_ 2.2 _ 2
X FM(S) <(e1 ez) > 2<e1e2><(e e2) >
= 167a 5 5
(1 -cos®8._p.) 1 -cos? 8¢ .m

. 2.2 .
Xg[ec.m.’¢M] + 2<eje,>"g [ec.m.’¢M]} . (4.33)
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Fig. 11. QCD predictions for yy ->mm to leading order in QCD. The
results assume the pion form factor parametrization
F.(s) ~0.4 Gev2/s. Curves (a), (b) and (c) correspond to
the distribution amplitudes ¢y =x(1-x), [x(1-x)17, and
8§ (x-%), respectively. Predictions for other helicity zero
mesons are obtained by multiplying with the scale constants
given in Ref. 15.

In Fig. 11 the spin-averaged cross section (for yy »mm) are
plotted for several forms of ¢M(x,Q). At very large energies, the
distribution amplitude evolves to the form

¢M(X,Q) — V3 fM x(1-x) , (4.34)

and the predictions [curve (a)] become exact and parameter-free.
However this evolution with increasing Q is very slow (logarithmic),
and at current energies ¢M could be quite different in structure,
depending upon the details of hadronic binding., Curves (b) and (c)
correspond to the extreme examples ¢M<=c[x(l-x)]4 and ¢M<x5(x-19
respectively. Remarkably, the cross section for charged mesons is
essentially independent of the choice of ¢y, making this an essen-
tially parameter-free prediction of perturbative QCD. By contrast,
the predictions for neutral helicity-zero mesons are quite sensitive
to the structure of ¢M' Thus we can study the x-dependence of the

meson distribution amplitude by measuring the angular dependence of
this process.
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The cross sections shown in Fig. 8 are specifically for yy- 7w,
where the pion form factor has been approximated by F,(s) ~0.4 Gev'/s.
The 71~ cross section is quite large at moderate s:

do + - 2
3 (ry T i 4]F_(s)]
do 4+ -
& (yy>uu) 1-cos“ec.m.
n
0.6 Gev =
- T at O, m = /2 . (4.35)

Similar predictions are possible for other helicity-zero mesons.

The normalization of yy »MM relative to the yy - 7rm cross section is
completely determined by the ratio of meson decay constants (fM/fﬂ)LF
and by the flavor-symmetry of the wavefunctions, provided only that
¢m and ¢ﬂ are similar in shape. ©Note that the cross section for
charged p's with helicity zero is almost an order of magnitude
larger than that for charged ='s.

Finally notice that the leading order predictions [Eq.(4.33)]
have no explicit dependence on og. Thus they are relatively insen-
sitive to the choice of renormalization scheme or of a normalization
scale. This is not the case for either the form factor or the two-
photon annihilation amplitude when examined separately. However by
combining the two analyses as in Eq. (4.33) we obtain meaningful
results without computing O(ag) corrections. The corresponding
calculations for helicity-one mesons are given in Reference 12.
Hadronic helicity conservation implies that only helicity-zero
mesons can couple to a single highly virtual photon. So Fy,, the
transverse form factor cannot be measured experimentally. For sim-
plicity we will assume that the longitudinal and transverse form
factors are equal to obtain a rough estimate of the yy - p,p, cross
section (Fig. 12). Again we see strong dependence on ¢Ml for all
angles except 6. ~7/2, where the terms involving g, vanish.
Consequently a measurement of the angular distribution would be
very sensitive to the x-dependence of ¢y , while measurements at
8c.m. =7/2 determine Fy,(s). Notice alsc that the number of charged
p-palrs (with any helicity) is much larger than the number of neu-
tral p's, particularly near 6 =1/2. The cross sections are
again quite large with

c.m.

do (yy > o707 Y
dt 1Py 5
e ~ __E%E_ . (4.36)

9 vy » w7
dt 0 =7/2
Cc.m.

Results for other mesons are given in Reference 12.

The yy +MM and Y*Y—+M processes thus provide detailed checks
of the basic Born structure of QCD, the scaling behavior of the
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Fig. 12. QCD predictions for Y\(—+p_'_5dL with opposite helicity *1 to
leading order in QCD. The normalization given here assumes
that the p distribution amplitude is helicity independent.

quark and gluon propagators and interactions, as well as the con-
tituent charges and spins. Conversely, the angular dependence of
the yy>MM amplitudes can be used to determine the shape of the
process-independent distribution amplitude ¢y(x,Q) for valence
quarks in_the meson qq Fock state. The cos 6, _ -dependence of
the yy +MM amplitude determines the light-cone x-dependence of the
meson distribution amplitude in much the same way that the Xpy4
dependence of deep inelastic cross sections determines the light-
cone x-dependence of the structure functions (quark probability
functions) Gq/M(x,Q).

The form of the predictions given here are exact to leading
order in aS(Qz). Power-law (m/Q)2 corrections can arise from mass
insertions, higher Fock states, pinch singularities and nonpertur-
bative effects. In particular, the predictions are only valid when
s—channel resonance effects can be neglected. It is likely that
the background due to resonances can be reduced relative to the
leading order QCD contributions if one measures the two-photon
processes with at least one of the photons tagged at moderate space-
like momentum qz, since resonance contributions are expected to be
strongly damped by form factor effects. In contrast, the leading
order QCD Y1Y2-+Mﬂ amplitudes are relatively insensitive to the
value of q% or q% for [qi[ << g.
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Finally, we note that the amplitudes given above have simple
crossing properties. In particular, we can immediately analyze the
Compton amplitude YM—+yM in the region t large enough with s >> [t]
in order to study the leading Regge behavior in the large momentum
transfer domain. 1In the case of helicity *1 mesons, the leading
contribution to the Compton amplitude has the form (s >> [t])

myM+yM

= 2 2 3 = ' = '
1lé6ma FMl(t)(e1-+e2), (AY AY . XM AM) (4.37)

which corresponds to a fixed Regge singularity at J=0.°6 1In the
case of helicity zero mesons, this singularity actually decouples,
and the leading J-plane singularity is at J=-2.

V. DEEP INELASTIC LEPTON SCATTERING

The crucial evidence that the electromagnetic current within
hadrons is carried by point-like spin 1/2 quarks comes from deep-
inelastic electron, muon and neutrino scattering. At large momen-
tum transfer, Q2 s2 GeV2 the lepton-nucleon inelastic cross section
displays a scale-invariant behavior consistent with the simplest
type of impulse approximation — where the electron scatters directly
against point-like quark constituents of the target.57 The devia-
tions which are observed at very large Q? are consistent with the
color radiative corrections predicted by QCD. In addition at low
values of Q2?, there is evidence for power-law ""high twist" correc-
tions associated with coherent multiquark processes, interference
effects, and final state corrections — quite in analogy to the
corrections to impulse approximation expected in nuclear physics
inelastic breakup calculations.

The Fock state representation we discussed in Section III
provides a particularly simple and elegant basis for calculating
the deep inelastic cross section in QCD. We first consider the
forward Compton amplitude y*p +y*p with virtual photon mass q% =
-Q%2 <0, and then calculate the ep ~eX cross section from the absorp-
tive part. An ideal Lorentz frame is

+ - + M2 2
p=G(,p,p)=0,%,0) (5.1)
P
+ - 2p-
q=(a,q7,4,) = (0 ,{;ﬁ,@ (5.2)

with q2==Q2 and p.q =Mv. For the diagram 13(b) which has no final
state interactions, the (light-cone) energy denominator between the
photon interaction is
(Kl +E¢>2 +m’ ki +m°
D =M% +2Mv - = -1 () + ie (5.3)
i#1 i
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Fig. 13. Calculation of the forward virtual Compton amplitude.
Diagram (b) gives the impulse approximation, neglecting
final state and multiquark interactions.

where m is the struck quark mass, and the sum over i#1 gives the
spectator quark and gluon contributions. For states with [@I =
[Mz-z (kf-+m2)/x| <<2Mv and ki <<Q?we can write

i

2
D2 2Mv - %: + ie (5.4)
2
_1=X’IT _3__
Im D Mo §(x 2M\)) (5.5)

i.e., the electron scattering on a quark with light-cone momentum
fraction

o 3 2
b ¥k Q0 (5.6)
pO + p3 2Mv Bj

The corresponding impulse approximation cross section is (x—*xBj)

do do
>0 = —_— >0 5.7
aian (7 X) E Gy /p*s2) 1 (2q ~2'q) - (5.7)
q
where?!
Q
N 2 Q 2 - 5.8
Gq/p(x,Q) HES [ [a kl][dx]|wn(x,kl)| 8 (x xq) (5.8)

gives the probability distribution for finding the quark with frac-
tional light-cone momentum collinear up to the scale ki <Q°, Iél <
2Mv. Unlike large momentum transfer exclusive amplitudes, all Fock
states contribute to the inclusive cross section. The subprocess
cross section do/dQ%(%q +2'q) is evaluated for a quark collinear
with the proton momentum p4_=xp ’ Kl =0, Since all the loop cor-
rections to the subprocess cross section are hard (k; 20(Q%)), it
can be developed as a power series in aS(QZ). Thus the only cor-
rection to perfect scale invariance of do/dx dqQ? at large Q? and
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Fig. 1l4. Contributions to the hadron Fock state wavefunction which
give ¥ ~1/k, at large k, and thus structure function evo-

lution.

fixed xp., comes for the Q2 dependence of the probability distribu-
tion G(x,Qz). This in turn can only arise from the wavefunction
renormalization or from contributions Y, ~0(1/k,) at large k;. In
QCD these occur only from the perturbative processes q »qg and

g *gg, g *qq, as illustrated in Fig. 14. In parallel to the deri-
vation of the evolution equation for the distribution amplitude,
we then can derive evolution equations for the distributions
Gq/H(x,QZ) and Gg/H(x,Qz) of the form®8:59

] OLS(QZ) f X dy
m G(x,Q) = ZW”—JP(;)G(Y,Q) v . (5.9)
X

For example, for the 'non-singlet'" distribution

Gq/H(x,Q) = Gq/H(x,Q) - GE/H(X’Q) (5.10)

we have to lowest order in aS(Qz), (Cp=4/3)

e (L+z? 1 +2?2 1 +x2?
Pq/q(z)-chifrg—Q+= cF[l ——-8(1 -2) de o ] . (5.11)

(The subtraction term, which ensures finite behavior at xg==0,
arises from the wavefunction renormalization, as in Eq. (3.14)).
The Q2 dependence can be displayed most simply by taking moments:

1
Mn<Q2) = J G(x,0%) x"dx . (5.12)
0
Then — ¥
Ns _ NS, 2. (log 92/A2] n
M7 = M) [1og /12 (5.13)

where the Y, are defined in Eq. (3.16). The higher order correc-
tions to the Qz—evolution of M, are discussed in References 1
and 2. A critical feature?! is the fact that the higher loop
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corrections (e.g., from the higher Fock states) are constrained
kinematically to ki <(l—y)Q2 <(1—x)Q2, where y is labelled in the
figure; i.e., the evolution is reduced at large x and for large n.
A detailed discussion is given in Reference 41.

Equation (5.7) displays an essential feature of the QCD pre-
dictions for inclusive reactions: the factorization of the physical
cross section into a hard-scattering subprocess cross section, con-
trolled by short-distance perturbative QCD, convoluted with struc-
ture functions G(X,Qz) which contain the long distance hadronic
bound state dynamics. Notice that the Q2%-evolution of G(x,Q) is
also completely specified by the perturbative QCD processes and is
independent of the nature of the target.

All the corrections to the perturbative QCD impulse approxima-
tion from final state interactions, finite ki effects, interference
contributions, mass corrections, etc., are of higher order in 1/Q2,
at least when analyzed using perturbative methods. In the operator
product analysis these contributions correspond to matrix elements
of "higher twist'operators which have non-minimal dimensions. The
most important higher twist terms for deep inelastic lepton scatter-
ing are expected to correspond to processes where the lepton
scatters on multiparticle clusters in the target (qq, qq, virtual

mesons, qg, etc.). We thus obtain a sum of contributions (see
Fig. 15):15

_gg—“ (2H > 2'X) = Z G /H(X)'Q%z(ea-+ea) (5.14)
dQ dx acH a dQ p —xp
a H
e Folx, Q2) ~(1-x)3
> Y _ ¥,k + QCD evolution
) . 9 + 0 [as(0?)]
(1-x)
F. (x.02)~
+ 2 Q4
(-x"
+ Falx,Q2) ~ —Q"e—

Fig. 15. QCD contributions to inelastic electron-nucleon scatter-
ing, including radiative and higher twist (diquark, tri-
quark) corrections.
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where, in general, dGa/sz falls in Q2 according to the composite-
ness of a:

‘22 (a+2'a) ~ Q :F @ . (5.15)

For example, the "diquark' eqq +eqq gives a contribution to
ep ~eX of relative order (m2/Q2)2. Since the qq can carry a large
fraction of the proton's momentum, this contribution can be signi-
ficant at large x. For a guide to this effect one can use the
spectator counting rule:®

2ns—1
/H(X) (1-—x) (5.16)

where ng is the minimum number of spectator quarks (or gluons) in
the Fock state required to stop at x>1. The minimal Fock state
containing a gives the dominant contribution.

The simplified rule (5.16) can be derived from minimally
connected tree graph diagrams, ignoring spin effects, or from
simple phase space considerations if one ignores the spectator
quark masses®l (see Section VI). Using this simple counting we
can then classify the contributions to the hadron structure func-
tions, as illustrated in Fig. 15. The diquark contribution is
expected to give a large contribution to the longitudinal structure
function since it acts coherently as a boson current. The order
o (Q2) contrlbutlon from the hard gluon radiative corrections
w1th k > (1-x)Q? also gives a significant contribution to op,.

A detailed derivation of the behavior of structure functions
at x ~1 from perturbative QCD is given in Reference 21. At x~1
all of the hadron's momentum must be carried by one quark, and each
quark and gluon quark and gluon propagator which transfers this
momentum becomes far off shell:

) ki + m?
ke ~ O(- —/——) .
(-4—x
Perturbative QCD predictions thus become relevant. An important
result is that at large x the struck quark tends to have the same
helicity as the target nucleon:?1,62

(1 -x%)3 a-x)s . (5.17)

G ~ G ~
qt/p+ q+/pt
This type of spin correlation is consistent with the SLAC-Yale
polarized electron/polarized target data. Combined with the SU(6)
symmetry of the nucleon wavefunction of this implies that the
leading quark in the proton is five times more likely to be an up

quark than a down quark, and thusb2 (F F e?2 xG¢ )
g 4 “a/n
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FZn(x,QZ)/sz(x,QZ) =5 3/7 . (5.18)

For the case of mesons, the perturbative QCD gluon exchange predic-
tion is®3

2
Gq/m ~ (1 -x) . (5.19)

In addition, the same QCD analysis predicts a large €/Q? contribu-
tion to the meson longitudinal structure function (see Fig.3(b)):22.6%

Q2

™ 2x?
F(x,Q%) = =5 ¢ dk? o () F_(k?) (5.20)

F
~m?/ (1-x)

which numerically is Fy, ~x2/Q? in GeV? units. This contribution,
which can dominate leading twist quark distributions in mesons is
normalized in terms of the meson distribution amplitude, which in
turn is normalized by the pion form factor.

The dominance of the longitudinal structure functions in the
fixed W limit for mesons is an essential prediction of perturbative
QCD. Perhaps the most dramatic consequence is in the Drell-Yan
process np-+£+2"x; one predicts?? that for fixed pair mass Q, the
angular distribution of the &% (in the pair rest frame) will change
from the conventional (1-+c0326+) distribution to sin2(6+) for
pairs produced at large x;. A recent analysis of the Chicago-
Tllinois-Princeton experiment®S at FNAL appears to confirm the QCD
high twist prediction with about the expected normalization. Strik-
ing evidence for the effect has also been seen in a Gargamelle
analysis®® of the quark fragmentation functions in vp ~mtu~X. The
results yield a quark fragmentation distribution into positive
charged hadrons which is consistent with the predicted form:
dN+/dzdy ~B(1l -2)2 +(c/Q?)(1 -y) where the (1 -y) behavior corres-
ponds to a longitudinal structure function. It is also crucial to
check that the e*e™ +MX cross section becomes purely longitudinal
(sin?0) at large z at moderate Q2.62

The results (5.17) and (5.19) for Gq/B and Gq/M give the
behavior of the leading QCD contribution to the structure function
before QCD evolution is applied; e.g., the results are valid for
Fz(x,Qz) at Q° of order of <kE>H. The large Q? behavior is deter-
mined by the evolution equation (5.9), taking account of the phase
space limits of the radiated gluons at x ~1.%1

VI. THE PHENOMENOLOGY OF HADRONIC WAVEFUNCTIONS

Thus far, most of the phenomenological tests of QCD have fo-
cused on the dynamics of quark and gluon subprocesses in inclusive
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h%gh momentum transfer reactions. The Fock state wavefunctions

¥ (x4,K, 4543) which determine the dynamics of hadrons in terms of
their quark and gluon degrees of freedom are also of fundamental
importance. If these wavefunctions were accurately known then an
extraordinary number of phenomena, including decay amplitudes,
exclusive processes, higher twist contributions to inclusive pheno-
mena, structure functions, and low transverse momentum phenomena
(such as diffractive processes, leading particle production in
hadron-~hadron collisions and heavy flavor hadron production) could
be interrelated. Conversely, these processes can provide phenomen-
ological constraints on the Fock state wavefunctions which are
important for understanding the dynamics of hadrons in QCD. 1In
addition, as we discuss in Reference 67, the structure of nuclear
wavefunctions in QCD is essential for understanding the syntheses
of nuclear physics phenomenology with QCD.

A. Measures of Hadron Wavefunctions

As we have shown in Section III the central measures of the
hadron wavefunctions are the distribution amplitudes

v

= Q e
¢(x;,Q) = T [d%k, 1 v g (x;0Kk ) (6.1)

which control high momentum transfer form factors and exclusive
processes:

Sz 68T, (6.2)
and the quark and gluon structure functions
Q
- 2 25 (x -
6g/nCo® =1 [ 1a%k Tlaxd |y Gepte (%6 Ge-x) (6.3)

n

which control high momentum transfer inclusive reactions
do =2 I G ® do (6.4)

Examples are shown in Figs. 1 through 3. A summary of the basic
properties, logarithmic evolution, and power-law behavior of these
quantities is given in Table III.

The exclusive formula (6.2) also includes applications to
large momentum transfer multiparticle productionsa’8 e+e'-+H1...Hn
with p, . ps ~0(Q2), and the elastic and inelastic weak and electro-
magnetic form factors. We also note that hard scattering higher
twist subprocesses to inclusive reactions such as yq ~Mq, gq +Mq,
qq *MM, qq >Bq, etc. are absolutely normalized in terms of the
distributions amplitudes.69 In particular, some amplitudes such
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Table III. Comparison of exclusive and inclusive cross sections.

Exclusive amplitudes Inclusive cross sections
M~ Hq)(xi’Q) ® TH(xi’Q) do ~ HG(XasQ) (2] do(xa)Q)

Q

= 2 Q - 2 2
06 @ = | 1a%, 1ig, k) GG =] [ @ tax)ty, et
Measure ¢ in yy +MM Measure G in 2p -»2X
Y oA, = A Yoa, # A
ieH i H ieH i H
EVOLUTION

3¢ (x,Q) _ 3G6(x,Q) _
> Log Q2 a J [dylv(x,y) ¢ (y) 3 1os 02 Lo Q2 ag [dy P(x/y)G(y)

lim ¢(x,Q) = I X, -Cflavor lim G(x,Q) = §(x) C'

Q> i Qe

POWER LAW BEHAVIOR

2ns—l
1-x)
do 1 do ( T
— (A+B >C+D) = f(o AB >~ CX) = ——— £ (0
dx ( ) g2 ( CM) d2p/E ( ) (Qz)nact 7 £( CM)
= = +
n nA + nB + nC + nD nact na + nb + nC nd
T,: expansion in aS(QZ) d5: expansion in as(Qz)
COMPLICATIONS
End point singularities Multiple scales
Pinch singularities Phase-space limits on evolution
Higher Fock states Heavy quark thresholds

Higher twist multiparticle processes

Initial and final state interactions
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as yq +7mq, qq ~7g and gq >~7Tq can be rigorously related to the pion
form factor since the same integral

1
[ T2, 00 (6.5)

0
enters in each of the quantit1es.70 The p processesZL+ gq >Mq
(see Fig. 3(a)) and qq *Mq are particularly interesting and impor-
tant in hlgh-pT meson production processes such as pp >»MX since the
meson is produced directly in the subprocess without the necessity
for quark or gluon jet fragmentation. 1In fact the contributions of
standard pT scaling processes such as qq ~qq, gq ~gq, and gg ~>gg
are strongly suppressed by two to three orders of magnitude relative
to the "directly coupled" contributions because of the suppression
of jet fragmentation DM/ (z) at large momentum fraction z and the
fact that the subprocesses must occur at a significantly larger
momentum transfer than that of the triggered particle.”!

Degpite much effort there is at this time no systematic under-
standing of high pg hadron production in QCD. A comprehensive
attack must take into account not only leading twist subprocesses
and directly coupled higher twist contributions such as those
listed above, but also the effects of initial state multiple scat-
tering effects. One of the most important experiments which could
clarify the nature of these effects is the measurement of the ratio
of direct photon to meson at high Pyt (xT==2pT//s)

(pp mX) . (6.6)

R/ (xpas,0,) = (oo 10 [

d p/ d3
For example, if leading twist QCD processes dominate these reactions
then Ry/m ~f(xT) ~(1-x )“2 at 8,y ~m/2. If directly-coupled pro-
cesses such as gq ~>mq dominate the meson production then one predicts
Jr p at fixed xp and 6, 72 Measurements of this ratio in
nuclear targets is important for clarifying the contribution of

final state multiple scattering processes.

The photon probe plays a crucial role in high- Pp hadron reac-—
tions since the photon couples directly to the quark and gluon
subprocesses at short distances. The most dramatic example of these
point-like phenomena is the recent observations at PETRA®™8 of high
transverse momentum hadrons in Yy collisions. The results at
pr >3 GeV appear to be consistent with the scale invariant QCD
prediction’3

2
do(yy>jet + jet) _ 37 e [1+o (us(pT))]
>uty— m >
do (yy »uTu7) 6.7)
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These results also indicate that, unlike typical meson-induced
reactions, an incident photon often produces high pp hadronic jets
without leaving hadronic energy in the beam fragmentation direc-
tion.’* One also expects analogous results for directly coupled
photons in yp -HX and yp +Jet +X reactions. The point-like behavior
of on-shell photons is in direct contrast to the predictions of
vector meson dominance models.

A surprising feature of QCD is that even a hadron can produce
jets at large Pr without beam fragmentation. 70 rpor example, the
existence of high twist subprocesses such as Mq +gq and Mg +qq leads
to high pp jet events in meson-induced collisions Mp +Jet + Jet +X
where there is no hadronic energy left in the meson beam fragmenta-
tion dlrection (see Fig. 3(c)). The inclusive cross section, which
scales as pm° at fixed Xrp and 6 __, is absolutely normalized to the
meson form factor. As in the case of the photon-induced reactions
the directly coupled meson has no associated color radiation or
structure function evolution. An experimental search for these
unique and highly kinematically constrained events is very imper-
tant in order to confirm the presence of these subprocesses which
involve the direct coupling of meson qq Fock state to quarks and
gluons at short distance.

In general, we can replace any direct photon interaction by a
direct-coupled meson 1nteraction in the subprocess cross section by
the replacement o ZF (pT) Furthermore, one can compute direct-
coupled processes Wthh isolate the valence Fock state of baryons,
e.g., pp >pX (production of isolated large pp protons via the qq>pq
subprocesses), and reactions pp +qqX (from qp-*qq) (see Fig. 3(d)),
PP ~qqqX (from gp +qqq) etc., each of which produce jets at high P
without beam spectators or fragmentation.

B. Constraints on the Pion and Proton Valence Wavefunction2??

The central unknown in the QCD analysis of hadronic matrix
elements is the hadron wavefunction in the non-perturbative domain
k2 <1 GeV2, For illustration we shall assume that in this region

the VY, fall off exponentially in the off-shell energy:

b2 ¢
K _ n n
bo(xk ) = A e (6.8)
2 2
n kT +m
§ =2 - ) (==—) <o . (6.9)
n 1=1 *ood

The parametrization is taken to be independent of spin; the full
wavefunction is then obtained by multiplying by free spinors u/Vit.
The form (6.8) has the advantage of analytic simplicity: For
example, the resulting baryon distribution amplitude at small «k is
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2
-b3 % o1
i1 i

¢(Xi,K) A¢ X XX, e . (6.10)
At large «, ¢ is determined from the evolution equation (4.33). At
very large k, the y, for non—valence Fock states should match onto
the power—law fall-off kI predicted by perturbative QCD. It should
be emphasized that the form (6.8) is chosen just for simplicity.
An equally plausible parametrization is ¥y ~ An& ~P with p= 3, which
is suggested by the Schroedinger equation assuming a linear poten—
tial.

In the case of the pion we can derive two important constraints
on the valence wavefunction from the m »pv and 7° ->vyy decay ampli-
tudes:

d®k £ 2
J 3 f dx < (x,k ) = —E= (1 + 0(—%)] (6.11)
16w L 2v/n, K
and?’
" Zz(mfr) /Eg 6.125
9k =0 = . .12
¥ (x,k =0) 2, (<) £,

The derivation of the second constraint assumes that the radius of
the pion is much smaller than its Compton length:

2 2 2
mq,m1T <<6/R1T . (6.13)
Let us now assume the form
2
b(kJ_+m o
Koo VEA=DT 2 g gey?) (6.14)
qq
where
4 =1 gaay? _ .2 6.15

is the contribution to the slope of the meson form factor from the
valence Fock state (see Eq. (4.2)). The two conditions (6.11) and
(6.12) then determine qu 0.42 fm, and?7

K 1 9

d k
PK_ = J § J dx wK (x,k Kk
qq/w 16w 5 q

qq/m Y
Thus the probability that the pion contains only the valence Fock
state at small k2 is less than 1/4. Furthermore the radius of the
valence state turns out to be smaller than that of the total state

Z5 (x2))? 1
z (mz)] < Z . (6.16)

1/
=Z-k
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(Rith z 0.7 fm). One can also verify that the bound P

is also true for power-law wavefunctions y ~§P, p>2.

qg/m < L4

The existence of other Fock states at equal T in the pion is
to be expected considering the fact that its quark and gluon cons-
tituents are relativistic. The existence of large m. /m_ and m,/m

o/ S AN
spin splittings (due to transverse-polarized gluon exchange) also
implies that there is a non-zero gluon component intrinsic to both
meson and nucleon bound states.

In the case of the baryon wavefunction, one can obtain non-
trivial constraints on the form of the 3-quark valence wavefunction
by making a simultaneous analysis of the proton and neutron form
factors and the ¢ »pp decay amplitude, assuming that the y decays
via a 3-gluon intermediate state (see Fig. 6). The observed angular
distribution®3 for ¢ »pp is in fact consistent with the predicted
form 1 + B2cos26 (where 8 is the nucleon velocity) and is non-
trivial check of hadron helicity conservation for exclusive pro-
cesses in QCD.

The ¢ >pp ratio is given to leading order in ag by (Fig.1(b))18

-
I (y~3g >pp) _ 6 3 lpcML <T>2
r(y >3g+all) 3.2 %10 0"s(s) /5 et (6.17)
where |3CM[//—2.4, s=9.6 GevZ, and
1
[ [dx][dy] ¢ 0y®) *1Y3 FX5%,y
<T> = X y
) ¥,9,5, [x A=y ) +y, (1-x ) Tlx (I-y ) +y,(1-x )]
9 (x;58)
o (6.18)
X ¥pX3

is a well defined function of the baryon distribution amplitude.

In the case of the nuclear form factors (see Eqs. (4.6), (4.7)) it
is important to use the correct argument for each og in the hard
scattering amplitude Ty corresponding to the actual momentum trans-
fer which flows through each exchanged gluon in Fig. 7(b). This
effect is expected to yield the most important contribution to next
to leading order in og and is an integral part of the QCD predic-
tions. It is interesting to note that if ¢p=A x;%x,x; and if all
the oy have the same argument (which is in fact the situation in
the asymptotic Q% »« 1imit9:19) then Egqs. (4.3)-(4.7) give

lim 6P(@2)/62@Q%) = 0 .

Q2o M M
However, the fact that ag is not a constant and has different argu-
ments for each diagram in T, allows one to obtain empirically con-
sistent results for the normalization’® of Gﬁ(Qz), Gn(QZ) and the
Y - pp decay rate. To first approximation one requi¥é527
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o0g (x4¥40%)  a5(Q%/9)
a((1-x) 1 -y)0?) ~ *s(4Q*/9) (6.19)
1.5 to 2.0 at Q2 = 10 Gev? .

4

The QCD predictions (4.3)-(4.7) for the proton and neutron
form factors are only valid at large Q? where the effects of mass
corrections, higher Fock states and finite transverse momentum can
be neglected. In order to understand these effects we extend the
parametrization of the 3 quark valence Fock state contribution by
using (Q? +M3)™2 in the denominators of (4.4), (4.5) and replacing
aS(Qz)-+aS(Q2-+M2)==4v/BO 1og((Q2-+M2)/A2) to reflect the fact that
at low Q2 the transverse momenta intrinsic to the bound state wave-
functions flow through all the propagators.

Although we have not tried to optimize the parametrizatioms,
a typical fit which is compatible with the proton and neutron form
factors (see Fig. 16) and y »pp decay data is M, = 1.5 GeV, u =
450 MeV, m, = 300 MeV, and A = 280 MeV, so that ag(Q? =10 Gev?) =
0.29. [Andlyses®0 of higher order QCD corrections to the meson
form factors suggest that one can identify the A used here with
Apom=2.16 Ag .]' The computed radius of the 3-quark valence state
(computed from Gy via Eq. (4.2)) is however quite small: Ry = 0.23fm,
and the valence Fock state probability is Pqqq/p x1/4. If this

0 1 | 1 | i | | 1
o} 8 16 24 32 40
1.5 T T T
(b)
g ]
';'(DE 10— _——— —
S
k<)
o= 0°r 7
[&)
1
0 i 1 -
O 10 20 30

02
Fig. 16. Fit to nucleon form factor data described in the text.
(From Ref. 27.)
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preliminary analysis is correct, then, as in the meson case, the
valence state is much smaller in transverse size than the physical
hadron (which receives contributions to its charge radius from all
Fock states).

The most crucial prediction from this analysis is that Q“Gﬁ(Qz)
should decrease by a factor of 2 for Q2 =10 to Q2 =40 GeVZ, a trend
not at all indicated by the data! Further measurements of GM(Qz)
are clearly crucial in order to check this essential prediction of
asymptotic freedom.

Given the above parametrization of the nucleon valence Fock
state we can use Eq. (5.8) to compute the 3-quark non-perturbative
contribution to the proton structure function at large x (see
Fig. 17):
v 2 3 -2m2b2(1; + 1f-x)

Gq/p(x’Qo) « x(l-x) e . (6.20)

Since 4m2b? ~0.05, the exponential factor is not very important away
from the edge of phase space and so it is difficult to distinguish
between the non-perturbative and (1 -x)3 perturbative contributions
at large x (see Section V). Higher Fock states quqg>, Iqqq qq>
are expected to give the dominant contribution at lower x. Despite
the freedom in this parametrization it is reassuring that one can
simultaneously fit a number of diverse nucleon properties with QCD
formulae and parameters which are the expected range.

At low Q2 the exact formula (3.2) can be used as a further
constraint on the baryon Fock states. Eventually one hopes to
extend the predictions to other domains of baryon phenomenology
such as the baryon decay amplitude in grand unified models and the

0-4 ++ T T T T
+ +++ Q2 = 3.5 Gev2
0.3 + ¢ 4
. ¢
q (]
< ¢
X 02+ ¢ _
an -
[N - -~ ~e
Ve Ne
/ N
o.! + /s LN —
/ AN
, ~
/ S
o) Il 1. | 1~
o} 0.2 0.4 0.6 0.8 1.0

Fig. 17. Predicted valence quark contribution to the proton struc-
ture function. Evolution and higher Fock states are not
included. (From Ref. 27.)
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normalization of higher twist subprocesses contributions to inelas-
tic lepton-nucleon scattering.

C. Quark Jet Diffraction Excitation3?

The fact that the wavefunction of a hadron is a superposition
of (infrared and ultraviolet finite) Fock amplitudes of fixed
particle number but varying spatial and spin structure leads to
the prediction of a novel effect in QCD.3Y We first note that the
existence of the decay amplitude 7 -+uv requires a finite probabi-
lity amplitude for the plon to exist as a quark and diquark at zero
transverse separation:

V(x,%, =0) = V&r /n_ x(1-x)f_ . (6.21)

In a QCD-based picture of the total hadron-hadron cross section,

the components of a color singlet wavefunction with small transverse
separation interacts only weakly with the color field, and thus can
pass freely through a hadronic target while the other components
interact strongly. A large nuclear target will thus act as a filter
removing from the beam all but the short-range components of the
projectile wavefunction. The associated cross section for diffrac-
tive production of the inelastic states described by the short

range components is then equal to the elastic scattering cross
section of the projectile on the target multiplied by the probabi-
lity that sufficiently small transverse separation configurations
are present in the wavefunction. 1In the case of the pion inter-
acting in a nucleus one computes the cross section

g—igg—— = 022 12w fi xz(l—x)2 (6.22)

x d rl ri~o

corresponding to the production of two jets just outside the nuclear
volume. The x distribution corresponds to do/dcos 6 ~ sin?6 for

the jet angular distribution in the qq center of mass. By taking
into account the absorption of hadrons in the nucleus at ?i #0 one
can also compute the k, distribution of the jets and the mass spec-
trum of the diffractive hadron system. Details are in given in
Reference 30.

D. The "Unveiling' of the Hadronic Wavefunction and Intrinsic Charm

The normalizability of QCD implies that all of the dynamics
of the hadron wavefunction wg(xi,kli) at scales «? much larger
than mass thresholds is completely contained in the structure of
the running coupling constant GS(KZ) and running mass m(<?) and
the quark and gluon external line renormalization constants. Never-
theless, the fact that there are different hadronic scales and
thresholds in QCD does imply non-trivial dynamical structure of
the wavefunctions. In the case of Compton scattering, yYp *Yp, the
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energy denominators (see Eq. (5.3)) are a function of 2Mv - &, so

that the cross section is sensitive to wavefunctions up to the scale
2

K< ~2mv.

As an example of the change of wavefunction physics with the
resolution scale let us consider a deuteron target. For very low
K2 <<2Mep g, the deuteron acts as a coherent object. At the scale
K2 >>2Meg ., the wavefunction corresponds to a n-p bound state.
As the scalé increases to k2 g1 GeVz, the quark degrees of freedom
become relevant and the deuteron wavefunction in QCD must be des-
cribed in terms of six quark (and higher) Fock states: /6

|d> = a| (uud);(ddu) ;> + b| (uud) 4 (ddu) o>
+ cf (wuu), (ddd) > + d| (uuu) g (ddd) ;>
+ ... (6.23)

The first component corresponds to the usual n-p structure of the
deuteron. The second component corresponds to 'hidden color" or
"color polarized" configurations where the three-quark clusters are
in color-octets, but the overall state is a color-singlet. The last
two components are the corresponding isobar configurations. If we
suppose that at low relative momentum the deuteron is dominated by
the n~-p configuration, then quark-quark scattering via single gluon
exchange generates the color polarized states (b) and (d) at high
k,; i.e., there must be mixing with color-polarized states in the
deuteron wavefunction at short distances.®”

The deuteron's Fock state structure is thus much richer in QCD
than it is in nuclear physics where the only degrees of freedom are
hadrons.

It is interesting to speculate on whether the existence of
these new configurations in normal nuclei could be related to the
repulsive core of the nucleon-nucleon potential,’® and the enhance-
ment’® of parity-violating effects in nuclear capture reactions.
One may also expect that there are resonance states with nuclear
quantum numbers which are dominantly color-polarized. The mass of
these states is not known. It has also been speculated77’78that such
long-1lived states could have an enormously large interaction cross
section, and thus account for the Judek?® anomaly in cosmic ray
and heavy ion experiments. Independent of these speculations, it
is clearly important that detailed high-resolution searches for
these states be conducted, particularly in inelastic electron
scattering and tagged photon nuclear target experiments, such as
Yd +vd scattering at large angles.

The structure of the photon's Fock states in QCD is evidently
richer than that expected in the vector meson dominance model.8?
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For example, consider the one-gluon exchange correction to the
Y-+q§ vertex. For Ri <0(K2) the vertex correction renormalizes
the point-vertex. For the soft domain Zi <0(k2) one expects large
corrections which eventually by dispersion theory correspond to
the usual p, w, ¢,... interpolating fields. The soft corrections
thus give the usual hadron-like component of real photon inter-
actions. Nevertheless, the point-like component survives at any
momentum scale,8? producing point-like corrections to photon
shadowing, J=0 fixed pole phenomena in the Compton amplitude, and
the "antiscaling' QCD structure function of the photon.!3 As the
resolution scale k? increases past the heavy quark thresholds, one
adds the y »cc, bb, etc. components to the photon's wavefunctions.

It is also interesting to consider the dynamical changes to
the nucleon wavefunction as one passes heavy quark thresholds. For
k2 >4m§ the proton Fock state structure contains charm quarks, e.g.,
states |p> ~ |uud eC>. We can distinguish two types of contributions
to this Fock state.3! (1) The "extrinsic'" or interaction-dependent
component generated from quark self energy diagrams as shown in
Fig. 18(b) — a component which evolves by the usual QCD equations
with the photon mass scale Q?; and (2) the "intrinsic" or inter-
action-independent component which is generated by the QCD potential
and equations of motion for the proton, as in Fig. 18(a) — a compo-
nent which contributes to the proton Fock state without regard to
QCD evolution. Since the_intrinsic component is maximal for minimum
off-shell energy £ = M2-—Z [(ki+ m2)/x]i the charm quarks tend to
have the largest momentum® fraction x in the Fock state. (This also
agrees with the physical picture that all the constituents of a
bound state tend to have the same velocity in the rest frame, i.e.,
strong correlations in rapidity.) Thus heavy quarks (though rare)
carry most of the momentum in the Fock state in which they are
present — in contrast in the usual parton model assumption that
non-valence sea quarks are always found at low x. One can also
estimate8l using the bag model and perturbative QCD that the proba-
bility of finding intrinsic charm in the proton is ~1-27%.

The diffraction dissociation of the proton's intrinsic charm
state 31,30 provides a simple explanation why charmed baryons and
charmed mesons which contain no valence quarks in common with the

Ic

. y
(- A=

Fig. 18. Intrinsic (a)_and extrinsic (b) contributions to the
proton |uud cc> Fock state.
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proton are diffractively produced at large x1, with sizeable cross
sections at ISR energies. Further discussion may be found in
Reference 31.

VII. CONCLUSION

In these lectures we have discussed the application of QCD
to hadron dynamics at short distances where asymptotic freedom
allows a systematic perturbative approach. We have shown that it
is possible to define the perturbative expansion in as(Qz) in such
a way as to avoid ambiguities due to choice of renormalization
scheme or scale, at least in the first non-trivial orders. 1%:28 our
main emphasis in these lectures, however, has been on how to sys-
tematically incorporate the effects of the hadronic wavefunction
in large momentum transfer exclusive and inclusive reactions — thus
leading to a broader testing ground for QCD. We have particularly
emphasized the Fock state wavefunctions wn(xi,kli;xi) which define
the hadron in terms of its quark and gluon degrees of freedom at
equal time on the light-cone. Tt is clear that a central problem
of QCD is to determine not only the spectrum of the theory but also
the basic bound state wavefunctions of the color singlet sector.
Such solutions may be found in the near future using lattice numer-
ical methods, particularly by quantizing at equal time on the
light-cone, or by more direct attacks on the QCD equations of
motion for the Y, as discussed in Section III.

Even without explicit solutions for the y,, we can make a
number of basic and phenomenological statements concerning the form
of the wavefunctions:Z27

(1) Given the Y, we can compute the single and multiple quark
and gluon distribution amplitudes and structure functions which
appear as the coefficient functions in the QCD predictions for high
momentum transfer exclusive and inclusive reactions, including
dynamical higher twist contributions. We have also emphasized
general features of these distributions, including helicity selec-
tion rules, Lorentz properties, connections, with the Bethe-Salpeter
amplitudes, renormalization properties, and correspondence limits
in the non-relativistic weak binding approximation.

(2) The perturbative structure of QCD leads to predictions
for the high kl, x>1 and far-off shell behavior of the wavefunc—
tion. 1In particular, the large k, power-law behavior by "kL
the valence wavefunctions and the lwlz kT 2behav1or of the hlgher
Fock state contributions leads to QCD evolution equations and
light-cone operator product expansion for the essential measures
of the wavefunctions, the distribution amplitudes ¢M(x Q) and
¢B(x1,Q), and the structure functions. We have also empha51zed
the fact that the valence wavefunction behavior wV‘“k implies
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that the high k behavior of quark and gluon jet distributions
dN/dkL is ~1/kl, not exponential or gaussian.

(3) Important boundary values and constraints on hadronic
wavefunctions are obtained from the weak and electromagnetic decay
amplitudes, including ¢ »BB. The distribution amplitudes are mea-
surable in detail from the angular behavior of the Yy +MM and 82
vy - BB amplitudes.

(4) By assuming simple analytic forms for the valence wave-
functions in the non-perturbative domain, we have found consistent
parametrizations which are compatible with the data for hadron
form factors, decay amplitudes, etc. An important feature which
emerges from these studies is that the valence state is more com-
pact in transverse dimensions than the physical hadron. Even at a
low momentum transfer scale, higher Fock states play an important
role, i.e., there is no scale where the proton can be identified
as a 3-quark valence state. This observation may be compatible
with the traditional nuclear physics picture of the nucleon as a
central core, surrounded by a light-meson cloud.

(5) The fact that there is a finite probability for a hadron
to exist as its valence state alone, implies the existence of a
new class of '"directly-coupled" semi-inclusive processes where a
meson or baryon is produced singly at large transverse momentum,
or interacts in a high-momentum transfer reaction without accompany-
ing radiation or structure function evolution.2® As in the case
of directly-coupled photon reactions, the hadron can interact
directly with quark and gluons in the short-distance subprocesses,
with a normalization specified rigorously in terms of the distri-
bution amplitudes or form factors. Examples of these subprocesses
are qq ~Bg, gq *Mg, Mg ~qgq, Bg >qq. We have also discussed an
important contrlbutlon to the longitudinal meson structure func-
tion Fy, ~C/Q , involving direct-coupling of the meson, somewhat
analogous to the photon-structure function. The finite probability
for a meson to exist as a qq Fock state at small separation also
implies a new class of diffractive dissociation processes.

(6) The Fock state description of hadrons in QCD also has
interesting implications for nuclear states, especially aspects
involving hidden color configurations. More generally, we have
emphasized the idea that the far-off shell components of hadron
wavefunctions can be "unveiled" as the energy resolution scale is
increased. TFor example, the existence of heavy quark vacuum polar-
ization processes within the hadronic bound state implies finite
probabilities for hidden charm Fock states even in light mesons
and baryons. The diffractive dissociation of these rare states
appears to provide a natural explanation of the remarkable features
of the charm production cross sections measured at the ISR.3
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(7) We have also emphasized the importance of initial state
interactions in all inclusive reactions involving hadron-hadron
collisions. The initial state interactions disturb the color
coherence, k, distributions, and at low energies the x-dependence
of the incoming hadronic distributions. Despite these profound
effects on the hadronic Fock states, some of the essential features
of the QCD predictions still are retained. A detailed discussion
is given in Reference 20.

Thus, in summary, we have found that the testing ground of
perturbative QCD where rigorous, definitive tests of the theory
can be made can now be extended throughout a large domain of large
momentum transfer exclusive and inclusive lepton, photon, and
hadron reactions. With the possible exception of hadron production
at large transverse momentum, a consistent picture -of these reac-
tions is now emerging. By taking into account the structure of
hadronic wavefunctions, we have the opportunity of greatly extend-
ing the QCD testing ground, unifying the short and long distance
physics of the theory, and eventually making contact with the realm
of hadronic spectroscopy, low momentum transfer reactions, and non-
perturbative physics.
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