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Abstract: Many theories require augmenting the Standard Model with additional

scalar fields with large order one couplings. We present a new solution to the hierarchy

problem for these scalar fields. We explore parity- and Z2-symmetric theories where the

Standard Model Higgs potential has two vacua. The parity or Z2 copy of the Higgs lives

in the minimum far from the origin while our Higgs occupies the minimum near the

origin of the potential. This approach results in a theory with multiple light scalar fields

but with only a single hierarchy problem, since the bare mass is tied to the Higgs mass by

a discrete symmetry. The new scalar does not have a new hierarchy problem associated

with it because its expectation value and mass are generated by dimensional

transmutation of the scalar quartic coupling. The location of the second Higgs minimum

is not a free parameter, but is rather a function of the matter content of the theory. As a

result, these theories are extremely predictive. We develop this idea in the context of a

solution to the strong CP problem. We show this mechanism postdicts the top Yukawa to

be within 1σ of the currently measured value and predicts scalar color octets with masses

in the range 9-200 TeV.
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1 Introduction

The Standard Model (SM) Higgs boson mass is sensitive to ultraviolet (UV) physics.

This is the hierarchy problem. Traditional solutions to the hierarchy problem have

postulated the existence of new particles that appear at low scales to cancel the quadratic

dependence on UV physics. Recently there has been renewed focus on non-traditional

solutions to the hierarchy problem, such as the multiverse, the relaxion [1], and

NNaturalness [2]. In these solutions, the Higgs mass appears to have been fine tuned to

be small.

Aside from the hierarchy problem, the SM has other issues that require explanations,

such as the origin of flavor, baryogenesis and the strong CP problem. Solutions to these

problems often introduce new heavy scalar degrees of freedom. These scalar fields also

suffer from quadratic sensitivity to UV physics. Usually these “wrong” hierarchy

problems are resolved in the same way as the electroweak hierarchy. In this work, we

present a new solution to this secondary hierarchy problem that operates when the

naturalness of the electroweak scale is explained using one of the non-traditional

mechanisms mentioned above.

Our approach employs dimensional transmutation through the Coleman-Weinberg

mechanism to dynamically generate a new hierarchy of scales [3]. Standard use of

dimensional transmutation to stabilize scalar mass relies on gauge couplings becoming

strong and gives rise to the large separation between the QCD and the electroweak scales.
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When applied to the usual naturalness problem, it leads to technicolor and its variants.

There is another kind of dimensional transmutation which occurs in the SM and involves

the Higgs scalar quartic instead of a gauge coupling. This effect is well known through

the renormalization group evolution (RGE) of the Higgs self-coupling λ, which generates

a maximum in the Higgs potential and an instability at large field values [4–6]. The

dimensional transmutation aspect of this mechanism was emphasized in Ref. [7]. We

utilize this effect to solve the secondary hierarchy problem discussed above.

Our Higgs field occupies the very long lived electroweak minimum, so the apparent

run-away of the potential at large field values h is irrelevant. However, in parity- or

Z2-symmetric theories, there is a second Higgs with a similar potential. Additional

matter can radiatively stabilize this potential at large h and generate a second minimum

that is much deeper than the electroweak one. If the second Higgs occupies this true

vacuum, it can provide a new heavy scale that can be used to solve any of the

aforementioned problems. This new scale is generated by dimensional transmutation and

so there is no new hierarchy problem.

In order for the dimensional transmutation of the scalar quartic to be important, the

relevant mass term must be small. We use a discrete symmetry to link this new scalar

mass with the Higgs mass. In this way, the mechanism that solves the standard hierarchy

problem also ensures the mass parameter of the new scalar field remains small. Thus our

starting point is a Z2 or parity symmetric theory, where the symmetry operation

exchanges SM fields for their “mirror” partners.1 The discrete symmetry guarantees that

the renormalization group running of couplings in the mirror sector is identical to the SM

at high scales. This ensures that the potential for the Z2 partner of the Higgs H ′ can be

determined by studying the potential of the SM Higgs boson H.

The tree-level Z2 symmetric scalar potential has several minima. These minima have

many problems. There are new light particles and the new scalar is at the weak scale or

lower, making it too light for the solution of, e.g., flavor or strong CP problems. Thus it

is impossible to get a hierarchy between h =
√

2〈H〉 and h′ =
√

2〈H ′〉 at tree-level.

Renormalization group evolution is necessary for h′ to be separated from the weak scale.

Because logarithmic RGE requires a large amount of running to be effective, this new

scale will be parametrically larger than the weak scale.

There is a simple way to obtain the large amount of running needed to generate a

new scale. If the masses of the scalars are parametrically below the cutoff Λ, then loop

corrections to the effective potential may create a new minimum where Λ� h′ � h. In

order for the mass term mH to not be important in determining the location of the

minimum, we necessarily have h′ � mH .2

Because all of the SM parameters have been measured, the location of the second

vacuum is determined by the matter content of the theory. Thus the new heavy scale is

1Similar Z2-symmetric constructions have been used, for example, to explain dark matter and the baryon

asymmetry of the universe, naturalness of the weak scale and to solve the strong CP problem – see Refs. [8–

14] and references therein.
2Another way for RG running of the Higgs quartic to play a role is in tuned Twin Higgs models [9]. As

it is similar to what we consider here, we leave this example as an exercise for the reader.
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completely determined without the introduction of new dimensionful parameters, leading

to a very predictive framework. The radiatively generated scale is most sensitive to the

strong coupling αs and top quark Yukawa yt. Precise measurements of these quantities

will be necessary to accurately determine the new energy scale.

In this work we illustrate this mechanism by considering an η′ solution to the strong

CP problem [12]. A Z2 symmetry and new massless quarks allow the QCD θ angle to be

rotated away. Dimensional transmutation naturally determines the vacuum expectation

value (vev) of the Z2 Higgs copy to be below the Planck scale, fixes the masses of colored

states (originating from the new quarks) and precisely predicts the top quark Yukawa to

be within 1σ of the currently measured value.

This paper is organized as follows. In Sec. 2.1, we present a solution to the wrong

hierarchy problem in the context of an η′ explanation of the strong CP problem finding

interesting experimental predictions. In Sec. 3 we discuss the details of the Higgs potential

in this solution to the strong CP problem. We briefly consider further applications of this

mechanism and conclude in Sec. 4. Technical details are collected in the Appendices.

2 Hierarchies and the Strong CP Problem

In this section, we illustrate our solution to the wrong hierarchy problem in the context of

a predictive η′ explanation of the strong CP problem. Discrete symmetry-based solutions

of strong CP involve a new scale where this symmetry is spontaneously broken.

Stabilizing this new scale with traditional solutions such as supersymmetry (SUSY) is

difficult due to the plethora of new phases introduced by SUSY breaking and due to

unsuppressed renormalization group running of θ [15, 16]. In contrast, our solution does

not introduce new CP violating phases and preserves the small running of θ present in

the SM.

The minimal η′ solution to the strong CP problem involves two copies of the SM

related by a Z2 symmetry. In addition, there are new massless vector-like fermions, ψ and

ψc, which are bifundamentals under our QCD and QCD′ (the Z2 copy of QCD).3 In the

absence of a vector-like mass, an anomalous U(1) rotation of ψ and/or ψc is used to set

the sum of the two theta angles to zero, while their difference is zero by the Z2 symmetry.

Thus the strong CP problem is solved in the unbroken Z2 limit.

Non-observation of new light states suggests that Z2 breaking must occur and that

the mirror sector’s Higgs vev must be large, potentially introducing a new hierarchy

problem. In our solution, the Z2 symmetry ensures that the tree-level mirror Higgs mass

is small. As mentioned in the introduction, the Z2 breaking then comes from the RG

running of the Higgs quartic so that the mirror Higgs obtains a large physical mass and

vev without introducing a new hierarchy problem.

2.1 A Predictive η′ Solution to the Strong CP Problem

As will be shown in the next section, the potential for each Higgs naturally contains two

vacua in this scenario. If both Higgs bosons are in the same minimum, then the strong

3Mirror sector quantities are denoted with primes.
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Figure 1: A pictorial representation of the η′ solution to the strong CP problem at various

RG scales µ. The left (right) diagram shows the model above (below) the Z2 breaking scale

h′.

CP problem is solved by a chiral rotation of a massless quark. This solution is

observationally excluded due to the presence of three new massless vector-like quarks.

However, if the two Higgs bosons occupy different vacua, then the particles in the mirror

sector can be much heavier than any SM states. Due to the larger h′ vev, the quarks and

leptons in the mirror sector are integrated out at much larger scales. After all of the new

massive particles have been integrated out, the matter content is simply the SM

augmented by the gauge group SU(3)C′ and the associated bifundamentals ψ and ψc. At

this point, because the Z2 symmetry has been broken by h 6= h′, the effective QCD angle

θ is reintroduced by renormalization group effects. However, as shown in Refs. [17, 18],

the RG effects in these types of models are negligible. This model is shown schematically

in Fig. 1 for RG scales µ� h′ (left) and µ� h′ (right).

After QCD′ confines, there are no more massless degrees of freedom in the infrared

(IR) and the theory is simply the SM with extra massive colored states, the

pseudo-Goldstone bosons of QCD′. As emphasized in Ref. [12], if the θ angle has not

been rotated to zero, dynamic relaxation of the the η′′ (the η′ boson of QCD′) sets our θ

to zero. More explicitly, the IR effective theory of the η′′ after QCD′ confines is

L =
g2

32π2

(
θ − η′′

fη′′

)
GG̃+

m2
η′′

2

(
η′′ − fη′′θ′

)2
+ · · · (2.1)

where the ellipsis stands for other terms in the chiral Lagrangian. Integrating out the η′′

boson and using the Z2 symmetry (θ = θ
′
), we find that our theta angle has been set to

zero.

The presence of ψ and ψc, three new flavors of SU(3)C quarks, introduces a small

stabilizing effect on the RG running of the Higgs quartic and generates a second

minimum in the Higgs potential for certain ranges of SM parameters. The location of this

true minimum determines the confinement scale of QCD′ and therefore the mass scale of

states associated with ψ and ψc. However, the scale where ψ and ψc are integrated in

determines the true minimum. Therefore finding the true minimum is a recursive process

that leads to somewhat counter-intuitive results. We leave a detailed discussion of the

Higgs potential and the determination of the bifundamental mass scale to Sec. 3 and

simply summarize the results here.
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We find that the second minimum only exists for a small range of parameters. As the

Higgs potential is most sensitive to the top quark Yukawa, we hold other parameters at

their central measured values and vary the top quark mass Mt. The corresponding MS

quantities also vary with Mt due to loop corrections [4–6]. The mirror Higgs vev as a

function of Mt is shown in the left plot Fig. 2. The determination of the uncertainty band

is discussed in Sec. 3.3 and Appendix A. The top quark mass is postdicted to be in the

range

172.4 GeV < Mt < 173.2 GeV. (2.2)

This is to be compared with the measured value [19]

Mt = 173.34± 0.87 GeV. (2.3)

The solution to the strong CP problem has accurately postdicted the top quark mass to

within 1σ! Note that this postdiction depends on the representation of the ψ(c) states.

Thus, precise measurements of Mt (such as those possible with the ILC [20]) can probe

the UV content of this theory.

The small range of allowed top quark masses can be understood as follows. First,

note that the smaller the radiatively-generated vev is, the earlier ψ and ψc are integrated

into the RGEs and the larger their effect on the potential at high field values is.

Therefore to counteract a larger yt, ψ and ψc must appear sooner and thus the vev must

decrease. This explains the negative slopes in the vev and the QCD′ confinement scale as

a function of Mt shown in Fig. 2. Above the upper bound in Eq. 2.2, the bifundamentals

are so light that their indirect effect is enough to completely stabilize the electroweak

vacuum: the second minimum disappears. Below the lower bound in Eq. 2.2, the second

Higgs minimum is pushed above the Planck scale. This can be understood by noting that

for lower yt the SM potential is nearly stable, so ψ(c) must be integrated in at a high

scale. As yt is lowered and the scale of ψ(c) is increased, the stabilization of the potential

occurs at ever higher scales, eventually passing MPl. These arguments are made precise

in the following section.

The lightest new particles in the theory come from the confinement of QCD′.

Confinement is accompanied by the spontaneous breaking of global symmetry

SU(3)L × SU(3)R → SU(3)D, associated with the massless bifundamentals ψ and ψc

(recall that all of the mirror quarks have been integrated out).4 Analogously to QCD, the

spectrum consists of an octet pseudo-Goldstone bosons π′ and other mesons. The chiral

symmetry is also explicitly broken by the gauging of QCD SU(3)C ⊂ SU(3)L × SU(3)R,

so π′ is a color octet. Thus, much like the charged pions, the π′ obtain a mass from gluon

loops. The confinement scale of QCD′ is determined by h′. Because h′ > h, the mirror

quarks are integrated out sooner and the confinement scale is larger than in QCD. The

mass of the scalar color octet as a function of the top quark mass is shown in the right

plot of Fig. 2. We find that these new particles are predicted to have a mass

9 TeV < mπ′ < 200 TeV, (2.4)

4The chiral symmetry breaking pattern depends on the representation of ψ(c). We work with bifunda-

mentals of SU(3)C × SU(3)C′ to make use of existing QCD results.

– 5 –



1014

1015

1016

1017

1018

1019

172.4 172.6 172.8 173.0 173.2

h
m
in

[G
eV

]

Mt [GeV]

104

105

106

172.4 172.6 172.8 173.0 173.2

m
[G

eV
]

Mt [GeV]

mρ′
mπ′

Figure 2: (Left) Dependence of the mirror Higgs VEV on the top quark mass Mt. (Right)

The mass of the color octet ρ′ (upper line) and π′ mesons (lower line) as a function of

Mt. The uncertainty bands shown are generated by varying the matching scale associated

with running the QCD coupling through the strongly coupled regime of QCD′. The solid

(dashed) line in each band corresponds to using the four (one) loop QCD′ beta function

to determine the confinement scale ΛQCD′ . Below the lower range of Mt shown the mirror

Higgs vev moves above the Planck scale, while above the highestMt shown no self-consistent

solution for bifundamental mass scale exists.

where the range is set by the precise value of Mt. This new scalar color octet decays

through the Wess-Zumino term into a pair of gluons, much like how the π0 decays into a

pair of photons. Single π′ production can occur through the same interaction, leading to

a resonant dijet signature at a hadron collider. While these states are too heavy to be

produced at the LHC [21–23], a future 100 TeV collider will be able to probe a significant

portion of this mass range [24]. We reserve the detailed study of collider signatures of this

scenario to a future work.

Solutions to the strong CP problem are sensitive to UV physics through higher

dimensional operators. These problems for axions [25] and the Nelson-Barr

mechanism [16] are well known. In the present case, once h 6= h′, there is no symmetry

protecting the QCD angle and it can again become non-zero. In our model the RG effects

are negligible and θ does not run very much. The leading contribution to θ comes from

higher dimensional operators such as

δL ⊃ YuHQuc
HH†

M2
Pl

+ YuH
′Q′u′c

H ′H ′†

M2
Pl

. (2.5)

Using a chiral rotation, we see that this changes θ (θ′) by ∼ HH†/M2
Pl (H ′H ′†/M2

Pl).

When the two Higgs vevs become unequal, these operators lead to a non zero theta angle
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at low energies

θ ∼ h′2 − h2

M2
Pl

& 10−8 (2.6)

for the range of h′ vevs shown in Fig. 2. For O(1) Wilson coefficients for operators in

Eq. 2.5, this is two orders of magnitude bigger than the current best limits from

neutron [26] and mercury electric dipole moment searches [27, 28]. The remaining tuning

of θ can be alleviated further with larger representations (or more families) of the

connector states ψ(c), which would lower the mirror Higgs vev h′.

2.2 Cosmology with a Mirror Sector

We conclude this section with a brief description of bounds on the reheat temperature of

the universe. Because of the mirror baryon and electron number, the lightest stable

particles of the other sector (their electrons, up quarks, and Dirac neutrinos) should never

be in thermal equilibrium or they would overclose the universe.5 Even in the most

constraining situation, this only limits the reheat temperature to be beneath 1010 GeV,

corresponding to the mass of the lightest charged mirror states. The glueballs and π′ of

QCD′ decay to SM hadrons before nucleosynthesis.

The Z2 neutrinos are either extremely heavy (Majorana masses), ∼ 100 GeV in mass

(Dirac masses), or can even act as the right handed neutrinos through the higher

dimensional operator

L ⊃ HLH ′L′

MPl
. (2.7)

Given bounds from over production of mirror electrons and quarks, the mirror neutrinos

are never in thermal equilibrium. Dirac mirror neutrinos could be dark matter depending

on how they are produced.

Even in the absence of mirror quarks and leptons, we cannot reheat above the scale

h′ & 1015 GeV as at that point thermal effects would stabilize the origin for both sectors.

Both Higgses would live at the origin and the Z2 symmetry would be restored resulting in

a Z2 symmetric universe.

3 Dimensional Transmutation from the Higgs quartic

In this section we discuss dimensional transmutation using the Higgs quartic. A second

minimum in the Higgs potential is already generated in the SM for central values of the

Higgs boson and top quark masses and the strong coupling αs. This is the observation

that the electroweak vacuum is metastable with a very long lifetime [4–6]. The

expectation value of the Higgs field in the new minimum is far above the Planck scale

where the SM is not valid [29]. However, in the presence of additional matter this

minimum can move to sub-Planckian field values or disappear completely. The latter

5This can be easily seen by the fact that they are parametrically heavier than the weak scale where the

correct thermal relic density would be obtained.
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possibility has been considered by many authors and is arranged by adding new matter

that alters the RG evolution of λ, see, e.g., Refs. [30–34]. In contrast, we will require that

the SM vacuum is only metastable with the true minimum at sub-Planckian field values

which can be studied using ordinary field theoretic methods. As we are considering the

case where the Higgs is even more stable than in the SM, it is clear that the lifetime of

the metastable vacua will be longer than the age of the universe.

3.1 Tree-Level Potential in the Z2-symmetric Standard Model

Our starting point is a Z2 or parity symmetric theory, as discussed in Sec. 1. The parity

operation exchanges SM fields and gauge group for their Z2 partners, denoted by primed

quantities. This symmetry ensures that the behavior of the effective potentials for the

two Higgs states is the same at large field values. The tree-level Z2 symmetric scalar

potential is

V0 = −m2
H(|H|2 + |H ′|2) + λ(|H|4 + |H ′|4) + δ|H|2|H ′|2, (3.1)

with H(′) having the vacuum expectation value h(′)/
√

2. We will consider the case where

loop corrections to this potential are important. As a result, the Higgs obtains a second

minimum at scales far above the weak scale but below the Planck scale. For simplicity we

also set δ � g1, g2, yt at a high scale so that its impact on the RG running of the quartic

is negligible; this coupling will change due to RG evolution in the presence of matter

charged under both copies of the gauge group, but at a very high loop order. This

restriction allows us to consider the effective potentials of SM and SM′ separately in the

following sections. When H ′ obtains an expectation value the tree-level Higgs mass is

shifted by δh′2/2, which can be large even if δ is small. This dynamical contribution to

m2
H is subleading with respect to the usual naturalness problem and is dealt with by the

“non-standard” solutions to the electroweak hierarchy discussed in the introduction.

3.2 Renormalization Group and the Effective Potential

Dimensional transmutation with the Higgs quartic λ happens at large field values. In

order to reliably study the potential in this regime we use the renormalization

group-improved potential, where the couplings are evaluated at the scale of the field value.

We work in the two-loop approximation both for the potential and the RG evolution of

the coupling constants. This amounts to a next-to-leading log resummation [35, 36].6

At high field values where the mass parameter can be neglected, the SM Higgs

potential can be cast into the tree level-like expression [37]

V (h) ≈ λeff(h)

4
h4, (3.2)

where the effective quartic interaction λeff encodes the loop corrections to the potential

λeff(h) = λ(µ = h) +
4

h4
(V1(µ = h) + V2(µ = h) + . . . ) , (3.3)

6Next-to-leading log accuracy is obtained already with the one loop potential improved by two loop beta

functions.

– 8 –



and V1(µ) and V2(µ) are the one- and two-loop contributions to the effective potential.

All couplings in Eq. 3.2 are evaluated at the scale µ = h. In the one- and two-loop

potentials above we include the contributions of W and Z bosons, the top quark, the

Higgs and its Goldstone modes. The two-loop potential has been evaluated in the SM [38]

and in general theories [39] in the Landau gauge. We validated our implementation

against the publicly available code SMH [40]. The evaluation of the general two-loop beta

functions and anomalous dimensions of Refs. [41–44] has been automated in Refs. [45, 46].

Explicit expressions for the SM potential and beta functions can found in, e.g., Ref. [5].

The potential is renormalized in MS at µ = Mt, where Mt is the top quark pole mass.

The corresponding MS SM couplings at this scale are given in Ref. [5] in terms of

observables, including Mt itself. In Fig. 3 we show the effective quartic coupling as a

function of h for central values of SM parameters as the dashed line. The blue band

corresponds to varying Mt within its 1σ uncertainty. Note that at large field values

λeff < 0 corresponding to a potential that is unbounded from below up to the Planck

scale.

As discussed in Sec. 2.1, our example solution to the strong CP problem requires the

addition of massless bifundamental quarks transforming as (3,3) of SU(3)C × SU(3)C′ ,

see Fig. 1. These new states do not couple to the Higgs even at the two loop level, so for

fixed RG scale µ the two-loop potential is exactly the same as in the SM. The potential is

modified once we implement RG improvement and set µ = h. The bifundamentals change

the RG running of the QCD gauge coupling g3 and the top quark Yukawa yt:

∆βg3 =
1

(4π)2

(
2

3
Nc′g

3
3

)
+

1

(4π)4

(
38

3
Nc′g

5
3

)
, (3.4)

∆βyt =
1

(4π)4

(
40

9
Nc′g

4
3yt

)
, (3.5)

where Nc′ = 3 is number of colors in SU(3)C′ . As we evolve the coupling constants of the

SM into the UV, these additional fermions slow the running of g3; as a result yt runs

faster toward zero due the larger g3. The net effect is that the negative contribution of yt
to the Higgs quartic λ is reduced and it can run positive before the Planck scale. Note

that this formally occurs at 3 loops – it is only captured by the leading and

next-to-leading log resummation implemented by the RG improvement of the potential.

We demonstrate the effect of the bifundamentals with a mass scale of 100 TeV on λeff in

Fig. 3 as the solid red line. As before, the band around the solid line corresponds to 1σ

variations of Mt. Note that λeff runs positive at h ∼ 1016 GeV.

In the next section we study the extrema of the potential and determine confinement

scale of QCD′.

3.3 Bifundamental Mass Scale

The scale at which the bifundamentals are integrated in or out is not a free parameter,

but is rather fixed by the confinement scale of QCD′, ΛQCD′ . The latter is determined by

the masses of the Z2 quarks and the resulting RG evolution of g′3.
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Figure 3: The effective quartic coupling as a function of the Higgs VEV for the SM field

content and for a theory with additional Nc′ = 3 new vector-like states charged under QCD

that are integrated in at 100 TeV. The bands around each line correspond to varying Mt

within 1σ.

Tree-level mirror quark masses only depend on the mirror Higgs vev h′ and their

Yukawa couplings. The location of extrema of Eq. 3.2 is obtained by solving

λeff(h′) +
1

4
βλeff

(h′) = 0, (3.6)

where βλeff
= dλeff/d lnh′. Note that potential, and therefore λeff are gauge-dependent

quantities. The vev h′ inherits this gauge dependence and is therefore not physical – see,

e.g., Refs. [29, 47, 48] and references therein. Gauge invariant quantities can be obtained

from pole masses [49]. The Higgs expectation value shown in Fig. 2 is computed using the

physical W mass in the new minimum: hmin = 2mW /g. The Landau gauge self-energy

needed for this are available in Ref. [50]. In Fig. 2 we see that the Higgs expectation

values can be large and one might worry that the following results can be significantly

altered by Planck-suppressed operators in the potential. We study these potential

deformations in Appendix B and find that they do not change the main results of this

section.

Once the mirror quark masses have been determined we run the QCD′ coupling g′3
from the scale of the vev into the IR using the QCD beta function in the one, two, three

or four loop approximation [51]. The scale at which the coupling becomes

non-perturbative, g′3 ∼ 4π, defines the confinement scale ΛQCD′ . As discussed in Sec. 2.1,

in the IR QCD′ is a theory containing three massless flavors (the bifundamental quarks

ψ(c)), so its spectrum after confinement resembles low energy QCD. In particular, the
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physical scale of low energy QCD′ corresponds to the mass of the lowest lying

non-Goldstone meson – the ρ′. We determine the ρ′ mass by

mρ′

mρ
=

Λ
(l)

QCD′

Λ
(l)
QCD

, (3.7)

where mρ = 0.77 GeV and ΛQCD is the QCD confinement scale computed analogously to

ΛQCD′ . The superscript l indicates that the ratio of scales depends on the loop order of

the beta function used. As in QCD, the lightest states are the Goldstone boson pions π′

whose mass is determined by the explicit breaking of the global SU(3)L × SU(3)R
through the gauging of QCD (see Sec. 2.1 and Ref. [12])

m2
π′ ≈ 9αs(mπ′)

4π
m2
ρ′ . (3.8)

The dynamical scale mρ′ roughly determines where the bifundamental states are

integrated into the running of our αs and the strongly coupled physics is integrated out.

Thus it has an important effect on the running of the Higgs quartic λ. Evolution through

the strongly-coupled threshold of QCD′ can be done using dispersion relation methods.

This problem is analogous to the running of α through the QCD confinement regime. In

the SM the hadronic contribution to α(MZ)− α(0) is related to a measured cross-section

using the optical theorem. We use the knowledge of low energy QCD to construct

equivalent quantities in QCD′ and evaluate αs(µ & mρ′)− αs(µ . mρ′). Below and above

∼ mρ′ , αs is evolved using the usual perturbative beta functions. The discontinuity takes

into account the neglected RG effects of the π′ and ρ′. This procedure is described in

detail in Appendix A.

The confinement scale of QCD′, ΛQCD′ , determines when the the bifundamental

states appear in the RGEs, which, in turn sets h′, the vev in mirror sector. The latter

feeds back into ΛQCD′ through the mirror quark masses. Thus ΛQCD′ , or equivalently,

mρ′ , must be determined recursively. A self-consistent solution for mρ′ does not always

exist. To understand this, consider fixing Mt and integrating in the bifundamentals at a

scale µ = Mbi. Above some maximum value of Mbi = Mmax
bi , the RG effect of the

bifundamentals is not enough to stabilize the potential at sub-Planckian field values, that

is V ′(MPl) < 0. Similarly, below a minimum value of Mbi = Mmin
bi the stabilizing effect of

the bifundamentals is too large and the electroweak minimum is absolutely stable, i.e.,

Eq. 3.6 is never satisfied. The dependence of Mmin
bi and Mmax

bi on Mt is shown in Fig. 4 as

the upper and lower dashed lines, respectively. For intermediate Mbi, a second,

non-electroweak minimum exists with a sub-Planckian vev, allowing us to search for a

solution to

Mbi ∼ mρ′(Mbi), (3.9)

where mρ′ is determined as described above and the argument indicates that it is a

functional of Mbi through the RG equations and potential minimization. Solutions to this

equation exist only in a narrow range of Mt, as shown in Fig. 4 by the solid black line.

Above a maximum Mmax
t , the bifundamental scale needed to stabilize the potential
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Figure 4: Minimum and maximum values of the bifundamental scale Mbi (dashed lines)

as a function of the input top mass Mt. The solid line is the mass of ρ′ determined self-

consistently from the confinement scale of QCD′ as described in the text. Below Mmin
bi

(lower dashed line) no minimum in the potential is generated by loop corrections. Above

Mmax
bi (upper dashed line) the minimum occurs above MPl.

becomes lower than the minimum allowed value (the lower dashed line). In the other

limit, as Mt is lowered the potential becomes more stable (due to smaller yt) and the mρ′

needed to generate a new minimum increases, eventually crossing the maximum allowed

value (upper dashed line) when Mt = Mmin
t .

We conclude this section by considering the sources of uncertainty in the physical

outputs of this framework – the mass scale of the bifundamental states and range of

“valid” Mt. The dominant sources of this uncertainty are related to the strongly-coupled

regime of QCD′. First, the RG evolution through the strongly coupled regime of QCD′

depends on the precise low energy spectrum of that theory. While we constructed a

reasonable model based on symmetry arguments (see Appendix A), a non-perturbative

determination of the spectrum and the resulting threshold correction to αs is desirable.

This can be achieved, for example, with lattice simulations or with holographic

methods [52]. We estimated the uncertainty associated with this calculation by varying

the matching scale at which this threshold is applied, as described in Appendix A. The

resulting uncertainty bands are shown in Fig. 2. This variation also shifts the valid range

of Mt by ∼ 0.5 GeV, which is not shown in the figure.

Second, our determination of ΛQCD′ relies on perturbative beta functions, leading to

different values depending on loop order used. The variation with loop order is shown in

the right plot of Fig. 2: the solid (dashed) line corresponds to the four (one) loop
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determination of ΛQCD′ .

Another uncertainty is associated with matching at the electroweak scale and

variation of αs(MZ) and Mh within their experimental error bars. In a full SM

next-to-next-to-leading order (NNLO) computation (the current state-of-the-art) this

amounts to an uncertainty of ∼ 0.5 GeV on the critical value of Mt that leads to a stable

electroweak minimum [6, 53]. We expect a somewhat larger uncertainty on the postdicted

range of Mt with our approximations due to the absence of three-loop RGE. Beyond

NNLO, the neglected higher-order terms in the effective potential and beta functions are

expected to have a negligible effect [53]. Lastly, Planck suppressed operators can modify

the shape of the potential at large field values. As long as the gauge invariant quantities

associated with the vev are much smaller than MPl, we expect these (unknown) effects to

be unimportant [48]. Nevertheless, we consider the impact of these deformations in

Appendix B, finding no qualitative changes to the main results of this section.

4 Conclusion

We have considered a solution to the hierarchy problem associated with a new scalar

field. The new tree-level mass terms are related to the Standard Model Higgs mass by a

discrete symmetry and are therefore protected from large corrections by the same

mechanism that resolves the usual electroweak hierarchy problem. The new scalar obtains

its mass and expectation value through dimensional transmutation of the Higgs quartic

coupling, allowing these dimensionful quantities to be significantly different from the

electroweak scale, while remaining technically natural. We illustrated this mechanism in

the context of an η′ solution to the strong CP problem, which employs a Z2 symmetry

and new massless quarks to rotate away the QCD theta angle. The resulting model

predicts scalar color octet states and determines their mass in terms of the Standard

Model input parameters (and the representation of the new quarks).

The solution to the “wrong” hierarchy problem presented here, while extremely

predictive, leaves open a few questions. First, what is the cosmological history of these

solutions? Aside from the constraint that the reheating temperature is smaller than the

scale at which parity or Z2 symmetry is restored, there is the question of how the

universe ended up in the metastable state of one Higgs and in the true minimum of the

other. It would be interesting to find a convincing reason for why this could be a generic

occurrence.

It is also interesting to determine if there exist solutions to other problems of the SM

which are testable in this framework. For example, one might utilize this effect to solve

the doublet triplet splitting problem in Grand Unified Theories. Because the other scalar

obtains a expectation value, one would need to enlarge SU(3)C to SU(4)C at high scales.

Another use of this solution to the hierarchy problem is to use a Z2 version of the

currently excluded Higgs as a flavon theory [54, 55]. Using the sum h2 + h′2 as the flavon

puts the flavor scale at a very safe but very unobservable large value. This effect also fits

well with Left-Right (LR) symmetric models as it avoids the need for additional
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bifundamental scalar fields (see e.g. Ref. [56]) leading to very predictive but also

unobservable scenarios.

Of course the most interesting extension would be applying this solution to the SM

Higgs boson. As in similar scenarios with Coleman-Weinberg electroweak symmetry

breaking (see, e.g., Ref. [57]), this is difficult to achieve. First, the Coleman-Weinberg

minimum has a Higgs mass parametrically smaller than its expectation value, something

not seen with the SM Higgs. Second, the cubic and quartic Higgs self-interactions would

deviate significantly from their SM values. Third, the potential minimization condition,

Eq. 3.6, implies that at the radiatively-generated minimum the effective quartic has a

positive beta function. For the SM Higgs boson the large top Yukawa drives this beta

function negative at low energies, so new bosonic degrees of freedom at relatively low

masses are required to make it positive [57].

In this paper, another small step was taken towards finding non-standard solutions to

hierarchy problems. These mechanisms have not been thoroughly explored before and

there may be many interesting solutions that are still undiscovered. In continuing along

the direction of this work, it would be extremely interesting if one could dimensionally

transmute the Higgs scale itself, from, e.g., the scale of the cosmological constant.
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A Integrating Through a Strongly Coupled Threshold

The RG evolution of the QCD coupling g3 passes through the confinement scale of QCD′.

Above this threshold the degrees of freedom contributing to the beta function are the free

quarks and the bifundamentals, while below only the quarks contribute. In the

intermediate region, the degrees of freedom associated with the bifundamentals are

strongly coupled and consist of various mirror hadrons that carry QCD charge. A similar

situation arises in the SM when we want to evaluate the the shift in electromagnetic

coupling ∆α between momentum scales q2
0 and q2, with QCD confinement occurring

inside this range. This is done using the once-subtracted dispersion relation for the gauge

boson self-energy Π(q2) [58]

∆α = Π(q2)−Π(q2
0) =

(q2 − q2
0)

π

∫ ∞
sthr

ds
=Π(s+ iε)

(s− q2
0)(s− q2)

, (A.1)

where sthr is the beginning of the branch cut corresponding to on-shell intermediate

states, e.g. pions, ρ’s, etc. and q2
0 < sthr, i.e. =Π(q2

0) = 0. In our case the lightest

intermediate states are the π′. Thus we take sthr = 4m2
π′ .

In order to evaluate the integrand in Eq. A.1 we consider the forward scattering

amplitude q̄q → q̄q. We can isolate the imaginary part of the gluon self-energy by
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considering only the processes that occur through an s-channel gluon exchange. There

are others, such as box diagrams with two intermediate gluons, but these are higher order

in g3. Applying the optical theorem and summing over initial and final colors and spins

we find

=Π(s) = −
[

N2
c

(N2
c − 1)TF

] [
s

4παs

]
σ(q̄q → hadrons′), (A.2)

where Nc = 3 and TF = 1/2. In the non-perturbative regime we must use the measured

σ(e+e− → hadrons), suitably scaled to model σ(q̄q → hadrons′). Note, however, that the

physical QCD spectrum is dictated by explicit breaking of chiral symmetry through

non-zero quark masses. This splits various states that would be degenerate in QCD′.

Thus a conservative approach is not to use the full R(s) but only the contribution from

e+e− → π+π− (corresponding to q̄q → π′π′ in QCD′), which dominates at low energies.

At higher energies we switch to the perturbative cross-section, where is it a good

description of the data. By restricting ourselves to the ππ final state in the

non-perturbative regime, the group-theoretic factors can be easily accounted for. An

analytical fit in terms masses of π and the vector mesons for e+e− → π+π− is given in

Ref. [59]. We use this result by rescaling the parameters of the fit to account for different

meson masses in QCD′.

Let us define a quantity R′(s) that resembles the SM hadronic R function:

R′(s) = κ
σ(q̄q → π′π′)

σ(q̄q → q̄′q′)
= − 3κ

αsTF
=Π(s), (A.3)

where

σ(q̄q → q̄′q′) =

[
(N2

c − 1)T 2
F

N2
c

]
4πα2

s

3s
, (A.4)

and κ is a numerical factor to be fixed later. Using Eq. A.3 in Eq. A.1 we find

∆α(QCD′)
s = Π(q2)−Π(q2

0) = −αsTF (q2 − q2
0)

3πκ

∫ ∞
sthr

ds
R′(s)

(s− q2
0)(s− q2)

, (A.5)

where the superscript indicates that this is only the contribution of the QCD′ states -

running of αs due to SM quarks still needs to be included. This is identical to the usual

formula for ∆αhad [58] for q2
0 = 0, and κ, TF → 1.

The integral in Eq. A.5 is performed numerically using a data-driven model for R′(s).

We use the observed R to model R′ in the non-perturbative regime. We take the analytic

model of the ππ contribution to R from Ref. [59] and replace all dimensionful parameters

by their QCD′ analogues and find

R ≈ σ(e+e− → π+π−)

σ(e+e− → µ+µ−)
=
TF
CA

σ(q̄q → π′π′)

σ(q̄q → q̄′q′) = R′, (A.6)

where CA = Nc. This defines

κ =
TF
CA

. (A.7)
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Equation A.6 must be used in the non-perturbative regime. We switch to the

perturbative result for annihilation into the massless bifundamentals

R′(s) ≈ κNc, (A.8)

when the perturbative and non-perturbative results become equal above s & (mρ′)
2. The

threshold correction of Eq. A.5 is applied between q2
0 ≈ (mπ′)2 and q2 ≈ (3mρ′)

2, above

which normal perturbative RG evolution is resumed. The values of q2
0 and q2 are chosen

to lie well below and well above the hadronic resonances, respectively. The uncertainty

bands in Fig. 2 were estimated by varying q from 3mρ′ to 6mρ′ .

B Higher Dimensional Operators in the Scalar Potential

Stability constraints in the SM are sensitive to higher-dimensional operators in the

potential, even if they are suppressed by MPl [29]. They can also drastically alter the

lifetime of metastable vacua [60, 61]. In this Appendix we investigate the sensitivity of

our results to the presence of operators of the form ±|H|6/M2
Pl. For h ∼ 1017 GeV these

terms are comparable in magnitude to the other terms in the effective potential;

comparing this with Fig. 2 we see that such operators can have a significant effect for

some values of Mt.

First, we consider the operators +|H|6/M2
Pl. This term stabilizes the potential at

large field values. Even without additional matter the Higgs potential develops a

minimum with expectation value h
(SM)
min ∼ 1018 GeV. This vev can be used to define the

maximum bifundamental mass scale Mmax
bi , since the bifundamental states give an

additional stabilizing effect leading to hmin < h
(SM)
min . The minimum scale Mmin

bi is defined

as in Sec. 3.3. With these bounds in hand, we solve the self-consistency equation, Eq. 3.9,

for mρ′ . The resulting solution is shown in the left plot of Fig. 5. As before the solution

only exists in a small range of Mt.

Next we consider −|H|6/M2
Pl. Since this destabilizes the potential, it must be

compensated by even higher dimensional operators like |H|8/M2
Pl. Interestingly, even in

this case the bifundamental states can lead to a new minimum in the potential. The

bounds on the bifundamental mass scale arise from considerations similar to those in

Sec. 3.3. Above a maximum value Mmax
bi , no second minimum exists. Below the minimum

Mmin
bi the potential develops an instability, but only due to the higher dimensional

operator and not due to the yt. This gives rise to very tight band of bifundamental mass

scales in which a solution to Eq. 3.9 may exist. This is shown in the right plot of Fig. 5.

In both cases above, the additional Planck-suppressed operators reduce the range of

Mt for which a self-consistent solution for mρ′ exists. Comparing Figs. 4 and 5 we find

that the resulting values of mρ′ are not very different from the case with no

higher-dimensional operators. Thus we conclude that these deformations of the potential

do not affect the qualitative features of the mechanism presented in Sec. 3.
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Figure 5: Prediction of mρ′ and viable range of Mt in the presence of Planck-suppressed

operators ±|H|6/M2
Pl. The minimum and maximum values of the bifundamental scale are

defined in the text.
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