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is empirically5 close to the zeroth order QCD prediction RO = 3 2e~ 
for energies above the heavy quark thresholds is a crucial q 
check of asymptotic freedom and the color, charge, and spin assign­
ments of the quark quanta in QCD. Critical features of QCD are 
also confirmed by the observed logarithmic breaking of scale­
invariance in deep inelastic lepton-scatterin~2 and the measure­
ments of two-jet and three-jet structure of e e- a.nnihilation 
final states. 5 The recent observations of jet structure6 in two­
photon reactions (consistent with yy +qq subprocesses), and measure­
ments 7 of the photon structure function also provide fundamental 
checks of predictions which are essentially unique to QCD. However, 
despite these successes, there is no direct experimental evidence 
for (near) scale-invariant quark-quark, quark-gluon, or gluon-gluon 
scattering amplitudes as predicted by QCD; the cross section for 
large transverse momentum hadron production in hadron-hadron colli­
sions appears to reflect much more complicated dynamical mechanisms. 
On the other hand, as we discuss in Section IV, the fact that the 
proton form factor GM(Q2) scales as (Q2)-2 reflects the fact that 
the minimum Fock state in the nucleon contains 3 quarks, and that 
the internal quark-quark interactions which control the nucleon 
wavefunction at short distances are consistent with scale invar­
iance. B,9 Thus far experiments are not sufficiently sensitive to 
distinguish a logarithmically decreasing a s (Q2) from a constant; 
i.e., fixed point behavior. The sensitivity of the nucleon form 
factors to the form of a s (Q2) is discussed in Section VI. 

Although there have been remarkable technical achievements in 
perturbative QCD calculations in the past few years,1,2,lO there 
has also been the realization that precise and detailed comparisons 
with experiment require consideration of effects and phenomena not 
readily computable with present methods. There are, in fact, only 
a very few large momentum transfer processes which can be studied 
rigorously to all orders in perturbation theory such as Re+e~(s),l 
the meson form factors FM(Q2)11 (and FY+M(Q2», the two photon 
processes12 YY+MM at large momentum transfer, the photon structure 
function,13 and the Q2-evolution of the hadron structure functions. 
Although, in principle, these processes can be calculated to arbi­
trary orders in perturbation theory, in practice, there are serious 
complications involving the dependence of predictions made to 
finite order on the choice of renormalization scheme and the scale 
parametrization chosen for the argument of a s • 2,13 We discuss a 
new method for avoiding the ambiguities in Reference 14. Aside 
from this, there is always the question of the radius of conver­
gence of the perturbation expansion. Even for processes which can 
be calculated to arbitrary orders in as' there are (presently) 
uncalcu1able power-law suppressed (higher twist) contributions I5 
which must be included in detailed fits to experiment, especially 
at the edge of phase space. 16 

In the case of jet production, QCD-based predictions based on 
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the elementary features of e+e- -+qq and qqg, YY -+qq, etc. must 
also take into account higher twist contributions, model-dependent 
non-perturbative effects intrinsic to hadron formation and decay,S 
and possibly dynamical effects due to quark confinement. 3 In the 
case of some exclusive processes such as the baryon form factor 
there are non-leading QeD contributions which are asymptotically 
suppressed by Sudakhov form factors. 9 ,IO The precise evaluation 
requires an all orders resumption of perturbation theory. QeD 
predictions for elastic hadron-hadron scattering are complicated 
by the presence of LandshoffI7 pinch singularity contributions 
which are only partially suppressed by Sudakhov form factors. IO 
Despite these complications, we can still derive general properties 
for exclusive reactions such as hadron-helicity conservation 18 and 
the leading power-law behavior. 19 

An even more interesting (and perplexing) situation occurs 
for all inclusive high momentum transfer inclusive reactions in­
volving hadronic initial states such as Drell-Yan massive lepton 
pair production, direct photon production, and large PT hadron 
production. As shown in Reference 20, initial state interactions 
violate the usual QeD factorization theorem order by order in per­
turbation theory and affect the normalization and transverse 
momentum dependence of the inclusive cross sections. In addition, 
final state interactions also affect the associated multiplicity 
and transverse momentum dependence of the outgoing jets in deep 
inelastic lepton scattering reactions. A detailed report on these 
effects is given in Reference 20. 

Perhaps the most serious complication to QeD phenomenology is 
the presence of higher twist subprocesses, since power-law sup­
pressed contributions can often mimic (and thus confuse the iden­
tification) of the logarithmic modifications predicted for the 
leading twist contributions. 16 Examples of this for deep inelastic 
structure functions and fragmentation distributions are discussed 
in References 21 and 22 and Section V. In the case of three-jet 
production in e+e- annihilation, higher twist terms give contribu­
tions 23 dN/dki - (ki)-2 for the hadron transverse momentum distri­
bution in quark and gluon jets. These hard components can compli­
cate the separation of the e+e- -+qqg and e+e- -+qq subprocesses. 
In the case of hadron production at large transverse momentum, 
"direct-coupled" higher twist subprocesses such as gq-+7Tq actually 
dominate 24 the leading twist qq -+qq -+q7Tq subprocess at large xT = 
2PT/IS. Evidence for direct-coupled nq -+y*q subprocesses in 
TIP-+~+~-x reactions is discussed in Section V and Reference 22. 

Present QeD phenomenology is also incomplete in the sense that 
although much attention is paid to the Q2 evolution of hadron 
structure functions there is no real· understanding of the basic 
x-dependent form of the quark and gluon distribution in hadrons, 
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or, how to relate them to other hadronic phenomena. The relation 
of the x - 1 behavior of structure functions to the exclusive fixed 
W2 , high Q2 domain is only roughly understood. 25 The x - 0 behavior 
of structure functions and the connection to the photoabsorption 
cross section at fixed Q2, high v, and nuclear shadowing phenomena 
is also not well understood. 26 

These lectures are part of a series presented in this volume 
by G.P. Lepage, G. Bodwin and myself. Our purpose is to begin to 
extend QeD phenomenology by taking into account both the physics 
of hadronic wavefunctions 27 and the effects of initial and final 
state interactions.20 The work presented here on the construction 
and parametrization of wave functions in QeD was done in collabora­
tion with Tao Huang. The work on initial state effects is presented 
in the chapter by G. Bodwin. Our eventual goal is to obtain a 
parametrization of the wavefunctions which will bridge the gap 
between the non-perturbative and perturbative aspects of QeD. 
The lack of knowledge of hadronic matrix elements is the main 
difficulty in computing and normalizing dynamical higher twist 
contributions for many processes. 

In these lectures we emphasize the utility of a Fock state 
representation of the meson and baryon wavefunctions as a means 
not only to parametrize the effects of bound state dynamics in 
QeD phenomena, but also to interrelate exclusive, inclusive, and 
higher twist processes. It is particularly ~onvenient to choose 
a momentum space Fock state basis 19 ,27 

x == 1 
i 

n -+ 

I kl. i 
i=l 

o , 

defined at equal "time" T = t + z on the light-cone. Here Xi = 
(ko +k3)il (pO +p3), Itl.i ' and Ai specify the longitudinal and trans­
verse momenta and spin projection Sz of each (on-mass-she11) quark 
and gluon in the n-partic1e Fock state (n ~ 2 for mesons and n ~ 3 
for baryons). We also choose the light-cone gauge A+ = AO +A 3 = 0 
so that only physical polarizations of the gluons occur. The color 
singlet wavefunctions are regulated so that they are finite in both 
the infrared and ultraviolet regimes. 28 

There are a number of reasons why this representation of 
hadrons in terms of the quark and gluon degrees of freedom is 
useful: 

(1) In light-cone perturbation theory, the perturbative vacuum 
is also an eigenstate of the total QeD Hamiltonian on the 1ight­
cone; perturbative calculations are enormously simplified by the 
absence of vacuum to pair production amplitudes. 
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(2) All form factors, charge radii, magnetic moments, etc. 
have exact expressions in terms of the ~n. 

147 

(3) The structure functions Gq{x,Q) and Gg{x,Q) {and more 
general multiparticle distributions)which control large momentum 
transfer (leading and higher twist) inclusive reactions, and the 
distribution amplitudes ~(x,Q) which control large momentum transfer 
exclusive reactions (and directly coupled inclusive reactions) are 
each specific, basic measures of the ~n. Examples of these calcu­
lations are schematically illustrated in Figs. 1 through 3. 

(4) Other physical quantities such as decay amplitudes provide 
rigorous sum rule or local constraints on the form of the valence 
components of meson and baryon wavefunctions. 2 
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Fig. 1. Calculable large momentum transfer meson processes in QeD, 
and their connection to the meson Fock state wavefunction 
~qq and distribution amplitude ~(x,Q). Only a representa­
tive diagram for the hard scattering amplitude TH is shown. 
(a) The Y + 1TO transition form factor (measurable in single 
tagged ee +ee 1TO experiments), (b) the meson form factor, 
(c) the YY +MM scattering amplitude. Details are discussed 
in Section IV. 
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The plan of these lectures is as follows. The basic deriva­
tions of (1) light-cone quantization, (2) the Fock state description 
of hadrons, (3) the meson form factors at large momentum transfer 
and distribution function evolution, (4) extensions to heavy atoms, 
and (5) the avoidance of scale and scheme ambiguities are presented 
in Lepage's lectures. 28 The main emphasis of the lectures in this 
chapter will be on novel methods and tools to probe hadronic struc­
ture, and the implications of phenomenological constraints on 
hadronic wavefunctions. In Sections II-IV we discuss measures of 
the hadronic wavefunction (form factors, magnetic moments, etc.), 
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Fig. 2. Baryon processes at large momentum transfer in QeD and the 
connection to the baryon Fock state wavefunction. (a) 
Baryon form factors, (b) heavy quarkonium decay T+PP, (c) 
deep inelastic lepton-baryon scattering. Only representa­
tive contributions are shown. The inclusive cross section 
and structure function Gq/B(x,Q) is computed from the square 
of the baryon wavefunction summed over all contributing Fock 
states. 
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Fig. 3. Example of QCD-computable higher twist "direct-coupled" sub .... 
processes for inclusive reactions. The subscript D indicates 
that the hadronic wavefunction is involved directly in the 
high momentum transfer subprocesses. (a) Direct production 
of high PT mesons in hadron-hadron cross section. The 
predicted cross section is proportional to the meson form 
factor FM(P~) times the leading twist cross section. (b) 
Higher twist contribution to meson-induced massive lepton 
pair production. The predicted cross section is equivalent 
to a contribution FL (X,Q2) -c/qfto the longitudinal struc­
ture function of the meson. (c) Direct meson production 
of quark jets in meson-baryon collisions. All of the meson 
energy is used to produce jets at large t~ansverse momentum. 
The cross section is proportional to FM(PT) times the lead­
ing twist qq ~qq cross section. (d) Direct production of 
anti-quark jets in BB collisions. The cross section is 
proportional to G~(pi) times the leading twist qq ~ qq cross 
section. In each case the direct process dominates over 
the leading twist contribution in a large x kinematic 
region. 
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and give an abbreviated analysis of high momentum transfer exclu­
sive processes. We also show how meson distribution amplitudes can 
be measured in YY +MM reactions. The connection of the Fock state 
basis to leading and higher twist contributions to deep inelastic 
scattering is given in Section V. In Section VI we discuss how 
many different QeD processes are interrelated (as in Figs. 1 through 
3) through the hadronic Fock states. We also discuss a novel type 
of QCD subprocesses -- direct coupled hadron-induced reactions. 29 
A new prediction for the proton form factor is also given. In 
Section VI, we also introduce a simple phenomenology of hadron 
wavefunctions and discuss present constraints on the form and nor­
malization of the valence meson and nucleon Fock states. An impor­
tant conclusion is that the valence Fock state as defined at equal 
time or the light cone appears to have a significantly smaller 
radius than that of the physical hadron;27 higher Fock states thus 
play an essential role in low momentum transfer phenomenology. 
Applications to quark jet diffraction excitation 30 and the hidden 
heavy quark Fock state structure of hadrons are also discussed. 31-33 

II. HADRONIC WAVEFUNCTIONS IN QCD 27 

Even though quark and gluon perturbative subprocesses are 
simple in QCD, the complete description of a physical hadronic 
process requires the consideration of many different coherent and 
incoherent amplitudes, as well as the effects of non-perturbative 
phenomena 34 associated with the hadronic wavefunctions and color 
confinement. Despite this complexity, it is still possible to 
obtain predictions for many exclusive and inclusive reactions at 
large momentum transfer provided we make the ansatz that the effect 
of non-perturbative dynamics is negligible in the short-distance 
and far-off-she11 domain. (This assumption appears reasonable 
since a linear confining potential V - r is negligible compared to 
perturbative l/r contributions.) For many large momentum transfer 
processes, such as deep inelastic lepton-hadron scattering reac­
tions and meson form factors, one can then rigorously isolate the 
long-distance confinement dynamics from the short distance quark 
and gluon dynamics -- at least to leading order in 1/Q2.35 The 
essential QCD dynamics can thus be computed from (irreducible) 
quark and gluon subprocesses amplitudes as a perturbative expansion 
in an asymptotically small coupling constant a (Q2). 

s 

An essential part of the QCD predictions is the hadronic wave­
functions which determine the probability amplitudes and distribu­
tions of the quark and gluons which enter the short distance sub­
processes. The hadronic wavefunctions provide the link between 
the long distance non-perturbative and short distance perturbative 
physics. Eventually, one can hope to compute the wave functions 
from the theory, e.g., from lattice 36 - 38 or bag models, 39 or di­
rectly from the QeD equations of motions, as we shall outline below. 
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Fig. 4. The n-particle Fock state amplitude defined at equal T. 

Knowledge of hadronic wavefunction will also provide explicit con­
nections between exclusive and inclusive processes,40 and will allow 
the normalization and specification of the power law (higher twist) 
corrections to the leading impulse approximation results. As we 
shall discuss in Section VI, there are a number of novel QeD pheno­
mena associated with hadronic wavefunctions, including the effects 
of intrinsic gluons, intrinsic heavy quark Fock components,41 dif­
fraction dissociation phenomena, and "direct" hadron processes 
where the valence Fock state of a hadron enters coherently into a 
short-distance quark-g1uon subprocess. 

The most convenient representation of a wavefunction in a 
relativistic field theory is to use a momentum space Fock state 
basis defined at equal "time" T = t + z on the light cone (see 
Fig. 4): 42 

{l/i (It .,x.; A.)}. 
n 1.~ ~ ~ 

Momentum conservation requires 

n 

I 
i=l 

-+ 
k . = 0 , 
1.~ 

n 
I x. = 1 , 

i=l ~ 
o < x. < 1 . 

~ 

(2.1) 

(2.2) 

or 
The kJ.i are the transverse momentum of the (on-mass-she1l) consti-
tuents relative to the bound state 3-momentum P = p3 z. The xi are 
the light-cone momentum fractions (k± =ko ± k 3, A·B = ~(A+B- + A-B+) -
A1. • B 1. 

x = k! = (ko + k 3) i 
i p+ po + p3 

(2.3) 

(In a frame where p3 -+"', the xi are the longitudinal momentum 
fractions.) The mass shell condition is k 2 =m2 , or k- = (kl. +m2) /k+. 
As we shall see, the equal-T formalism is equivalent to the usual 
Schroedinger equal-time theory in the non-relativistic limit. 

A unique and remarkable advantage of quantizing a relati­
vistic theory at equal T is the fact that the perturbative vacuum 
state 10> is also an eigenstate of the full Hamiltonian. Matrix 
elements where particles are created out of the vacuum are excluded 
because of the fact that all particles must have k!>O. Furthermore, 



152 S. J. BRODSKY ET AL. 

the charge opera tor and the current J+ = JO + J3 are diagonal in the 
Fock state basis. It is particularly advantageous to choose the 
light-cone gauge A+ = AO +A3 = 0 since unphysical degrees of freedom 
do not appear. A comparison between time-ordered and T-ordered 
perturbation theory is given in Table I. 

Calculations in light-cone perturbation theory are often 
surprisingly simple since one can usually choose Lorentz frames 
for the external particles such that only a few time-orderings need 
to be considered. 43- 44 All the variables have a direct physical 
interpretation. The formalism is also ideal for computing helicity 
amplitudes directly without trace projection techniques. A list of 
all the gluon fermion vertices which are required as gauge theory 
calculations is given in Tables I and II of Reference 19. Further 
details and derivations may be found in Lepage's lectures in this 
volume. 

Table I. Time-ordered perturbation theory. 

E ual t 

( p.article ) 
mass shell 

\' -+k L conserved 

Atab =V ab 

+Iv c ac 
a c 

n! time-ordered contributions 

-+ 
Fock states ~ (k.) 

n ~ 

n 

I 
i=l 

M -

-+ -+ 
k. = P = 0 
~ 

n 

I 
i=l 

E ual T = t +z 

.:nab =Vab 

( particle) 
mass shell 

+ I Vac I _ \ _ V cb 
c k - k + i2 

a c 

k+ > 0 only 

~ 

Fock states ~ (k i'x.) n 1. ~ 

k+ 
x=­

p+ ' 

n 
I x. = 1, 

i=l ~ 

(0 < x. < 1) 
~ 

n 
I it . = 0 

i=l .l~ 



WAVEFUNCTIONS AND HIGH MOMENTUM 153 

It is straightforward to implement ultraviolet renormalization 
in light-cone perturbation theory. We define truncated wavefunctions 
~K and a truncated Hamiltonian HK such that all intermediate states 
with 1&1 >K2 are excluded. 45 Thus K- 1 is analogous to the lattice 
spacing in lattice field theory. Since QCD is renormalizable the 
effects of the neglected states are accounted for by the use of the 
running coupling constant a s (K2) and running mass m(K 2), as long as 
K2 is sUfficiently large compared to all physical mass thresholds. 
Completeness implies 

and 

nLA f [d2k.1] f [dx] I~:(xi,k.li; Ai) 12= 
, inn d2k 

[d2 k ] = 16 1T302 (I k ) II ----:!4 
.1 i=l .1i i=l 167[3 

n n 
[dx] = 0(1 - I xi) II dXi 

i=l i=l 

(2.4) 

(2.5) 

(2.6) 

The equation of motion for the meson or baryon wavefunction in QeD 
is a set of coupled mu1tipartic1e equations (see Fig. 5): 

n k2+ 2 ) .1 m KKK I ( x ) ~n=I Vnn'~n' 
i=l i n' 

(2.7) 

where M2 is the eigenvalue and Vnn , is the set of diagonal (from 
instantaneous gluon and fermion exchange) and off-diagonal (from 
the 3 and 4 particle vertices) momentum-space matrix elements dic­
tated by the QCD rules. Because of the K cutoff the equations 
truncate at finite n,n'. In analogy to non-relativistic theory, 
one can imagine starting with a trial wave function for the lowest 
Iqq> or Iqqq> valence state of a meson or baryon and iterating the 
equations of motion to determine the lowest eigenstate Fock state 
wavefunctions and mass M. Invariance under changes in the cutoff 
scale provides an important check on the consistency of the results. 
Note that the general solution for the hadron wavefunction in QCD 

Fig. 5. QCD equation of motion for meson wavefunction. 
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is expected to have Fock state components with arbitrary numbers of 
gluons and quark-antiquark pairs. 

We can make an (approximate) connection between the equal-time 
wavefunction of a composite system and the 1ight-cone wavefunction 
by equating the off-shell propagator &, =M2 - (~ ki)2 in the two 
frames: i=l 

M2 (~ 0)2 
- i;l q(i) 

M2 _ I (k~ x+m2) , 
i=l i 

In addition we can identify 

n 
~ 0 

j=l q(j) 

n 
L q. = O[C.M.] 

i=l J. 

(2.8) 

(2.9) 

For a relativistic two particle state with a wavefunction which is 
a function of the off-shell variable 8, only, then we can identify 
(m1 = m = m x = x -x )27 

2' 1 2 

(2.10) 

In the non-relativistic limit this corresponds to the identifica­
tion -+q = it q2 = x 2m2 J, J,' 3 • 

III. MEASURES OF HADRONIC WAVE FUNCTIONS 

A. Form Factors of Composite Systems 

If we could solve the QCD equation of state [Eq. (2.7)] for 
the light-cone wavefunctions ~n of a hadron then we could (in prin­
ciple) calculate all of its electromagnetic properties. For example, 
to compute the elastic form factors <pIJ~(O)lp+q> of a hadron we 
choose the Lorentz frame46 

p~ + --+ 
(p ,p 'PJ,) 

+ ~ -+ 
(p , "+,0 J,) 

p 

~ + - -+ 2n. n -+) 
q = (q ,q ,qJ,) = (0, ~, qJ, 

P 

(3.1) 

2 2 2 2 2-+2 
where p = (p+q) = M and -q = Q = qJ,' Then the only time ordering 
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which contributes to the <p/s+/p+q> matrix element is where the 
photon attaches directly to the ejujy+uj currents of the constituent 
quarks. The spin averaged form factor ~s46,19 (see Fig. 6a) 

2 \' \' J 2 \' *K +, K (+ ) ( ) F(Q ) =l. l. e. [dx][d k ) l. lji (x.,k i;Ai)lji x.,k i;A. 3.2 
.J .1, n~.1 n~.1 ~ 

n J I\i 
+.L' +.1 +.1 +.1 +.1 ..J. where kj = k. + (l-xj)q for the struck quark and k i - xi q (i T j ) 

for the spec!ator quarks. (The -xiq.1 terms occur because the argu­
ments k.1' are calculated relative to the direction of the final 
state hadron.) l.Je choose K2 »Q2,M2. We note here the special 
advantage of light-cone perturbation theory: the current J+ is 
diagonal in the Fock state basis. 

Because of Eq. (2.4) the form factor is normalized to 1 at 
zero momentum transfer. We can also compute the he1icity flip form 
factors in the same manner. 19,47 For example, the anomalous moment 
a = F2 (0) of any spin 1/2 system can be written47 

a \' J 2 *K \' M = - l. e. [dx ) [d k ) lji l. 
j J .1 P t i;lj 

x (_d_+ i _d_) ljiK 
j dk! ak~ pi-

~ ~ 

(3.3) 

= I 
n 

p p+q 

(0) 

P p+Q 

Fig. 6. (a) Calculation of current matrix elements in light-cone 
perturbation theory. (b) Valence Fock state contribution to 
the large momentum transfer_meson form factor. TH is computed 
for zero mass quarks q and q parallel to the pion momentum. 
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Explicit calculations of the electron anomalous moment in QED using 
this result are given in Reference 47. We notice that in general 
all Fock states w~ contribute to the anomalous moment of a system, 
although states with K2 much larger than the mean off shell energy 
< ~ > are not expected to be important. The general result (3.3) 
also includes the effects of the Lorentz boost of the wavefunction 
from p~ to (p+q)~. In particular, the Wigner spin rotation contri­
butes to F2 (q2) and the charge radius F~ (q2) in the q2 -+0 limit and 
can only be neglected in the limit of non-relativistic binding 
<E> «M2. This effect gives non-trivial relativistic corrections48 
to nuclear magnetic moment calculations based on simple additivity 
p = <1 llj>. 

B. Form Factors of Mesons * 
Results such as Eqs. (3.2) and (3.3) are formally exact but 

useless unless we have complete knowledge of the hadronic or nuclear 
wavefunction. However, by making use of the impulse approximation 
and the smallness of the QCD running coupling constant, we can cal­
culate features of elastic and inelastic large momentum transfer 
processes 19 without eilicit knowledge of the wavefunction. For 
example, consider the qq> Fock state component contribution to the 
pion form factor. Choosing K2 = Q2, we have 

+ higher Fock state contributions • (3.4) 

The bound state wavefunctions are peaked at low transverse momentum, 
1. e., small off-shell energy 6,. Thus the leading contribution at 
large Q2 come from the regimes (a) k:2 «q2 and (b) (k +(l-x)q )2«q2. 
Thus .L.L.L .L .L 

1 

F;a) (Q ) = J dx <j>{x,Q) wQ (x, (l-x)q.L) 

o 
where 1 9 

<j>(x,Q) ::: r 

(3.5 ) 

(3.6) 

If we simply iterate the one-gluon exchange kernel VI in the equa­
tion of motion for ~, then for q2 « <t2> 

.L .L 

* Further discussion may be found in Lepage's lectures in this 
volume and Refs. 11 and 19. 
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1/iQ(x,(l-x)q) If ? 
.L = dy J 

o 

d2t VI(x,(l-x)q ;y,t )1/iQ(y,t ) .L .L.L.L 
-63 2 
1 'JT -q (l-x)/x 

.L 

1 

- f dy 

VI (x, (l-x)q.L;y,0.L) 

_ q2 (l-x)/x 
q,(y,Q) (3.7) 

o .L 

Thus we can write the gluon exchange contribution to the form fac­
tor in the form;II,19 [see Fig. 6b)] 

where 

1 

F'JT(Q2)= r dx dy q,*(y,Q) TH(X,y;Q) q,(y,Q) 

T = 
H 

o 

( e l e 2 ] 
(l-y)(l-x) + xy 

(3.8) 

(3.9) 

is the "hard scattering amplitude" for scattering collinear consti­
tuentp q and q from the initial to the final direction. The color 
factor is CF = ~ (n~ -1) = 4/3. The "distribution amplitude" 
q,(x,Q) is the amplitude for finding the Iqq> Fock state in the pion 
collinear up to the scale Q. (It is analogous to the wavefunction 
at the origin in non-relativistic calculations.) The distribution 
amplitude enters universally in all large momentum transfer exclu­
sive amplitude and is a process-independent measure of the valence 
quark distribution in each hadron; its (logarithmic) dependence on 
Q2 can be determined directly from the operator product expansion 
or the light-cone or from an evolution equation, as we discuss 
below. 

Thus the simplest estimate for the asymptotic behavior of the 
meson form factor is F'JT(Q2) -as (Q2)/Q2. To see if this is correct 
we must examine the higher order corrections: 19 

(1) Contributions from higher particle number Fock states 
Iqqg>, Iqqqq>, etc. are power-law suppressed since (in light-cone 
gauge) the numerator couplings cannot compensate the extra fall­
off in Q2 from the extra energy denominators. 

(2) All infrared singularities and contributions from soft 
(t.L +0) gluons cancel in color singlet matrix elements. [It is 
interesting to note that the quark (Sudakov) form factor falls 
faster at large Q2 than F'JT(Q2).] 

(3) Vertex and vacuum polarization corrections to TH are higher 
order in as (Q2) since we choose K2= Q2. The effective argument of as 
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in TH is Q2 =xy Q?' or (1-x)(1-y)Q2 corresponding to the actual momen­
tum transfer carried by the gluon. 

(4) By definition, ~(X,K2) sums all (reducible) contributions 
from low momentum transfer gluon exchange in the qq wavefunction. 
Hard gluon contributions with 1&1> K2 and the irreducible (cross­
graph, etc.) give contributions to TH which are higher order a s (Q2). 
By analyzing the denominators in TH one can show that the natural & 
cutoff for ~(X,K) which m~imizes higher order contributions is K2= 
Q2 = Q2 min {~ 1-x,. 

x 1-x' x j 

(5) Although TH is singular at x+O,l, the endpoint behavior 
of HX,Q2) - xE:, (l-x)E: (E: > 0) is sufficient to render this region 
harmless. 

c. The Meson Distribution Amplitude 

The essential prediction of QCD for the pion form factor is 
the power-law behavior8 F 1T _1/Q2, with logarithmic corrections from 
the explicit powers of a s (Q2) in TH and the Q2 dependence of the 
distribution amplitude ~(x,Q2). 

+ The variation of ~ with Q2 comes from the upper limit of the 
k 1. integration (since 1jJ - l/k~) and the renorma1ization scale depen­
dence: 

due to vertex and self-energy insertions. Thus 

2 Cl 
Q -2 HX,Q) 

ClQ 
~ Q + d 2 2 1jJ (x,q ) + 2 log Z2(Q H(x,Q) 
161T .L d log Q 

To order a s (Q2) we can compute Q21jJ from one-g1uon exchange 
Eq. (3.7)], and d1ogZ2(Q2)/d1ogQ2=as(Q2)YF/41T. Setting 
x(l-x)~(x,Q) x x ~,we obta-fn an "evolution equation" 

1 2 1 
Cl a s (Q2) f 

---2Hxi,Q) 41T [dy] V(xi'YiH(y,Q) 
Cl log Q 

o 
where 

V(xl."Yl.') = 2CF {x y e(y - x )(oh -h + t:,. ) + (1 +-}-2)} 
I 2 I I I 2 YI -Xl 

[oh ii = 1 when the q and q he1icities are opposite] and 
I 2 

t:,.~(Yi'~) = ~(Yi,Q) - ~(xi,Q) • 

(3.10) 

(3.11) 

[as in 
~(x,Q) = 

(3.12 ) 

(3.13) 

(3.14 ) 
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The ~(xl,Q) subtraction is due to the YF~ term - i.e., the infrared 
dependence at y i = xi is cancelled for color singlet hadrons. Thus 
given the initial condition ~(xi,Qo)' perturbation theory determines 
the evolution of <P (x, Q) for Q > Q. The solution to the evolution 
equation is19 0 

00 

¢(xi,Q) = x x L a (Q2) C3/ 2 (x1-x2)(10g Q2/A2)-Yn 
1 2 n=O non 

(3.15 ) 

where the Gegenbauer polynomials ~/2 (orthogonal on f[dX]XIX2) are 
eigenfunctions of V(xi'Yi). The corresponding eigenvalues are the 
"non-singlet" anomalous dimensions: 

CF [ n+1 1 20h fi ] 
Yn = 130 1 + 4 ~ k - (n+15 (~+2) ~ 0 (3.16) 

[These results can also be derived by using the operator product 
expansion for the distribution amplitude. 49 By definition 

<P(X,Q)=A+Jd;- e ixz-/2 i<OI~(Z)1/J(O)I'IT>QI + 2 2 2 (3.17) 
'IT z =O,z =-z~=O(-l/Q ) 

(A+ is the positive energy spinor projection operator). The relative 
separation of the q and q thus approaches the light-cone z2. = 0 as 
Q2 -+00. Equation (3.16) then follows, by expanding 1/J(z)1/J(O) in local 
operators.] 

The coefficients a are n 

2 (2n+3) 
(2-1-'n) (1+n) 

determined from <p<xi,Qo): 

1 

f 3/2 
d(x 1-x2.) Cn (xCXz)<P(xi,Qo)· 

-1 

For Q2. +00, only the leading Y = 0 term survives: o 

where 

a x x 
012. 

a; • t dx Hx,Q) • t dx r 
o 0 

(3.18) 

(3.19) 

(3.20) 

is the meson wavefunction at the origin as measured in the decay 
1T -+J..1V: 

(3.21) 

o +-More generally, the 1eptonic decay (p +e e , etc.) of each 
meson normalizes its distribution amplitude by the "sum rule" 
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(3.22) 

independent of Q. The fact that f 7f " 0 implies that the probability 
of finding the [qq> Fock state in the pion is non-zero. In fact 
all the Fock states wavefunctions ~~(xi,k~~) (I & 1 <K2) are we11-
defined, even in the infrared limit Xi -+0 ~since 1 &1 - <ki>/xi and 
< kt > is non-zero for a state of finite radius). 

Thus 

The pion form factor at high Q2 can thus be written 11 ,19,50 

1 

F 7f(Q2) = I dx cp*(x,Q) TH(x,y;Q) cj>(y,Q) 

o 
16 
31T 

a «1-x)(1-y)Q2) 
s 
(l-x) (1_y)Q2 

(3.23 ) 

(3.24) 

where Q2 _ «1-x)(1-y»Q2. Finally, for the asymptotic limit where 
only the leading anomalous dimension contributes: 51 

lim Q2 __ (3.25) 

The analysis of the F1Ty(Q2) form factor, measurable in ee-+ee7fo 
reactions proceeds in a similar manner. [See Fig. l(a).) An 
interesting result is 19 

(3.26) 

which provides a definition of as independent of the form of the 
distribution function CP1T. Higher order corrections to F7f(Q2) and 
F7fy(Q2) are discussed in Reference 50. 

IV. LARGE MOMENTUM TRANSFER EXCLUSIVE PROCESSES 19 

The meson form factor calculation which we outlined above is 
the prototype for the calculation of the QCD hard scattering con­
tribution for the whole range of exclusive processes at large 
momentum transfer. Away from possible special points in the Xi 
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integrations (see below) a general hadronic amplitude can be written 
to leading order in 1/Q2 as a convolution of a connected hard­
scattering amplitude TH convoluted with the meson and baryon dis­
tribution amplitudes: 

1& I <Q2 2 

J d k.L Q + 
--2 1jJ -(x,k ) 
16 'IT qq .L 

(4.1) 

and 

(4.2) 

The hard scattering amplitude TH is computed by replacing each 
external hadron line by massless valence quarks each collinear with 
the hadrons momentum pi ~ xiP*. For example the baryon form factor 
at large Q2 has the form9 ,19 [see Figs. 2 (a) and 7] 

GM(Q2) = J [dx] [dy] 4>*(Yi,Q) TH(x,y;Q2) HX,Q) (4.3) 

where TH is the 3q + Y .. 3q' amplitude. [The optimal choice for Q 
is discussed in Reference 19.] For the proton and neutron we have 
to leading order [eB = 2/3] 

where 

and 

T 
P 

T 
n 

128'IT2 e~ 

(Q2 +M2)2 
o 

128'IT2 c~ 

3 (Q2 +M2)2 
o 

Cl S (x 3y 3Q2 )Cls«1-x 1) (l-y 1 )Q2) 

x 3(1-x 1)2 Y3(1-Yl)2 

ClS(x2Y2Q2)ClS(x3Y3Q2) 

x2x3(1-X3)Y2Y3(1-Yl) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Tl corresponds to the amplitude where the photon interacts with the 
quarks (1) and (2) which have he1icity parallel to the nucleon 
helicity, and T2 corresponds to the amplitude where the quark with 
opposite helicity is struck. The running coupling constants have 
arguments Q2 corresponding to the gluon momentum transfer of each 
diagram. Only the large Q2 behavior is predicted by the theory; 



162 S. J. BRODSKY ET AL. 

we utilize the parameter Mo to represent the effect of power-law 
suppressed terms from mass insertions, higher Fock states, etc. 

The Q2_evo1ution of the baryon distribution amplitude can be 
derived from the operator product expansion of three quark fields 
or from the gluon exchange kernel, in parallel with the derivation 
of (3.12). The baryon evolution equation to leading order in as 
is 19 

1 

.fa 3 CF } CB f -x1x2x3\.~Hxi,Q) +2" S Hxi,Q) =~ [dy]V(xi'Yi)<P(Yi,Q)· (4.8) 
o 0 

Here 4> = x 1x2x 3¢' I;; = log(log(Q2/A 2) and [see Fig. 7(b)] 

v (y. ,x.) . 
1 1 

o -y. h·h. t:. 
e (y .-x.)o (x -y ) .::.J.. (--=.!.:..l + --) 
11k k x. xi+x . Yi-x. 

J J 1 

(4.9) 

The infrared singularity at Xi = Y i is cancelled because the baryon 
is color singlet. The evolution equation has the general solution 

00 B 
'\ - ~ -Yn 

¢(xi,Q) = x 1x2x 3 L a cP (x.) (log 2) 
n=O n n 1 A 

(4.10) 

The leading (polynomial) eigenso1ution ~n(xi) and corresponding 
baryon anomalous dimensions are given in References 19 and 52. 
Thus at large Q2, the nucleon magnetic form factors have the form9,19 

2 B B 
a (Q ) 2 -y -y ( 2 J 

GM(Q2) -+ --=-s~_ I b (log~) n m II +O(a (Q2),m2) . (4.11) 
Q4 n,m nm A s Q 

We can also use this result to obtain results for ratios of various 
baryon and isobar form factors assuming isospins or SU(3)-f1avor 

(a) + ••• 

Fig. 7. (a) Leading contributions to TH for the baryon form factors 
corresponding to the four terms of Eqs. (4.6) and (4.7), 
respectively. (b) Contributions to the kernel for the 
evolution of the baryon distribution amplitude. 
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symmetry for the basic wavefunction structure. Results for the 
neutral weak and charged weak form factors assuming standard 
SU(2) xU(l) symmetry are given in Reference 46. 
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As we see from Eq. (4.3), the integration over xi and y. have 
potential endpoint singularities. However, it is easily seefi that 
any anomalous contribution [e.g., from the region x2,x3 -O(m/Q), 
xl -1 - O(m/Q)] is asymptotically suppressed at large Q2 by a Sudakov 
form factor arising from the virtual correction to the qyq vertex 
when the quark legs are near-on-she11 [p2_ O(mQ)].19,53 This 
Sudakov suppression of the endpoint region requires an all orders 
resummation of perturbative contributions,54 and thus the deriva­
tion of the baryon form factors is not as rigorous as for the meson 
form factor, which has no such endpoint singularity. 

The most striking feature of the QCD prediction (4.11) is the 
1/Q4 power-law behavior of G~ as G~. The power-law dependence 
reflects: 

(1) The essential sca1e-invariance of the qq scattering sub­
processes within THo 

(2) The fact that the minimal Fock state of a baryon is the 3-quark 
state. 

We will discuss the phenomenology of the baryon form factors 
and the resulting constraints on the baryon wavefunction in Section 
VI. 

In the case of hadron scattering amplitudes A+B -+ C+D, photo­
production, Compton scattering, etc., the leading hard scattering 
QCD contribution at large momentum transfer Q2 =' tu/s has the form l9 
(he1icity labels and suppressed) (see Fig. 8) 

)/~+B -+C+D(Q2,8c •m.) =' f [dxHc(xc,Q)¢D(xd,Q)TH(xi;Q2,8c.m.) 

(4.12) 

The essential behavior of the amplitude is determined by TH, com­
puted where each hadron is replaced by its (collinear) quark 
constituents. We note again that TH is "collinear irreducible," 
i.e., the transverse momentum integrations of all reducible loop 
integration are restricted to kI > 0 (Q2) since the small kJ. region 
is already contained in~. If the internal propagators in TH are 
all far-off-she11 O(Q2) [as in Fig. 8(a)] then a perturbative 
expansion in a s (Q2) can be carried out. However, this is not true 
for all hadron-hadron scattering amplitudes since one can have 
multiple quark-quark scattering processes which allow near-on-shel1 
propagation in intermediate states at finite values of the x i • 17 
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The classic example is meson-meson scattering, where two pairs of 
quarks scatter through the same angle [see Fig. 8(c)]. However, 
the near-on-she11 region of integration is again suppressed by 
Sudakov factors. [Physically this suppression occurs because the 
near-on-she11 quarks must scatter without radiating gluons.] A 
model calculation by Mue11er 10 for TI-TI scattering in QCD (using an 
exponentiated form of the Sudakov form factor) shows that the lead-
ing contribution comes in fact from the off-shell region Ik2 1 -

O(Q2)1-€ where € = (2c+1)-1, c =8CF/(1l-4 nf) (for four flavors 
€ ~ 0.281). This region gives the contriEution 

2 3/2 c 2,n(2c+l/2c) 
.,lLTITI -+TI'IT - O(Q ) - -

_ (Q2) -1. 922 (4.13) 

compared to (Q2)-2 from the hard scattering Ik2 1 -O(Q2) region. 

Thus even when pinch singularities are present the far-off­
shell hard scattering quark and gluon processes dominate large 
momentum transfer hadron scattering amplitudes: Given this result 
we can abstract some general QCD features common to all exclusive 
processes at large momentum transfer: 

(1) All of the non-perturbative bound state physics is isolated in 
the process-independent distribution amplitudes. 

(2) The nominal power-law behavior of an exchange amplitude is 
(1/Q)n-4 where n is the number of external elementary particles 
(quarks, gluons, leptons, photons in TH). This immediately implies 
the dimensional counting rules: 

A c 

B o 

( 0) ( b) ( c) 

Fig. 8. QeD contributions to meson-meson scattering at large momen­
tum transfer. Diagram (c) corresponds to the Landshoff 
pinch singularity which is suppressed by quark form factor 
effects. 
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da 1 n-2 
dt (A+B + C+D) - (2) f (8 ) 

Q c .m. 
(4.14) 

where n =nA + n B + nC + ~, and 

1 n -1 
FH(Q2) - (-) H 

Q2 
(4.15 ) 

where FH is the helicity-conserving I8 ,19 form factor. These power­
law predictions are modified by (a) the Q2-dependence of the factors 
of as in TH, (b) the Q2-evolution of the distribution amplitudes 
and (c) a possible small power associated with the almost complete 
Sudakov suppression of pinch singularities in hadron-hadron scatter­
ing. The dimensional-counting rules appear to be experimentally 
well-established for a wide variety of processes (see Reference 19): 

(4.16) 

and 

da ( _ (Q2)-7 
dt YP + 'Tfp) 

da 2 -8 
dt ('Tfp + 'Tfp) - (Q ) 

(4.17) 

da ( ) _ (Q2)-10 , dt pp +pp da ( )! da ( ) Q2 dt YP+YP dt YP + 'TfP -

at fixed 8 
c.m. 

(3) Since the distribution amplitudes ¢M and ¢B are Lz = 0 
angular momentum projections of the hadronic wavefunctions, the 
sum of the quark spin along the hadron's momentum equals the hadron 
spin: 18 

I (4.18) 
iEH 

(In contrast in inclusive reactions there are any number of non­
interacting quark and gluon spectators, so that the spin of the 
interacting constituents is only sta.tistically related to the hadron 
spin - except possibly at the edge of phase-space x - 1.) Further­
more since all propagators in TH are hard, the quark and hadron 
masses can be neglected at large Q2 up to corrections of order -m!Q. 
The vector gluon interactions conserve quark helicity when all 
masses are neglected. Thus total quark helicity is conserved in 
TH at large Q2. Combining this with (4.18), we have the QCD selec­
tion rule: 

I I (4.19) 
initial final 

i.e., total hadron helicity is conserved up to corrections of order 
O(m!Q) • 
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Hadron he1icity conservation thus applies for all large momen­
tum transfer exclusive amplitudes involving light meson and baryons. 
Notice that the photon spin is not important: QCD predicts that 
yp +7Tp is proton he1icity conserving at fixed ec •m., s +"", indepen­
dent of the photon polarization. Exclusive amplitudes which involve 
hadrons with quarks or gluons in higher orbital angular momentum 
states are also suppressed by powers of the momentum transfer. An 
important corollary of this rule is that he1icity-f1ip form factors 
are suppressed, e.g.: 

F (Q2)/F (Q2) _ O(m2/Q~) 
2 1 

(4.20) 

The he1icity rule, Eq. (4.19), is one of the most character­
istic features of QCD, being a direct consequence of the gluon's 
spin. A scalar or tensor gluon-quark coupling flips the quark's 
he1icity. Thus, for such theories, he1icity mayor may not be 
conserved in any given diagram contributing to TH, depending upon 
the number of interactions involved. Only for a vector theory, 
like QCD, can we have a he1icity selection rule valid to all orders 
in perturbation theory. 

The study of time1ike hadronic form factors using e+e- collid­
ing beams can provide very sensitive tests of this rule, since the 
virtual photon in e+e- +y* +hAnB always has spin ±1 along the beam 
axis at high energies. Angular momentum conservation implies that 
the virtual photon can "decay" with one of only two possible angular 
distributions in the center of momentum frame: (1 +cos2 e) for 
I AA - AB I = 1, and sin2 e for I AA - AB I = 0 where AA B are the he1icities 
of hadron hA B' Hadronic he1icity conservation: Eq. (4.19), as 
required by QCD greatly restricts the possibilities. It implies 
that AA + AB = 0 (since the photon carries no "quark he1icity"), or 
equivalently that AA - AB = 2AA = -2AB' Consequently, angu1er momentum 
conservation requires IAN=IABI =1/2 for baryons, and IAAI = IABI =0 
for mesons; furthermore, the transfer distributions are now com­
pletely determined: 

d :~s e (e+e- + BB) ex: 1 +cos 2e (baryons) (4.21) 

do (e+e- + MM) ex: sin2e 
d cos e (mesons) (4.22) 

We emphasize that these predictions are far from trivial for vector 
mesons and for all baryons. For example, one expects distributions 
like 1 + acos 2 e, -1 < Cl < 1, in theories with a scalar or tensor 
gluon. So simply verifying these angular distributions would give 
strong evidence in favor of a vector gluon. 

The power-law dependence in s of these cross sections is also 
predicted in QCD, using the dimensional counting rule. Such "all 
orders" predictions for QCD allowed processes are sununarized in 
Table II. Processes suppressed in QCD are also listed there; these 
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all violate hadronic he1icity conservation, and are suppressed by 
powers of m2/s in QCD. This would not necessarily be the case in 
scalar or tensor theories. 

The exclusive decays of heavy quark atoms (~,~', ••• ) into 
light hadrons can also be analyzed in QCD.I8 The decay ~ -+pp for 
example proceeds via diagrams such as those in Fig. 2(b). Since 
~'s produced in e+e- collisions must also have spin ±1 along the 
beam direction and since they can only couple to light quarks via 
gluons, all the properties listed in Table II apply to~, ~', T, 
T', ••• decays as well. There is considerable experimental data for 
the ~ and ~' decays.55 

Perhaps the most significant tests are the ·decays ~,~' -+pp,nn, 
• The predicted angular distribution 1 +B2cos2 e is consistent 

with published data. 35 This is important evidence favoring a 
vector gluon since scalar or tensor gluon theories would predict a 
distribution of sin2e +O(o.s). Dimensional counting rules can be 
checked by comparing the ~ and ~' rates into pp, normalized by the 
total rates into light-quark hadrons so as to remove dependence 
upon the heavy-quark wavefunctions. Theory predicts 

where 

BR(~ -+ pi;) 
BR(~' -+pp) 

BR(~ -+pp) 

(4.23) 

- r(t/J -+light-quark hadrons) (4.24) 

Existing data suggests a ratio (M~, /M~)n with n - 6 ± 3, in good 
agreement with QCD. 

Many more examples of exclusive reactions which test the basic 
scaling laws and spin structure of QCD are discussed in References 
18 and 19. The essential point is that exclusive reactions have 
the potential for isolating the QCD hard-scattering processes in 
situations where the he1icities of all the interaction constituents 
are controlled. In contrast, in inclusive reactions the absence 
of restrictions on spectator quark and gluons allows only a statis­
tical correlation between the constituent and hadronic he1icities. 

Two-Photon Processes I2 

One of the most important applications of perturbative QCD is 
to the two-photon processes do/dt (yy -+MM), M= 1T,K,P,W at large 
s = (kI +k2)2 and fixed ec • These reactions, which can be studied 
in e+e- -+ e+e-MM processes~·provide a particularly important labor­
atory for testing QCD since these "Compton" processes are, by far, 
the simplest calculable large-angle exclusive hadronic scattering 
reactions. As we discuss below, the 1arge-momentum-transfer scaling 
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behavior, the helicity structure, and often even the absolute nor­
malization can be rigorously computed for each two-photon channel. 

Conversely, the angular dependence of the yy -+MM amplitudes 
can be used to determine the shape of the process-independent meson 
"distribution amplitudes," <PM(x,Q), the basic short-distance wave­
functions which control the valence quark distributions in high 
momentum transfer exclusive reactions. 

A critically important feature of the yy -+MR amplitude is that 
the contributions of Landshoff17 pinch singularities are power-law 
suppressed at the Born level - even before taking into account 
Sudakov form factor suppression. There are also no anomalous con­
tributions from the x -1 endpoint integration region. Thus, as in 
the calculation of the meson form factors, each fixed-angle helicity 
amplitude can be written to leading order in l/Q in the factorized 
form [Q2=pi-=tu/s; Qx=min(xQ,(l-x)Q)] (See Fig. 9): 

1 1 

f dx J dy <p-(y,Q )TH(x,y;s,e )<PM(x,Q ) 
M Y c.m. x dt -yy-+MM o o 

(4.25) 

where TH is the hard-scattering amplitude yy -+ (qq) (qq) for the 
production of the valence quarks collinear with each meson and 
<PM(x,Q) is the (process-in~ependent) distribution amplitude for 
finding the valence q and q with light-cone fractions of the meson's 
momentum, integrated over transverse momenta k < Q. The contribution 

.L 

" 10-1 LL 

T 
" 
'" ~ 10-2 

10-2 

10-3 

10-4 
0 

• • 
Pion, n=2 

Proton, n=3 

Helium 4, n=12 
xO.1 

2 4 6 

q2 (GeV2) 

Fig. 9. Hadronic form factors mUltiplied by (Q2)n-l. (From Ref. 1). 
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of nonva1ence Fock states are power-law suppressed. Further, the 
spin-selection rule (4.19) of QeD predicts that vector mesons M and 
M are produced with opposite he1icities to leading order in l/Q and 
all orders in as (Q2). 

Dimensional counting8 predicts that for large s, s4 dcr/dt 
scales at fixed t/s or Sc.m. up to factors of ~n s/A2. 

Some forty diagrams contribute to the hard-scattering ampli­
tudes for yy +MM (for nonsinglet mesons). These can be derived 
from the four independent diagrams in Fig. 10(b) by particle inter­
change. The resulting amplitudes for he1icity zero mesons are: 

161m 
s 321Ta 
~ x(l-x)y(l-y) (4.26) 

161Ta 32. [(e -e )2(1_a) e e a(y(l-y) +X(l-X»] _____ s 1Ta 1 2 +~1~2~ ______________ ___ 

3s x(l-x)y(1-y) 1 _ cos2 e a 2 - b2 cos2 S c.m. c.m. 

(4.27) 
a where b} = (l-x) (l-y) ± xy, the subscripts ++, --, ..• refer to photon 

helicities, and e 1 , e 2 are the quark cha~ges [i.e., the mesons have 
charges ±(el-e2)]. To compute the yy +MM amplitude Ain , Eq.(4.25)], 
we now need only know the x-dependence of the meson's distribution 

Fig. 10. (a) Factorized structure of the yy +MM amplitude in QeD at 
large momentum transfer. The TH amplitude is computed 
with quarks collinear with the outgoing mesons. (b) Diagram 
contributing to TH(yy +MM) to lowest order in as. 
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amplitude ¢M(x,Q); the overall normalization of ¢M is fixed by the 
'sum rule' (n = 3) c 

1 

f dx ¢M(x,Q) 

o 
(4.28 ) 

where fM is the meson decay constant as determined from leptonic 
decays. Note that the dependence in x and y of several terms in 
TAA , is quite similar to that appearing in the meson's electro­
magnetic form factor (3.23): 

F (s) = l61T<ls If dx dy <P~(x,~)¢~(Y,Qy) 
M 3s x(l-x)y(l-y) 

(4.29) 

o 
where <PM(x,Q) = <PM(l-x,Q) is assumed. Thus much of the dependence 
on <P(x,Q) can be removed from . .'I.AA , by expressing it in terms of the 
meson form factor - i.e., 

[
<eel -e2)2> 1 

= l61T<l F M(s) J 
l-cos2ec . m. 

(4.30) 

[
<eel -e2)2>] ( ) 

= 161Ta. F (s) , +2<e e >g e ; <P~.< 
M I -cos2e 1 2 c.m. L'i 

c.m. 

(4.31) 

up to corrections of order as and m2 Js. Now the only dependence on 
<PM' and indeed the only unknown quantity, is in the e-dependent 
factor * - * -I <PM(x,Q)<PM(y,Q) a[y(l-y) +x(1-x)] 

Of dxdy x(l-x) y(l-y) a 2 - b2cos2e c.m. 
g [e ; <PM] c. m. 1 <P~(x'Q)<P~(Y,Q) 

f dxdy x(l-x)y(l-y) 
o 

(4.32) 

The spin-averaged cross section follows immediately from these 
expressions: 

dO' 2 dO' 
dt = s d cos ec . m. 

(4.33) 
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Fig. 11. QCD predic tions for yy -+ 7T7T to leading order in QCD. The 
results assume the pion form factor parametrization 
F7T (s) -0.4 GeV2/s. Curves (a), (b) and (c) corr~spond to 
the distribution amplitudes <PM = x(l-x), [x(l-x)]"\ and 
o(x-~), respectively. Predictions for other helicity zero 
mesons are obtained by multiplying with the scale constants 
given in Ref. 15. 

In Fig. 11 the spin-averaged cross section (for YY-+7T7T) are 
plotted for several forms of <PM(x,Q). At very large energies, the 
distribution amplitude evolves to the form 

<PM(x,Q) ~13 fM x(1-x) , (4.34) 

and the predictions [curve (a)] become exact and parameter-free. 
However this evolution with increasing Q2 is very slow (logarithmic), 
and at current energies <PM could be quite different in structure, 
depending upon the details of hadronic binding.~ Curves (b) and (c) 
correspond to the extreme examples <PM cc [x(l-x)] 4 and <PM cc 0 (x-~, 
respectively. Remarkably, the cross section for charged mesons is 
essentially independent of the choice of <PM' making this an essen­
tially parameter-free prediction of perturbative QCD. By contrast, 
the predictions for neutral helicity-zero mesons are quite sensitive 
to the structure of <PM. Thus we can study the x-dependence of the 
meson distribution amplitude by measuring the angular dependence of 
this process. 
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The cross sections shown in Fig. 8 are specifically for yy~ TITI, 
where the pion form factor has been approximated by Frr(S) -0.4 GeV2/s. 
The rr+rr- cross section is quite large at moderate s: 

do + (yy ~ rr TI-) 
dt 
do + -
dt (YY~)1 )1 ) 1 - co s 4 e c • m. 

0.6 GeV 4 

2 s 
at e = rr /2 . 

c.m. 
(4.35) 

Similar predictions are possible for other he1icity-zero mesons. 
The normalization of yy ~MM relative to the yy ~rrrr cross section is 
completely determined by the ratio of meson decay constants (fM/frr)4 
and by the flavor-symmetry of the wavefunctions, provided only that 
~M and ~rr are similar in shape. Note that the cross section for 
charged p's with he1icity zero is almost an order of magnitude 
larger than that for charged rr's. 

Finally notice that the leading order predictions [Eq.(4.33)] 
have no explicit dependence on as. Thus they are relatively insen­
sitive to the choice of renorma1ization scheme or of a normalization 
scale. This is not the case for either the form factor or the two­
photon annihilation amplitude when examined separately. However by 
combining the two analyses as in Eq. (4.33) we obtain meaningful 
results without computing O(a s ) corrections. The corresponding 
calculations for he1icity-one mesons are given in Reference 12. 
Hadronic he1icity conservation implies that only he1icity-zero 
mesons can couple to a single highly virtual photon. So FM~' the 
transverse form factor cannot be measured experimentally. For sim­
plicity we will assume that the longitudinal and transverse form 
factors are equal to obtain a rough estimate of the yy ~ p~p~ cross 
section (Fig. 12). Again we see strong dependence on ~M for all 
angles except ec •m• -rr/2, where the terms involving g~ v~nish. 
Consequently a measurement of the angular distribution would be 
very sensitive to the x-dependence of ~M , while measurements at 
ec •m• =TI/2 determine FMl(s). Notice a1s5 that the number of charged 
p-pairs (with any he1icity) is much larger than the number of neu­
tral p's, particularly near ec •m• =rr/2. The cross sections are 
again quite large with 

do + -
dt (yy ~ PlP~) 

~~ (yy ~ )1+)1-) e =rr/2 
c.m. 

5 GeV 4 
2 

s 

Results for other mesons are given in Reference 12. 

(4.36 ) 

The yy ~MM and y*y ~M processes thus provide detailed checks 
of the basic Born structure of QCD, the scaling behavior of the 
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Fig. 12. QCD predictions for yy -+ p .LP.L with opposite he1icity ±1 to 
leading order in QCD. The normalization given here assumes 
that the p distribution amplitude is he1icity independent. 

quark and gluon propagators and interactions, as well as the con­
tituent charges and spins. Conversely, the angular dependence of 
the yy-+MM amplitudes can be used to determine the shape of the 
process-independent distribution amplitude ~M(x,Q) for valence 
quarks in_the meson qq Fock state. The cos Sc.m.-dependence of 
the yy-+MM amplitude determines the light-cone x-dependence of the 
meson distribution amplitude in much the same way that the XBj 
dependence of deep inelastic cross sections determines the 1ight­
cone x-dependence of the structure functions (quark probability 
functions) Gq/M(x,Q). 

The form of the predictions given here are exact to leading 
order in as(QZ). Power-law (m/Q)Z corrections can arise from mass 
insertions, higher Fock states, pinch singularities and nonpertur­
bative effects. In particular, the predictions are only valid when 
s-channe1 resonance effects can be neglected. It is likely that 
the background due to resonances can be reduced relative to the 
leading order QCD contributions if one measures the two-photon 
processes with at least one of the photons tagged at moderate space­
like momentum qZ, since resonance contributions are expected to be 
strongly damped by form factor effects. In contrast, the leading 
order QCD YlYZ -+MM amplitudes are relatively insensitive to the 
value of qf or q~ for Iq11 « s. 
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Finally, we note that the amplitudes given above have simple 
crossing properties. In particular, we can immediately analyze the 
Compton amplitude yM -+yM in the region t large enough with s » I t I 
in order to study the leading Regge behavior in the large momentum 
transfer domain. In the case of helicity ±l mesons, the leading 
contribution to the Compton amplitude has the form (s» Itl) 

JYl. = 16m). F (t) (e2 +e2) • yM -+ yM M.l 1 2' (A = A' • AM = AM') y y 
(4.37) 

which corresponds to a fixed Regge singularity at J = 0. 56 In the 
case of helicity zero mesons, this singularity actually decouples, 
and the leading J-plane singularity is at J = -2. 

V. DEEP INELASTIC LEPTON SCATTERING 

The crucial evidence that the electromagnetic current within 
hadrons is carried by point-like spin 1/2 quarks comes from deep­
inelastic electron, muon and neutrino scattering. At large momen~ 
tum transfer, Q2 ~ 2 GeV2 the lepton-nucleon inelastic cross section 
displays a scale-invariant behavior consistent with the simplest 
type of impulse approximation - where the electron scatters directly 
against point-like quark constituents of the target. 57 The devia­
tions which are observed at very large Q2 are consistent with the 
color radiative corrections predicted by QCD. In addition at low 
values of Q2, there is evidence for power-law "high twist" correc­
tions associated with coherent mu1tiquark processes, interference 
effects, and final state corrections - quite in analogy to the 
corrections to impulse approximation expected in nuclear physics 
inelastic breakup calculations. 

The Fock state representation we discussed in Section III 
provides a particularly simple and elegant basis for calculating 
the deep inelastic cross section in QCD. We first consider the 
forward Compton amplitude Y*p -+Y*p with virtual photon mass q2 = 
_Q2 < 0, and then calculate the ep -+eX cross section from the absorp­
tive part. An ideal Lorentz frame is 

+ ~ -+ 
(p, +' 0.1) 

p 
(5.1) 

(5.2) 

with q2 =Q2 and p.q =Mv. For the diagram 13(b) which has no final 
state interactions, the (light-cone) energy denominator between the 
photon interaction is 

-+ -+22 22 
(k.l + q.l) +m k.l +m 

D = M2 +2Mv ----'=----=--- - I ( x) + ie: 
x i;&l i 

(5.3) 



176 S. J. BRODSKY ET AL. 

(0 ,<l.J.) (O,q.1) 

'x' = + ••• 

I (1,0.1) 
P P (1,0.1) .p(xi ,k.1 i) 

(0) ( b) 

Fig. 13. Calculation of the forward virtual Compton amplitude. 
Diagram (b) gives the impulse approximation, neglecting 
final state and mu1tiquark interactions. 

where m is the struck quark mass, and the sum over i ~ 1 gives the 
spectator quark and gluon contributions. For states with 1&1 = 
!M2_I (k1+m2)/xl «2Mv and kf«Q2 we can write 

i 
2 

D ;;; 2MV - ~ + iE (5.4) 
X 

X7T () 2 
1m D -1 = -- 0 (x - ~) 

2M\! 2MV 
(5.5) 

i.e., the electron scattering on a quark with light-cone momentum 
fraction 

x :: (5.6) 

The corresponding impulse approximation cross section is (x +xBj ) 

do \ do \ (Q,p +Q, l X) = L G / (x,a) -- (Q,q +Q,lq) _ 
dQ2 dx q q P dQ2 

Pq-XP 

where21 

G / (x,Q) q p 

(5.7) 

(5.8) 

gives the probability distribution for finding the quark with frac­
tional light-cone momentum collinear up to the scale k~ < Q2, I & I < 
2Mv. Unlike large momentum transf~r exclusive amplitudes, all Fock 
states contribute to the inclusive cross section. The subprocess 
cross section dO/dQ2(Q,q +Q,l q ) is evaluated for a quark collinear 
with the proton momentum p~=xp+, k.l "'0. Since all the loop cor­
rections to the subprocess cross section are hard (k1 <: O(Q2», it 
can be developed as a power series in us (Q2). Thus the only cor­
rection to perfect scale invariance of do/dx dQ2 at large Q2 and 
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Fig. 14. Contributions to the hadron Fock state wavefunction which 
give 1/1 -l/kol at large kol and thus structure function evo­
lution. 

fixed XBj comes for the Q2 dependence of the probability distribu­
tion G(x,Q2). This in turn can only arise from the wavefunction 
renorma1ization or from contributions 1/In -O(l/kol) at large kol. In 
QCD these occur only from the perturbative processes q -+ qg and 
g -+gg, g -+qq, as illustrated in Fig. 14. In parallel to the deri­
vation of the evolution equation for the distribution amplitude, 
we then can derive evolution equations for the distributions 
Gq/ H(x,Q2) and Gg/ H(x,Q2) of the form58 ,59 

a o,s(Q2) 1J x ~ 
a logQ2 G(x,Q) = -z,;;:-- P(y)G(y,Q) y (5.9) 

x 

For example, for the "non-singlet" distribution 

we have to lowest order in o,s(Q2), (CF =4/3) 

1 

P (z) =C (1+z2) = C (1+z2 -o(l-z) JdX 1+x2) • 
q/q F 1-z + F 1-z 1-x 

o 

(5.10) 

(5.11) 

(The subtraction term, which ensures finite behavior at Xg = 0, 
arises from the wavefunction renorma1ization, as in Eq. (3.14». 
The Q2 dependence can be displayed most simply by taking moments: 

1 

Mn (Q2) = J G(x,Q2) xn dx . (5.12) 

o 
Then 

~S = MNS(Q2) (lOg Q2/A2)-Yn 
n n 0 log Q2/A2 

o 
(5.13) 

where the Yn are defined in Eq. (3.16). The higher order correc­
tions to the Q2-evo1ution of Mn are discussed in References 1 
and 2. A critical feature21 is the fact that the higher loop 
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corrections (e.g., from the higher Fock states) are constrained 
kinematically to kI < (1_y)Q2 < (1_x)Q2, where y is labelled in the 
figure; i.e., the evolution is reduced at large x and for large n. 
A detailed discussion is given in Reference 41. 

Equation (5.7) displays an essential feature of the QeD pre­
dictions for inclusive reactions: the factorization of the physical 
cross section into a hard-scattering subprocess cross section, con­
trolled by short-distance perturbative QeD, convoluted with struc­
ture functions G(x,Q2) which contain the long distance hadronic 
bound state dynamics. Notice that the Q2-evolution of G(x,Q) is 
also completely specified by the perturbative QeD processes and is 
independent of the nature of the target. 

All the corrections to the perturbative QeD impulse approxima­
tion from final state interactions, finite kf effects, interference 
contributions, mass corrections, etc. are of higher order in 1/Q2, 
at least when analyzed using perturbative methods. In the operator 
product analysis these contributions correspond to matrix elements 
of "higher twist" operators which have non-minimal dimensions. The 
most important higher twist terms for deep inelastic lepton scatter­
ing are expected to correspond to processes where the lepton 
scatters on multiparticle clusters in the target (qq, qq, virtual 
mesons, qg, etc.). We thus obtain a sum of contributions (see 
Fig. 15):15 

do \' do I ~ (tH -+t'X) = l.. G /H(x) ~ (ea -+ea) 
dQ dx ae:H a dQ p =xp 

a H 

~el ~,k.L 
y = y 

9 

+~ 

+< 

F2(x, Q2) ~ (l-x)3 

+ QeD evolution 

+ fJ [as(Q2)] 

(5.14 ) 

Fig. 15. QeD contributions to inelastic electron-nucleon scatter­
ing, including radiative and higher twist (diquark, tri­
quark) corrections. 
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where, in general, dOa /dQ2 falls in Q2 according to the composite­
ness of a: 

(5.15) 

For example, the "diquark" eqq -+eqq gives a contribution to 
ep-+eX of relative order (m2/Q2)2. Since the qq can carry a large 
fraction of the proton's momentum, this contribution can be signi­
ficant at large x. For a guide to this effect one can use the 
spectator counting rule: 60 ,8 

2n -1 
Ga/H(x) x+l (1 -x) s (5.16) 

where ns is the minimum number of spectator quarks (or gluons) in 
the Fock state required to stop at x -+ 1. The minimal Fock state 
containing a gives the dominant contribution. 

The simplified rule (5.16) can be derived from minimally 
connected tree graph diagrams, ignoring spin effects, or from 
simple phase space considerations if one ignores the spectator 
quark masses61 (see Section VI). Using this simple counting we 
can then classify the contributions to the hadron structure func­
tions, as illustrated in Fig. 15. The diquark contribution is 
expected to give a large contribution to the longitudinal structure 
function since it acts coherently as a boson current. The order 
a s (Q2) contribution from the hard gluon radiative corrections 
with kf > (1-x)Q2 also gives a significant contribution to 0L. 

A detailed derivation of the behavior of structure functions 
at x-I from perturbative QCD is given in Reference 21. At x-I 
all of the hadron's momentum must be carried by one quark, and each 
quark and gluon quark and gluon propagator which transfers this 
momentum becomes far off shell: 

k 2 + m2 
k2 _ O( _ 1. ) 

1 - x 

Perturbative QCD predictions thus become relevant. An important 
result is that at large x the struck quark tends to have the same 
helicity as the target nucleon: 21 ,62 

G / - (1 -x) 3 • 
qt pt ' 

G / - (1 _x)5 qf pt 
(5.17) 

This type of spin correlation is consistent with the SLAC-Yale 
polarized electron/polarized target data. Combined with the SU(6) 
symmetry of the nucleon wavefunction of this implies that the 
leading quark in the proton is five times more likely to be an up 
quark than a down quark, and thus62 (F2 = ~ e~ xGq/ n ) 
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F2 (X.Q2)/F2 (X,Q2) ~l 3/7 
n p x-

(5.18) 

For the case of mesons, the perturbative QCD gluon exchange predic­
tion is63 

2 
G / - (1 -x) q m 

(5.19) 

In addition, the same QCD analysis predicts a large C/Q2 contribu­
tion to the meson longitudinal structure function (see Fig.3(b»:~.64 

Q2 

F~(x,Q2) = 2;~ CF f dk2 o.s(I¢) F'J1'(k2) (5.20) 

-m2 /(1-x) 

which numerically is FL - x 2/Q2 in GeV2 units. This contribution, 
which can dominate leading twist quark distributions in mesons is 
normalized in terms of the meson distribution amplitude, which in 
turn is normalized by the pion form factor. 

The dominance of the longitudinal structure functions in the 
fixed W limit for mesons is an essential prediction of perturbative 
QeD. Perhaps the most dramatic consequence is in the Dre11-Yan 
process 'J1'p~t+t-X; one predicts22 that for fixed pair mass Q, the 
angular distribution of the t+ (in the pair rest frame) will change 
from the conventional (1 +cos2s+) distribution to sin2(s+) for 
pairs produced at large XL. A recent analysis of the Chicago­
-Illinois-Princeton experiment65 at FNAL appears to confirm the QCD 
high twist prediction with about the expected normalization. Strik­
ing evidence for the effect has also been seen in a Gargame11e 
ana1ysis66 of the quark fragmentation functions in Vp~'J1'+~-X. The 
results yield a quark fragmentation distribution into positive 
charged hadrons which is consistent with the predicted form: 
d~/dzdy - B(l - z)2 + (C/Q2)(1 -y) where the (1 -y) behavior corres­
ponds to a longitudinal structure function. It is also crucial to 
check that the e+e-~MX cross section becomes purely longitudinal 
(sin2S) at large z at moderate Q2.62 

The results (5.17) and (5.19) for Gq/B and Gq/M give the 
behavior of the leading QCD contribution to the structure function 
before QCD evolution is applied; e.g., the results are valid for 
F 2 (x,Q2) at Q2 of order of <kI>H. The large Q2 behavior is deter­
mined by the evolution equation (5.9), taking account of the phase 
space limits of the radiated gluons at x - 1. 41 

VI. THE PHENOMENOLOGY OF HADRONIC WAVEFUNCTIONS 

Thus far, most of the phenomenological tests of QCD have fo­
cused on the dynamics of quark and gluon subprocesses in inclusive 
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high momentum transfer reactions. The Fock state wavefunctions 
$~(Xi,kii;Ai) which determine the dynamics of hadrons in terms of 
their quark and gluon degrees of freedom are also of fundamental 
importance. If these wavefunctions were accurately known then an 
extraordinary number of phenomena, including decay amplitudes, 
exclusive processes, higher twist contributions to inclusive pheno­
mena, structure functions, and low transverse momentum phenomena 
(such as diffractive processes, leading particle production in 
hadron-hadron collisions and heavy flavor hadron production) could 
be interrelated. Conversely, these processes can provide phenomen­
ological constraints on the Fock state wave functions which are 
important for understanding the dynamics of hadrons in QCD. In 
addition, as we discuss in Reference 67, the structure of nuclear 
wavefunctions in QCD is essential for understanding the syntheses 
of nuclear physics phenomenology with QCD. 

A. Measures of Hadron Wavefunctions 

As we have shown in Section III the central measures of the 
hadron wave functions are the distribution amplitudes 

(6.1) 

which control high momentum transfer form factors and exclusive 
processes: 

(6.2) 

and the quark and gluon structure functions 

Q 

Gq/H(x,Q) = I f [d2ki ] [dx] I$n (xi,kif) 12o(x -xq) 
n 

(6.3) 

which control high momentum transfer inclusive reactions 

da ;; II G ® do (6.4) 

Examples are shown in Figs. 1 through 3. A summary of the basic 
properties, logarithmic evolution, and power-law behavior of these 
quantities is given in Table III. 

The exclusive formula (6.2) also includes ap~lications to 
large momentum transfer mu1tipartic1e production6 ,8 e+e- +H 1 ••• Hn 
with Pi • Pj _O(Q2), and the elastic and inelastic weak and electro­
magnetic form factors. We also note that hard scattering higher 
twist subprocesses to inclusive reactions such as yq +Mq, gq +Mq, 
qq +MM, qq +Bq, etc. are absolutely normalized in terms of the 
distributions amp1itudes. 69 In particular, some amplitudes such 
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Table III. Comparison of exclusive and inclusive cross sections. 

Exclusive amplitudes 

~1.t- IIcp{xi,Q) ® TH(xi,Q) 

<p(x,Q) = 9 [d2k hQ l(X' k ) J .Lva .L 

Measure <P in yy-+MM 

Inclusive cross sections 

dcr - IIG(x , Q) ® dO-ex ,Q) 
a a 

Q 

G(x,Q) = L J d2k.L [dx]' Iwn(x,k.L) 12 
n 

Measure G in J/,p -+ J/,X 

EVOLUTION 

acp(x,Q) = a I [dy]V(x,y)cp(y) 
a1ogQ2 s 

lim cp(x,Q) 
Q-+oo 

II x . C 
i i flavor 

aG(x,Q) = as IdY p(x/y)G(y) 
a log Q2 

lim G(x,Q) 
Q-too 

o (x) c' 

POWER LAW BEHAVIOR 

dcr (A+B -+ C+D) 
dx 

n 

expansion in a (Q2) 
s 

End point singularities 

Pinch singularities 

Higher Fock states 

2n -1 
(l-xT) s 

n -2 
(Q2) act 

da: expansion in a (Q2) 
s 

COMPLI CATIONS 

Multiple scales 

Phase-space limits on evolution 

Heavy quark thresholds 

Higher twist multipartic1e processes 

Initial and final state interactions 



WAVEFUNCTIONS AND HIGH MOMENTUM 183 

as yq +7Tq, qq +7Tg and gq +7Tq can be rigorously related to the pion 
form factor since the same integral 

I 

J 
dx 

I - x cjJ7T(X,Q) (6.5) 

o 
enters in each of the quantities. 70 The p:r6 processes24 gq +Mq 
(see Fig. 3(a» and qq +Mq are particularly interesting and impor­
tant in high-PT meson production processes such as pp +MX since the 
meson is produced directly in the subprocess without the necessity 
for quark or gluon jet fragmentation. In fact the contributions of 
standard P:r4 scaling processes such as qq +qq, gq +gq, and gg +gg 
are strongly suppressed by two to three orders of magnitude relative 
to the "directly coupled" contributions because of the suppression 
of jet fragmentation DM/q(Z) at large momentum fraction Z and the 
fact that the subprocesses must occur at a significantly larger 
momentum transfer than that of the triggered particle. 71 

Despite much effort there is at this time no systematic under­
standing of high PT hadron production in QCD. A comprehensive 
attack must take into account not only leading twist subprocesses 
and directly coupled higher twist contributions such as those 
listed above, but also the effects of initial state multiple scat­
tering effects. One of the most important experiments which could 
clarify the nature of these effects is the measurement of the ratio 
of direct photon to meson at high PT: (xT = 2PT/ls) 

dO" I dO" R / (xT' s, e ) = -3-- (pp +yX) -3-- (pp +7TX) • 
y 7T em d pIE d pIE 

(6.6) 

For example, if leading twist QCD processes dominate these reactions 
then RY/ 7T -f(xT) - (l-xT)-2 at Scm -7T/2. If directly-coupled pro­
cesses such as gq+7Tq dominate the meson production then one predicts 
Ry/7T - pf at fixed xT and Scm. 72 Measurements of this ratio in 
nuclear targets is important for clarifying the contribution of 
final state multiple scattering processes. 

The photon probe plays a crucial role in high-PT hadron reac­
tions since the photon couples directly to the quark and gluon 
subprocesses at short distances. The most dramatic example of these 
point-like phenomena is the recent observations at PETRA6-a of high 
transverse momentum hadrons in yy collisions. The results at 
PT:3 GeV appear to be consistent with the scale invariant QeD 
p redic tion 73 

do(yy+jet + jet) 
do(yy +~+~-) 

q u, d, s, c 

(6.7) 
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These results also indicate that, unlike typical meson-induced 
reactions, an incident photon often produces high PT hadronic jets 
without leaving hadronic energy in the beam fragmentation direc­
tion. 74 One also expects analogous results for directly coupled 
photons in yp +HX and yp +Jet +X reactions. The point-like behavior 
of on-shell photons is in direct contrast to the predictions of 
vector meson dominance models. 

A surprising feature of QCD is that even a hadron can produce 
jets at large PT without beam fragmentation. 70 For example, Ehe 
existence of high twist subprocesses such as Mq +gq and Mg +qq leads 
to high PT jet events in meson-induced collisions Mp +Jet+ Jet +X 
where there is no hadronic energy left in the meson beam fragmenta­
tion direction (see Fig. 3(c)). The inclusive cross section, which 
scales as p-6 at fixed xT and 6cm' is absolutely normalized to the 
meson form ractor. As in the case of the photon-induced reactions 
the directly coupled meson has no associated color radiation or 
structure function evolution. An experimental search for these 
unique and highly kinematically constrained events is very impar­
tant in order to confirm the presence of these subprocesses which 
involve the direct coupling of meson qq Fock state to quarks and 
gluons at short distance. 

In general, we can replace any direct photon interaction by a 
direct-coupled meson interaction in the subprocess cross section by 
the replacement atFn(P~). Furthermore, one can compute direct­
coupled processes which isolate the valence Fock state of baryons, 
e.g., pp +pX (production of isolated large PT protons via the qq+pq 
subprocesses), and reactions pp +qqX (from qp +qq) (see Fig. 3(ti)), 
pp +qqqX (from gp +qqq) etc., each of which produce jets at high PT 
without beam spectators or fragmentation. 

B. Constraints on the Pion and Proton Valence Wavefunction27 

The central unknown in the QCD analysis of hadronic matrix 
elements is the hadron wavefunction in the non-perturbative domain 
K2 ~ I GeV2 • For illustration we shall assume that in this region 
the $n falloff exponentially in the off-shell energy: 

b 2 & 
A en n 

n 
(6.8) 

(6.9) 

The parametrization is taken to be independent of spin; the full 
wavefunction is then obtained by mUltiplying by free spinors u/i:k+. 
The form (6.8) has the advantage of analytic simplicity: For 
example, the resulting baryon distribution amplitude at small K is 
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2 ~ mt 
-b 3 L -

~(x K) = A x x x e i-I xi 
i' $ 1 2 3 
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(6.10) 

At large K, $ is determined from the evolution equation (4.33). At 
very large k~ the Wn for non-valence Fock states should match onto 
the power-law fall-off kLl predicted by perturbative QCD. It should 
be emphasized that the form (6.8) is chosen just for simplicity. 
An equally plausible parametrization is Wn - Au c,~p with p = 3, which 
is suggested by the Schroedinger equation assuming a linear poten­
tial. 

In the case of the pion we can derive two important constraints 
on the valence wavefunction from the 1T -+]J" and 1TO -+yy decay ampli­
tudes: 

d2k 1 

I ~ J dx wK(x,k ) 
l61T 3 ~ 

(6.11) 

o 
and27 

(6.12) 

The derivation of the second constraint assumes that the radius of 
the pion is much smaller than its Compton length: 

2 2 2 
m ,m «6/R q 1T 7T 

Let us now assume the form 

k 2 +m2 
2 ~ 

where 

WK _ ex: e -bV<x(l -x» 
qq 

(6.13) 

(6.14) 

(6.15) 

is the contribution to the slope of the meson form factor from the 
valence Fock state (see Eq. (4.2». The two conditions (6.11) and 
(6.12) then determine R~Vi = 0.42 fm; and 27 

K 2 1 2 

pK = f d k~ J dx/",K (x,k)/ 
qq/1T l61T 3 o/qq/7T ~ 

o 

1 
~4· (6.16) 

Thus the probability that the pion contains only the valence Fock 
state at small K2 is less than 1/4. Furthermore the radius of the 
valence state turns out to be smaller than that of the total state 
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(R~xPt = 0.7 fm). One can also verify that the bound Pqq/~ ~ 1/4 
is also true for power-law wavefunctions l/J - &-p, p > 2. 

The existence of other Fock states at equal T in the pion is 
to be expected considering the fact that its quark and gluon cons­
tituents are relativistic. The existence of large mp/m~ and m~/mN 
spin splittings (due to transverse-polarized gluon exchange) also 
implies that there is a non-zero gluon component intrinsic to both 
meson and nucleon bound states. 

In the case of the baryon wavefunction, one can obtain non­
trivial constraints on the form of the 3-quark valence wavefunction 
by making a simultaneous analysis of the proton and neutron form 
factors and the 1jJ+pp decay amplitude, assuming that the l/J decays 
via a 3-g1uon intermediate state (see Fig. 6). The observed angular 
distribution53 for l/J+pp is in fact consistent with the predicted 
form 1+a2cos2 e (where a is the nucleon velocity) and is non­
trivial check of hadron he1icity conservation for exclusive pro­
cesses in QCD. 

The l/J +pp ratio is given 

r(l/J +3g +pp) 
r (l/J +3g +a11) 

to leading order in as by (Fig.1(b»18 

3 IpCMI <T>2 
a (s) --- ---:-zr-s (6.17) 

s IS 

where IpCMI/iS '" .4, s = 9.6 GeV2 , and 

1 

<T> :: J 
o 
x 

<p(xi,s) 
(6.18) 

X1X2x 3 

is a well defined function of the baryon distribution amplitude. 
In the case of the nuclear form factors (see Eqs. (4.6), (4.7» it 
is important to use the correct argument for each as in the hard 
scattering amplitude TH corresponding to the actual momentum trans­
fer which flows through each exchanged gluon in Fig. 7(b). This 
effect is expected to yield the most important contribution to next 
to leading order in as and is an integral part of the QCD predic­
tions. It is interesting to note that if CPB = Acpxl x2x 3 and if all 
the as have the same argument (which is in fact the situation in 
the asymptotic Q2 +00 limit 9 , 19) then Eqs. (4.3)-(4.7) give 

lim GP(Q2)/G~(Q2) = 0 • 
Q2+oo M 

However, the fact that as is not a constant and has different argu­
ments for each diagram in Tl allows one to obtain empirically con­
sistent results for the norma1ization75 of G~(Q2), G~(Q2) and the 
~ + pp decay rate. To first approximation one requires27 
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a «1 -xi)(l _y. )Q2) -
s ~ 

as (Q2/9) 

as (4Q2 /9) (6.19) 

- 1.5 to 2.0 at Q2 = 10 GeV2 • 

The QeD predictions (4.3)-(4.7) for the proton and neutron 
form factors are only valid at large Q2 where the effects of mass 
corrections, higher Fock states and finite transverse momentum can 
be neglected. In order to understand these effects we extend the 
parametrization of the 3 quark valence Fock state contribution by 
using (Q2 +M~)-2 in the denominators of (4.4), (4.5) and replacing 
a s (Q2) +as (Q2 +M2) = 4rr/Bo log«Q2 +M2)/A2) to reflect the fact that 
at low Q2 the transverse momenta intrinsic to the bound state wave­
functions flow through all the propagators. 

Although we have not tried to optimize the parametrizations, 
a typical fit which is compatible with the proton and neutron form 
factors (see Fig. 16) and ~ +pp decay data is Mo = 1.5 GeV, ~ ~ 
450 MeV, mq = 300 MeV, and A = 280 MeV, so that as (Q2 = 10 GeV 2 ) _ 
0.29. [Analyses 50 of higher order QeD corrections to the meson 
form factors suggest that one can identify the A used here with 
J\mom = 2.16 AMS'] The computed radius of the 3-quark valence state 
(computed from G~ via Eq. (4.2)) is however quite small: RV = O.23£m, 
and the valence Fock state probability is Pqqq/p ;:: 1/4. If this 
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Fig. 16. Fit to nucleon form factor data described in the text. 
(From Ref. 27.) 
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preliminary analysis is correct, then, as in the meson case, the 
valence state is much smaller in transverse size than the physical 
hadron (which receives contributions to its charge radius from all 
Fock states). 

The most crucial prediction from this analysis is that Q4G~(Q2) 
should decrease by a factor of 2 for Q2 = 10 to Q2 = 40 GeV2, a trend 
not at all indicated by the data! Further measurements of GM(Q2) 
are clearly crucial in order to check this essential prediction of 
asymptotic freedom. 

Given the above parametrization of the nucleon valence Fock 
state we can use Eq. (5.8) to compute the 3-quark non-perturbative 
contribution to the proton structure function at large x (see 
Fig. 17): 

(6.20) 

Since 4m2b 2 -0.05, the exponential factor is not very important away 
from the edge of phase space and so it is difficult to distinguish 
between the non-perturbative and (1 _x)3 perturbative contributions 
at large x (see Section V). Higher Fock states \qqqg>, \qqq qq> 
are expected to give the dominant contribution at lower x. Despite 
the freedom in this parametrization it is reassuring that one can 
simultaneously fit a number of diverse nucleon properties with QeD 
formulae and parameters which are the expected range. 

At low Q2 the exact formula (3.2) can be used as a further 
constraint on the baryon Fock states. Eventually one hopes to 
extend the predictions to other domains of baryon phenomenology 
such as the baryon decay amplitude in grand unified models and the 

C\J 
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Fig. 17. Predicted valence quark contribution to the proton struc­
ture function. Evolution and higher Fock states are not 
included. (From Ref. 27.) 
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normalization of higher twist subprocesses contributions to inelas­
tic lepton-nucleon scattering. 

C. Quark Jet Diffraction Excitation 3D 

The fact that the wavefunction of a hadron is a superposition 
of (infrared and ultraviolet finite) Fock amplitudes of fixed 
particle number but varying spatial and spin structure leads to 
the prediction of a novel effect in QCD.3D We first note that the 
existence of the decay amplitude 'IT +]JV requires a finite probabi­
lity amplitude for the pion to exist as a quark and diquark at zero 
transverse separation: 

1fJ(x,~ =0) = I47r rn=-c x(l-x)f 
~ 7T (6.21) 

In a QeD-based picture of the total hadron-hadron cross section, 
the components of a color singlet wavefunction with small transverse 
separation interacts only weakly with the color field, and thus can 
pass freely through a hadronic target while the other components 
interact strongly. A large nuclear target will thus act as a filter 
removing from the beam all but the short-range components of the 
projectile wavefunction. The associated cross section for diffrac­
tive production of the inelastic states described by the short 
range components is then equal to the elastic scattering cross 
section of the projectile on the target multiplied by the probabi­
lity that sufficiently small transverse separation configurations 
are present in the wavefunction. In the case of the pion inter­
acting in a nucleus one computes the cross section 

do a 'IT~ 127T f2 x 2(1_x)2 
dx d 2 r r2-0 e.... 7T 

~ ~ 

(6.22) 

corresponding to the production of two jets just outside the nuclear 
volume. The x distribution corresponds to da/dcos e - sin 2 e for 
the jet angular distribution in the qq center of mass. By taking 
into account the absorption of hadrons in the nucleus at t~ :f 0 one 
can also compute the k~ distribution of the jets and the mass spec­
trum of the diffractive hadron system. Details are in given in 
Reference 30. 

D. The "Unveiling" of the Hadronic Wavefunction and Intrinsic Charm 

The normalizability of QCD implies that all of the dynamics 
of the hadron wavefunction 1fJ~(xi,k~i) at scales K2 much larger 
than mass thresholds is completely contained in the structure of 
the running coupling constant US (K2) and running mass m(K2) and 
the quark and gluon external line renormalization constants. Never­
theless, the fact that there are different hadronic scales and 
thresholds in QeD does imply non-trivial dynamical structure of 
the wavefunctions. In the case of Compton scattering, YP +YP, the 
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energy denominators (see Eq. (5.3» are a function of 2M" - &n, so 
that the cross section is sensitive to wavefunctions up to the scale 
K2 - 2mv. 

As an example of the change of wavefunction physics with the 
resolution scale let us consider a deuteron target. For very low 
K2 «2MEB.E. the deuteron acts as a coherent object. At the scale 
K2 »2ME:B E ' the wavefunction corresponds to a n-p bound state. 
As the scale increases to K2 $1 GeV2 , the quark degrees of freedom 
become relevant and the deuteron wavefunction in QeD must be des­
cribed in terms of six quark (and higher) Fock states: 76 

Id> = al (uud) 1 (ddu) 1> + bl(uud)s(ddu)s> 

+ cl(uuu)l(ddd)l> + dl (uuu)s(ddd)s> 

+ (6.23) 

The first component corresponds to the usual n-p structure of the 
deuteron. The second component corresponds to "hidden color" or 
"color polarized" configurations where the three-quark clusters are 
in color-octets, but the overall state is a color-singlet. The last 
two components are the corresponding isobar configurations. If we 
suppose that at low relative momentum the deuteron is dominated by 
the n-p configuration, then quark-quark scattering via single gluon 
exchange generates the color polarized states (b) and (d) at high 
k~; i.e., there must be mixing with color-polarized states in the 
deuteron wavefunction at short distances. 67 

The deuteron's Fock state structure is thus much richer in QeD 
than it is in nuclear physics where the only degrees of freedom are 
hadrons. 

It is interesting to speculate on whether the existence of 
these new configurations in normal nuclei could be related to the 
repulsive core of the nucleon-nucleon potential,76 and the enhance­
ment 76 of parity-violating effects in nuclear capture reactions. 
One may also expect that there are resonance states with nuclear 
quantum numbers which are dominantly color-polarized. The mass of 
these states is not known. It has also been speculated 77 ,7S t hat such 
long-lived states could have an enormously large interaction cross 
section, and thus account for the Judek79 anomaly in cosmic ray 
and heavy ion experiments. Independent of these speculations, it 
is clearly important that detailed high-resolution searches for 
these states be conducted, particularly in inelastic electron 
scattering and tagged photon nuclear target experiments, such as 
yd ~yd scattering at large angles. 

The structure of the photon's Fock states in QeD is evidently 
richer than that expected in the vector meson dominance model. so 
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For example, consider the one-g1uon exchange correction to the 
y -+ qq vertex. For R. i < 0 (K2) the vertex correction renorma1izes 
the point-vertex. For the soft domain R.i < O(K 2 ) one expects large 
corrections which eventually by dispersion theory correspond to 
the usual p, w, ~, •.• interpolating fields. The soft corrections 
thus give the usual hadron-like component of real photon inter­
actions. Nevertheless, the point-like component survives at any 
momentum sca1e,80 producing point-like corrections to photon 
shadowing, J = 0 fixed pole phenomena in the Compton amplitude, and 
the "antisca1ing" QeD structure function of the photon. 13 As the 
resolution scale K2 increases past the heavy quark thresholds, one 
adds the y-+cc, bb, etc. components to the photon's wavefunctions. 

It is also interesting to consider the dynamical changes to 
the nucleon wavefunction as one passes heavy quark thresholds. For 
K2 >4m~ the proton Fock state structure contains charm quarks, e. g., 
states ip> - iuud cc>. We can distinguish two types of contributions 
to this Fock state. 31 (1) The "extrinsic" or interaction-dependent 
component generated from quark self energy diagrams as shown in 
Fig. 18(b) - a component which evolves by the usual QeD equations 
with the photon mass scale Q2; and (2) the "intrinsic" or inter­
action-independent component which is generated by the QeD potential 
and equations of motion for the proton, as in Fig. 18(a) - a compo­
nent which contributes to the proton Fock state without regard to 
QeD evolution. Since the\intrinsic component is maximal for minimum 
off-shell energy 8 = M2 -~ [(ki+ m2)/x]i the charm quarks tend to 
have the largest momentuml. fraction x in the Fock state. (This also 
agrees with the physical picture that all the constituents of a 
bound state tend to have the same velocity in the rest frame, i.e., 
strong correlations in rapidity.) Thus heavy quarks (though rare) 
carry most of the momentum in the Fock state in which they are 
present - in contrast in the usual parton model assumption that 
non-valence sea quarks are always found at low x. One can also 
estimate81 using the bag model and perturbative QCD that the proba­
bility of finding intrinsic charm in the proton is -1-2%. 

The diffraction dissociation of the proton's intrinsic charm 
state 31 ,30 provides a simple explanation why charmed baryons and 
charmed mesons which contain no valence quarks in common with the 

-;{J'o-I 

( 0) ( b) 

Fig. 18. Intrinsic (a) and extrinsic (b) contributions to the 
proton iuud cc> Fock state. 
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proton are diffractively produced at large xL with sizeable cross 
sections at ISR energies. Further discussion may be found in 
Reference 31. 

VII. CONCLUSION 

In these lectures we have discussed the application of QeD 
to hadron dynamics at short distances where asymptotic freedom 
allows a systematic perturbative approach. We have shown that it 
is possible to define the perturbative expansion in us (Q2) in such 
a way as to avoid ambiguities due to choice of renorma1ization 
scheme or scale, at least in the first non-trivial orders. 14,28 Our 
main emphasis in these lectures, however, has been on how to sys­
tematically incorporate the effects of the hadronic wavefunction 
in large momentum transfer exclusive and inclusive reactions - thus 
leading to a broader testing ground for QeD. We have particularly 
emphasized the Fock state wavefunctions ~n(xi,k~i;Ai) which define 
the hadron in terms of its quark and gluon degrees of freedom at 
equal time on the 1ight-cone. It is clear that a central problem 
of QeD is to determine not only the spectrum of the theory but also 
the basic bound state wavefunctions of the color singlet sector. 
Such solutions may be found in the near future using lattice numer­
ical methods, particularly by quantizing at equal time on the 
light-cone, or by more direct attacks on the QeD equations of 
motion for the ~n' as discussed in Section III. 

Even without explicit solutions for the ~n' we can make a 
number of basic and phenomenological statements concerning the form 
of the wavefunctions: 27 

(1) Given the ~n we can compute the single and multiple quark 
and gluon distribution amplitudes and structure functions which 
appear as the coefficient functions in the QCD predictions for high 
momentum transfer e~c1usive and inclusive reactions, including 
dynamical higher twist contributions. We have also emphasized 
general features of these distributions, including he1icity selec­
tion rules, Lorentz properties, connections, with the Bethe-$a1peter 
amplitudes, renorma1ization properties, and correspondence limits 
in the non-relativistic weak binding approximation. 

(2) The perturbative structure of QeD leads to predictions 
for the high k~, x -+1 and far-off shell behavior of the wavefunc­
tion. In particular, the large k~ power-law behavior ~v - k::;? of 
the valence wavefunctions and the 1~12-k~2behavior of the higher 
Fock state contributions leads to QeD evolution equations and 
light-cone operator product e~pansion for the essential measures 
of the wavefunctions, the distribution amplitudes ~M(x,Q) and 
~B(xi,Q), and the structure functions. We have also emphasized 
the fact that the valence wavefunction behavior Wv - k~2 implies 



WAVEFUNCTIONS AND HIGH MOMENTUM 

that the high ki behavior of quark and gluon jet distributions 
dN/dki is -l/ki, not exponential or gaussian. 
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(3) Important boundary values and constraints on hadronic 
wavefunctions are obtained from the weak and electromagnetic decay 
amplitudes, including 1jJ -+ BB. The distribution amplitudes are mea­
surable in detail from the angular behavior of the yy -+MM and 82 
yy -+ BB amplitudes. 

(4) By assuming simple analytic forms for the valence wave­
functions in the non-perturbative domain, we have found consistent 
parametrizations which are compatible with the data for hadron 
form factors, decay amplitudes, etc. An important feature which 
emerges from these studies is that the valence state is more com­
pact in transverse dimensions than the physical hadron. Even at a 
low momentum transfer scale, higher Fock states play an important 
role, i.e., there is no scale where the proton can be identified 
as a 3-quark valence state. This observation may be compatible 
with the traditional nuclear physics picture of the nucleon as a 
central core, surrounded by a light-meson cloud. 

(5) The fact that there is a finite probability for a hadron 
to exist as its valence state alone, implies the existence of a 
new class of "directly-coupled" semi-inclusive processes where a 
meson or baryon is produced singly at large transverse momentum, 
or interacts in a high-momentum transfer reaction without accompany­
ing radiation or structure function evolution. 29 As in the case 
of directly-coupled photon reactions, the hadron can interact 
directly with quark and gluons in the short-distance subprocesses, 
with a normalization specified rigorously in terms of the distri­
bution amplitudes or form factors. Examples of these subprocesses 
are qq -+Bq, gq -+Mq, Mg -+qq, Bq -+qq. We have also discussed an 
important contribution to the longitudinal meson structure func­
tion Fr - C/Q2, involving direct-coupling of the meson, somewhat 
analogous to the photon-structure function. The finite probability 
for a meson to exist as a qq Fock state at small separation also 
implies a new class of diffractive dissociation processes. 3D 

(6) The Fock state description of hadrons in QCD also has 
interesting implications for nuclear states, especially aspects 
involving hidden color configurations. More generally, we have 
emphasized the idea that the far-off shell components of hadron 
wavefunctions can be "unveiled" as the energy resolution scale is 
increased. For example, the existence of heavy quark vacuum polar­
ization processes within the hadronic bound state implies finite 
probabilities for hidden charm Fock states even in light mesons 
and baryons. The diffractive dissociation of these rare states 
appears to provide a natural explanation of the remarkable features 
of the charm production cross sections measured at the ISR. 31 
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(7) We have also emphasized the importance of initial state 
interactions in all incluRive reactions involving hadron-hadron 
collisions. The initial state interactions disturb the color 
coherence, k i distributions, and at low energies the x-dependence 
of the incoming hadronic distributions. Despite these profound 
effects on the hadronic Fock states, some of the essential features 
of the QCD predictions still are retained. A detailed discussion 
is given in Reference 20. 

Thus, in summary, we have found that the testing ground of 
perturbative QeD where rigorous, definitive tests of the theory 
can be made can now be extended throughout a large domain of large 
momentum transfer exclusive and inclusive lepton, photon, and 
hadron reactions. With the possible exception of hadron production 
at large transverse momentum, a consistent picture-of these reac­
tions is now emerging. By taking into account the structure of 
hadronic wavefunctions, we have the opportunity of greatly extend­
ing the QCD testing ground, unifying the short and long distance 
physics of the theory, and eventually making contact with the realm 
of hadronic spectroscopy, low momentum transfer reactions, and non­
perturbative physics. 
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