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Despite significant progress in resonant inelastic x-ray scattering (RIXS) experiments on cuprates
at the Cu L-edge, a theoretical understanding of the cross-section remains incomplete in terms of
elementary excitations and the connection to both charge and spin structure factors. Here we use
state-of-the-art, unbiased numerical calculations to study the low energy excitations probed by RIXS
in undoped and doped Hubbard model relevant to the cuprates. The results highlight the importance
of scattering geometry, in particular both the incident and scattered x-ray photon polarization,
and demonstrate that on a qualitative level the RIXS spectral shape in the cross-polarized channel
approximates that of the spin dynamical structure factor. However, in the parallel-polarized channel
the complexity of the RIXS process beyond a simple two-particle response complicates the analysis,
and demonstrates that approximations and expansions which attempt to relate RIXS to less complex
correlation functions can not reproduce the full diversity of RIXS spectral features.

PACS numbers: 74.72.-h, 75.30.Ds, 78.70.Ck

I. INTRODUCTION

Resonant inelastic x-ray scattering (RIXS) is an exper-
imental technique in which the transferred energy, mo-
mentum and polarization associated with incident and
scattered x-ray photons can be measured and analyzed
to reveal information about the elementary excitations
of a system [1]. In recent years RIXS has attracted
considerable attention and positioned itself as a primary
experimental technique to probe the excitations in cor-
related materials, especially transition-metal oxides [2–
17]. RIXS possesses atomic sensitivity with incoming
photons resonantly tuned to a specific atomic absorption
edge, making it a particularly unique and powerful tool
for characterizing excitations across the Brillouin zone in
these materials.

The direct RIXS process consists of two dipole transi-
tions, as shown schematically in Fig. 1 for the Cu L-edge.
In the first step an incoming photon excites the ground
state by promoting an electron from a filled core shell
(Cu 2p) into the valence shell (Cu 3d). An intermediate
state manifold forms following the charge and spin shake-
up which accompany the introduction of a local core-hole
potential and this new carrier in the valence shell. In the
second step an electron from the valence shell, possessing
appropriate atomic character, fills the core-hole, accom-
panied by an outgoing photon, which leaves the system
in an excited final state.

Due to the complexity of this process and the pres-
ence of the intermediate state, an interpretation of RIXS
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spectra has been hindered by an incomplete understand-
ing of how it may be related to other, more fundamental,
response functions governing spin, charge, lattice and or-
bital excitations. In addition, it is well known that polar-
ization plays a key role in understanding selective excita-
tions in Raman spectroscopy [18], but a full polarization
analysis involving both incident and scattered x-rays has
become possible only now in experiment and only shown
theoretically to be important for spin-flip excitations [19].
One would expect that a more complete understanding,
at a fundamental level, could be obtained by analyzing
the full theoretical RIXS cross-section, accounting for the
influence of both the incident and scattered light polar-
ization for a given experimental scattering geometry.

To better understand the RIXS cross-section from a
theoretical perspective, here we will explore a rather
general question: what low energy excitations are mea-
sured by RIXS, particularly in cuprates at the Cu L-edge?
There certainly are a number of ways to address this
question analytically and numerically. Here, our inter-
est is confined to the low energy excitations which in-
volve spin and/or charge degrees of freedom, neglecting
both lattice and higher energy orbital or charge transfer
excitations in this work. Our aim will be to qualita-
tively understand which excitations are encoded in the
RIXS cross-section, and any connections to both spin
and charge dynamical structure factors, under different
scattering conditions; and we will quantitatively compare
numerical estimates of the full RIXS cross-section with
various approximations to tease out this information.

Naively, one may expect the Cu L-edge RIXS cross-
section to be the resonant analog of the hard x-ray non-
resonant IXS, [20, 21] whose response is the charge dy-
namical structure factor. It then may seem counter-
intuitive that RIXS at the Cu L-edge rose to promi-
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FIG. 1. A schematic which illustrates the RIXS process at the Cu L-edge appropriate for cuprates.

nence for the successful empirical measurement of the
spin (magnon) dispersion in undoped cuprates, mak-
ing it a complementary experimental probe to the well-
established inelastic neutron scattering [4, 5]. With the-
oretical support [19, 22], experiments on doped cuprates
proved sensitive to magnetic excitations, with a similar
cross-section to the spin dynamical structure factor, re-
gardless of doping level [7–17]. These observations were
interpreted in terms of persistent magnetic excitations
up to an unexpectedly high doping level. However, this
semi-empirical connection to the spin dynamical struc-
ture factor has been based primarily on approximate the-
oretical and numerical treatments for the full RIXS cross-
section. The fast collision approximation [23–25] and the
effective operator approach [26] suggested that only sin-
gle magnon excitations or S(q, ω) should be measured by
RIXS at the Cu L-edge [22, 26, 27]. More sophisticated
treatments – the ultrashort core-hole lifetime (UCL) ex-
pansion [28–30] and the UCL-inspired ansatz [31] – high-
lighted that RIXS should be sensitive also to bimagnon
excitations. A further extension of UCL also pointed out
the importance of three-magnon excitations [32]. How-
ever, these studies made no explicit comparison between
the approximations and the full RIXS cross-section, nor
have they concentrated on the sensitivity of RIXS to the
charge dynamical structure factor.

Perhaps more importantly, these approximations suf-
fer from several severe limitations. First, the fast
collision approximation (or the effective operator ap-
proach) [22, 26, 27] relies on an estimation of the dynam-
ics only at the site where the core-hole has been created in
the intermediate state. However, the intermediate state
is drawn from a manifold of states, which differ from the
ground state not only locally, at the site where a core-hole
is created, but also on neighboring sites due to hopping
or spin exchange associated with the dynamical screen-
ing process. As a result, and especially upon doping,
this approximation fails to capture key elements of the
full RIXS process. Second, the UCL approximation relies

on the assumption that the energies of the intermediate
state manifold are much smaller than the inverse core-
hole lifetime Γ, which allows an approximation based on
only the first few (two) terms in the UCL Taylor-series-
like expansion. However, this assumption need not hold,
especially in “itinerant”, doped systems where a number
of intermediate states may have energies ∝ t ∼ Γ, making
the UCL a non-convergent approximation.

In this paper we study the low energy excitations
of RIXS at the Cu L-edge in an unambiguous way
by numerically evaluating the cross-section for a two-
dimensional Hubbard model comprising “effective” Cu
3d orbitals supplemented by local Cu 2p core levels. Us-
ing exact diagonalization, which previously was applied
to the study of paramagnons in cuprates [19], we com-
pare the exact RIXS cross-sections to approximate cross-
sections for the same model using the same method. The
intrinsically correlated nature of our Hamiltonian dis-
tinguishes this study from the analytically exact RIXS
calculations for the case of completely uncorrelated elec-
trons [33]. In the next section, we present and compare
numerical results for the exact and approximate RIXS
cross-sections, and discuss content of the excitations and
consequences for experiments. The paper ends with con-
clusions, and appendices which contain details and longer
derivations.

II. NUMERICAL RESULTS

A. Exact RIXS cross-section

The RIXS cross-section at the Cu L-edge is [1, 27]

Ie(q, ω) =
∑
f

∣∣∣〈f ∣∣∣Oq,e

∣∣∣i〉∣∣∣2δ(ω + Ei − Ef ), (1)

where |i〉 (|f〉) is the initial (final) state of the system in
the RIXS process with energy Ei (Ef ), transfered mo-
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mentum (energy loss) is q ≡ ki − kf (ω ≡ ωi − ωf )
where qi and qf (ωi and ωf ) are the incoming and out-
going photon momentum (energy), and e = ei · (ef )†

is the tensor that describes the incoming (i) and outgo-
ing (f) photon polarizations. Here the operator Oq,e =

1/
√
N
∑

j e
iq·jOj,e and

Oj,e = D†
j,ef

1

ωi −H+ ıΓ
Dj,ei , (2)

which describes the evolution of the system in the RIXS
experiment from the initial state to the final state via the
intermediate states accessible via the core-hole to valence
band dipole transitions. N is the number of lattice sites
in the system. The dipole transition operator Dj,e =∑
σ,α,β(Ae

αp
†
jασdjσ + h.c.) with pjασ (djσ) annihilates a

hole in the 2p (3d) shell with spin σ.Ae
α is the matrix

element of the dipole transition between the 2pα orbitals
and 3dx2−y2 orbital written as Ae

α = 〈dx2−y2,σ|ε̂ · r̂|pασ〉
for polarization ε̂. Γ is the inverse core-hole lifetime.
Note that with the exception of the schematic in Fig. 1,
“hole notation” has been used throughout the paper,
such that the dipole transitions at the Cu L-edge cor-
respond to transitions from the initial 3d∗12p0 state to
a 3d∗02p1 intermediate state, and finally from the inter-
mediate state to the final state configuration. Here 3d∗

corresponds to holes nominally (Zhang-Rice singlets [34])
in the single band notation.

Here we use the single-band Hubbard model as it car-
ries the key features of correlated materials in the low
energy regime, which are the relevant energy regime for
the study of charge and spin excitations for cuprates in
RIXS measurements. The single-band results can be ap-
plied directly to cuprates and can be generalized to other
multi-orbital correlated materials. The Hamiltonian H
defined on a 2D square lattice describes the relevant in-
teractions of the “effective” 3d and 2p orbitals, consisting
of two parts:

H = H +Hc, (3)

H=−t
∑
〈i,j〉,σ

d†iσdjσ−t
′
∑
〈〈i,j〉〉,σ

d†iσdjσ+U
∑
i

ndi↑n
d
i↓, (4)

Hc=(εd−εp)
∑
iασ

npiασ + Uc
∑
iασσ′

ndiσn
p
iασ′

+ λ
∑

iαα′σσ′

p†iασχ
σσ′

αα′piα′σ′ . (5)

The first part, Eq. (4), is the well-known single-band
Hubbard model with the nearest (next-nearest) neighbor
hopping t (t′) and on-site Hubbard repulsion U . Here,
the operator d† in the single-band Hubbard model cre-
ates a “3d∗” hole, which should be distinguished from
the actual Cu 3dx2−y2 hole in the multiband model. The
second part, Eq. (5), describes (i) the energy splitting
between the 2p and the 3d shells through the difference
in site energy εd−εp, (ii) the repulsion between the 2p
and the 3d holes (the “core-hole potential”) Uc, and (iii)

the spin-orbit coupling in the 2p shell λ with the matrix
elements χσσ

′

αα′ ≡ 〈pασ|l · s|pα′σ′〉, where the l · s term
represents the spin-orbit coupling operator.

The RIXS cross-section is calculated using exact di-
agonalization on a 12-site cluster. In this cluster, mo-
mentum points (2π/3,0) and (π/2, π/2) are accessible,
providing information along both the Brillouin zone axis
and diagonal, relevant for RIXS experiments. As the Cu
2p core levels and the spin-orbit coupling are included
(which also means that the total spin is not a good quan-
tum number in the intermediate state), the Hilbert space
size is ∼ 107. Ground state eigenvectors and eigenval-
ues were obtained using the implicitly restarted Arnoldi
method encoded in the Parallel ARPACK [35] libraries.
The cross-section itself was obtained using the biconju-
gate gradient stabilized method [36] and continued frac-
tion expansion [37]. The numerical technique has been
applied previously to calculate RIXS at the Cu K-edge
and L-edges [19, 20]. Numerical results were obtained for
parameters which can relatively well reproduce the low
energy physics for cuprates: εd− εp = 2325t (which gives
the typical splitting between the Cu 2p and the Cu 3d
shell of 930 eV if t = 0.4eV), Uc = 4t, λ = 32.5t, Γ = t,
U = 8t, t′ = −0.3t. RIXS spectra at half-filling are taken
at the Cu L3 resonance (i.e. ωi ∼ εd− εp + EL3

with
EL3

= −λ/2). For doped systems, we investigate at the
resonance where the character of the intermediate state is
similar to that in the undoped case on the core-hole site.
The angle between the incident and the scattered pho-
tons is set to 50◦, with the scattering plane parallel to xz,
i.e. perpendicular to the xy plane on which we define the
2D Hubbard Hamiltonian, and the incoming polarization
is chosen to be π. This scattering geometry is consistent
with that used most commonly in RIXS measurments
for cuprates [8–10, 12–15]. The relation between polar-
ization and the transferred momenta [22, 25, 26, 38] fol-
lows from this scattering geometry: ei = (sin θ, 0, cos θ),
ef = [− cos(θ − 40◦), 0, sin(θ − 40◦)] [ef = (0,−1, 0)]
for outgoing π (σ) polarization, θ ∈ [0◦, 130◦], and
the angle θ is related to the transferred momentum via
kx = 1.07π sin(θ − 65◦). The calculated RIXS spectra
will be presented at Figs. 2 - 5. The comparison with the
approximated spectra will be presented in Section II C
below.

B. Approximate cross-section

The approximations follow from integrating out the
core hole degrees of freedom using two approaches. We
firstly assume that the energy of the incoming photon ωi
is tuned to the main resonance at the Cu L3 edge, as
dictated by Hc. [39] This is equivalent to a projection
into a subspace with only one 3d∗ hole on the core-hole
site in either the initial state |i〉 or the final state |f〉.
We then perform the UCL approximation by expanding
the RIXS operator, Eq. (2), in a power series in H/Γ and
only keeping the first two terms. See Appendix A for
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FIG. 2. Exact RIXS cross-sections and approximations calculated using exact diagonalization. Top (bottom) panels show
spectra for the π−σ (π−π) polarization geometries. Left, middle, and right panels show RIXS spectra calculated for n = 0.83
(“hole-doping”), n = 1 (“half-filling”), and n = 1.17 (“electron doping”) electron fillings, respectively. The spectra are summed
over all momenta along the nodal direction and along the ky = 0 direction that are accessible in RIXS on a 12-site cluster,
weighted with the RIXS form factors, i.e.: S(ω) =

∑
q |Wπ−σ|2S(q, ω), Ñ(ω) =

∑
q |Wπ−π|2Ñ(q, ω) and similarly for S′(ω) and

Ñ ′(ω). The elastic response has been removed in each panel.

details. These approximations can be written separately
for the two polarization conditions as follows:

π−σ RIXS in the UCL approximation:

IUCL
π−σ (q, ω)=|Wπ−σ|2

{
S(q, ω) + S′(q, ω)

}
, (6)

S(q, ω)=
∑
f

∣∣∣〈f ∣∣∣Szq∣∣∣i〉∣∣∣2δ(ω+Ei−Ef ), (7)

S′(q, ω)=
z2t2

N2Γ2

∑
f

∣∣∣〈f ∣∣∣∑
k,k′

ε−k′+k+qS
z
k′

× d†k,σd−k′+k+q,σ

∣∣∣i〉∣∣∣2δ(ω+Ei−Ef ), (8)

where the local RIXS form factor Wπ−σ = −ı2 sin θ/(3Γ),

the spin operator Szq = 1/(2
√
N)
∑

k(d†k,↑dq+k,↑ −
d†k,↓dq+k,↓), z = 4 is the 2D coordination number, and

the 2D structure factor is εk = γk + t′ηk/t with γk =
(cos kx + cos ky)/2 and ηk = cos kx cos ky. The structure
factor εk has A1g symmetry. Note that the first term of
the expansion S(q, ω) has the form of the spin dynami-
cal structure factor, while the second term S′(q, ω) is a
rather complicated four particle response which probes
spin and charge excitations. The latter corresponds to

~
~

Doping Doping

FIG. 3. Momentum and energy integrated spectral weight-
for full RIXS

∫ 1.6t

0
I(ω)dωand the various approximations

S =
∫ 1.6t

0
S(ω)dω, Ñ =

∫ 1.6t

0
Ñ(ω)dω, S′ =

∫ 1.6t

0
S′(ω)dω,

Ñ ′ =
∫ 1.6t

0
Ñ ′(ω)dω with S(ω), Ñ(ω), S′(ω), Ñ ′(ω) defined as

in the caption of Fig. 2 RIXS spectra. The π − σ (π − π)
relative polarizations are shown on the left (right) panels, re-

spectively. Note that the spectral weight Ñ = 5×10−5(eV )−2

in the half-filled case and does not appear in the figure.All
momenta along the nodal direction and along the qy = 0 di-
rection accessible on a 12-site cluster are taken into account
(elastic response excluded).

the 3-spin Greens function (see Appendix B) and to joint
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spin and charge excitations.
π−π RIXS in UCL approximation:

IUCL
π−π (q, ω)=|Wπ−π|2

{
Ñ(q, ω) + Ñ ′(q, ω)

}
, (9)

Ñ(q, ω)=
∑
f

∣∣∣〈f ∣∣∣ñq∣∣∣i〉∣∣∣2δ(ω+Ei−Ef ), (10)

Ñ ′(q, ω)=
z2t2

NΓ2

∑
f

∣∣∣〈f ∣∣∣∑
k

εq+kd̃
†
k,σdq+k,σ

∣∣∣i〉∣∣∣2
× δ(ω+Ei−Ef ), (11)

where the constrained density operator is ñi =
∑
σ d̃
†
iσd̃iσ

with constrained fermions d̃†iσ = d†iσ(1 − niσ̄) and d̃iσ =
(1 − niσ̄)diσ, and the local RIXS form factor Wπ−π =
−2 sin θ cos(θ − 40◦)/(3Γ).

Before evaluating the correlation functions, we want
to highlight that none of these approximations give
the standard charge dynamical structure factors for the
parallel-polarization channel. The first term of the ex-
pansion, Ñ(q, ω), is not the standard charge dynamical
structure factor. It represents a more complicated four-
particle response function in the original space of unpro-
jected fermions. In the following, it carries information
about projected charge excitations, which should in no
way be confused with information about the full charge
response. That RIXS does not probe the standard charge
response stems from the fact that initial states with dou-
ble occupancy on the core-hole site can not be excited
in the RIXS process due to the Pauli principle. The sec-
ond term Ñ ′(q, ω), a complicated four-particle response
function as well, corresponds to 2-spin or bimagnon exci-
tations (see Appendix B) and other symmetry projected
charge excitations, represented again by a correlator be-
yond the familiar two-particle charge response.

C. Comparing exact and approximate results

In the following, we will present a systematic compar-
ison of the full RIXS spectra with the approximations
using the UCL expansion for the two polarization con-
ditions. As a momentum resolved technique, RIXS has
the power to measure the dispersion of elementary exci-
tations, which is one of its main advantages compared to
traditional optical or Raman scattering, where the mo-
mentum transfer is limited to q ∼ 0. [18] However, there
are limitations in cluster size, as well as a limited number
of poles using a finite-size cluster. Thus, summing over
all the accessible momentum points (results as shown in
Fig. 2) gives us a complete picture of the energies and
the distribution of intensities for the excitations, so that
the comparisons to the approximations can be made in a
single shot. To better quantify this comparison, we also
calculate and compare the total spectral weight carried
by the excitations, cf. Fig. 3. Nevertheless, in section II
D, we compare exact RIXS cross-sections and approxima-

tions at the momentum points (2π/3,0) and (π/2, π/2),
and discuss connections to experiments.

The full cross-sections are shown in Fig. 2 for two po-
larization channels: (i) the cross-polarized channel [π−σ
with π (σ) incoming (outgoing) polarization] and (ii)
the parallel-polarized channel [π − π with π (π) incom-
ing (outgoing) polarization]. For each the spectra are
calculated for three different doping levels (n = 0.83,
“hole-doping”, n = 1, “half-filling”, and n = 1.17, “elec-
tron doping”). The π − σ RIXS spectra presented here
agree with those presented in Ref. [19]. The approximate
cross-sections S(ω) and S′(ω) for cross-polarization and

Ñ(ω) and Ñ ′(ω) for parallel-polarization are also shown
in Fig. 2. The results for both full and approximated
RIXS are shown for a Lorentzian broadening with half
width at half maximum (HWHM) = 0.025t for the en-
ergy transfer. Note that the spectra in Fig. 2 correspond
to a momentum summation over all points accessible in
the 12-site cluster, to provide a holistic picture of the
character of excitations probed by RIXS and the utility
of various approximations (see Fig. 2 caption for details).

First note the results in the cross-polarized channel
(the π−σ channel). On a qualitative level, the line shape
of the full RIXS cross-section can be reproduced well
by the spin dynamical structure factor S(q, ω) (the first
term of the UCL approximation). This is true at half-
filling, where all charge excitations have been gapped-
out, while in either the electron- or hole-doped cases one
can observe some relatively small discrepancies between
the two spectra. When adding higher order terms from
the effective expansion, to a large extent this observation
remains unchanged since these terms encode similar ex-
citations to S(q, ω) together with excitations of mixed
charge and spin character, as can be seen readily from
the form of the operator in Eq. (8).

However, on a quantitative level, this comparison
breaks down, with discrepancies in the overall inten-
sity and integrated spectral weight which can become
very large (see Fig. 3). While one may have expected
that higher order terms in the effective expansion should
provide a more satisfactory qualitative and quantita-
tive agreement, these do not help in reducing the dif-
ferences; on the contrary, these additional terms actually
enhance the quantitative mismatch. Note that the first
two terms of the UCL expansion suggest larger spectral
weight for the hole-doped case compared to that with
electron-doping, in contrast to the behavior for the RIXS
cross-section. This suggests that the differences cannot
be attributed to a simple rescaling factor.

The quantitative mismatch between RIXS at the Cu
L-edge and the approximations highlights the role that
the intermediate state wavefunction plays in the RIXS
spectra, just as in the case for RIXS at the Cu K-
edge. [20] RIXS is an intrinsic four-particle process, where
the wavefunction overlap between the ground state and
intermediate states, and between intermediate states and
final states both play an important role. Neglecting the
intermediate state wavefunction might still provide infor-
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FIG. 4. Cross-sections at q = (2π/3, 0) with the elastic response removed.Top (bottom) panels show spectra for the π−σ (π−π)
polarization. Left, middle, and right panels show RIXS spectra for n = 0.83, n = 1, and n = 1.17 electron fillings, respectively.
The approximate spectra are weighted with the RIXS form factors, i.e.S(q, ω) → |Wπ−σ|2S(q, ω), Ñ(q, ω) → |Wπ−π|2Ñ(q, ω)

and similarly for S′(q, ω) and Ñ ′(q, ω).

mation on the fundamental excitation energies, but un-
fortunately it cannot provide reasonable spectral weights
on a quantitative level. This mismatch also illustrates
the failure of these approximations. That being said,
both numerically and empirically, in the cross-polarized
scattering geometry the RIXS cross-section qualitatively
corresponds to the spin dynamical structure factor which
encodes information about spin excitations at the two
particle level, which underscores RIXS utility as a com-
plementary probe to inelastic neutron scattering.

An altogether different situation arises in the parallel-
polarized channel (the π − π channel). While a com-
parison between the RIXS spectrum and the “projected”
charge excitations produces a modest qualitative agree-
ment between the line shapes, both missing peaks as well
as significant differences in the spectral weights under-
mine any quantitative value in this comparison. The
addition of the higher order terms seems to be needed
for a better qualitative comparison of the line shapes al-
though both terms support similar spectral excitations
based on the form of the operators in Eqs. (10) and (11)
and a spectral weight analysis precludes any quantita-
tive agreement. In both cases, while the RIXS spectral
lineshape may be approximated by the two expansion
terms, neither provides a faithful representation for the
proper two-particle charge response encoded in the sim-
ple dynamical structure factor, placing statements about

the true charge excitation character of the RIXS cross-
section on less solid footing.

D. Consequences for RIXS experiments

The preceding section presented a comparison between
cross-sections integrated in momentum, as well as energy
for a total spectral weight analysis. In this section we
show spectra at two particular momenta: q = (2π/3, 0)
and q = (π/2, π/2) (see Fig. 4 and Fig. 5) to underscore
those results, shown in a context amenable to experi-
ment. When doped, the Hubbard model, and by exten-
sion cuprates, will possess spin and charge excitations
in a similar low energy regime which will appear, either
directly or in a more complicated way reflecting the com-
plexity of the cross-section, in the RIXS spectrum for the
crossed- and parallel-polarization channels, respectively.
Thus, to satisfactorily distinguish between the magnetic
and charge channel, or two-spin excitations, one must
perform measurements which can discriminate the outgo-
ing polarizations. Unfortunately, to this point RIXS ex-
periments have been unable to fully distinguish between
the cross-polarized and parallel-polarized channels, mak-
ing some statements with the help of a careful analysis of
experimental RIXS scattering geometry. The newly con-
structed, state-of-the-art RIXS end-station at ESRF now
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FIG. 5. Cross-sections at q = (π/2, π/2) point with the elastic response removed.Top (bottom) panels show spectra for the
π − σ (π − π) polarization. Left, middle, and right panels show RIXS spectra calculated for n = 0.83, n = 1, and n = 1.17
electron fillings, respectively. The approximate spectra are weighted with the RIXS form factors, i.e.S(q, ω)→ |Wπ−σ|2S(q, ω),

Ñ(q, ω)→ |Wπ−π|2Ñ(q, ω) and similarly for S′(q, ω) and Ñ ′(q, ω).

provides an opportunity to perform such measurements
(cf. Ref. [16]); and other end-stations (currently opera-
tional or to be commissioned in the coming years) also
would allow for the differentiation between the crossed-
and parallel-polarized channels.

Even with outgoing polarization discrimination, in ei-
ther the crossed- or parallel-polarized channels one needs
to carefully invoke either S(q, ω) or Ñ(q, ω) as approxi-
mations for the full RIXS cross-section. This especially
may be true when analyzing RIXS spectral weights as a
function of doping. None of these approximations ad-
dress intermediate state effects, or equivalently differ-
ences in the cross-section with changes in the incoming
photon energy. [20] Thus, to address the full resonant
profile one always needs to calculate the full RIXS cross-
section.

III. CONCLUSIONS

Overall, one must carefully apply approximations for
calculating the RIXS cross-section. The nonlocal char-
acter of the intermediate state can become particularly
important in correlated ground states with longer range
entanglement. Therefore, we suggest the full RIXS sim-
ulations will be needed to verify the character of excita-
tions.

In the cross-polarized channel, we have shown that on a
qualitative level Cu L-edge RIXS line shapes correspond
to the spin dynamical structure factor S(q, ω), consis-
tent with lowest order approximations as postulated by
the fast collision approximation (or the effective operator
approach) [19, 22, 26, 27], see Appendix C. As a conse-
quence, we expect that the line shapes reported from
cross-polarized RIXS experiments can be reproduced to
some extent by theoretical modeling of the spin dynam-
ical structure factors (or empirically through inelastic
neutron scattering experiments when also considering dif-
ferences in the effective matrix elements between the two
techniques). However, the detailed analysis in this paper
suggests that a quantitative comparison between RIXS
and the two-particle spin and charge dynamical struc-
ture factors would be impractical. One should not ex-
pect a meaningful comparison between different spectral
weights obtained from these different techniques, either
experimentally or from simulation.

In the parallel-polarized channel, the situation is fur-
ther complicated by the operator form taken by the
approximations themselves. On a qualitative level the
primary contributions seem to follow from higher order
terms Ñ ′(q, ω), with a notable exception at half-filling,
see Appendix C. However, any precise quantitative com-
parison to experiment would require calculating the full
RIXS cross-section. At the same time none of the terms
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in the approximations correspond to proper two-particle
charge excitations, but rather inherently reflect the com-
plexity of the RIXS process. Thus, while line shapes in
RIXS should closely resemble the line shapes of the (pro-
jected) charge excitations, the spectral weights may be
quite different, with a more complicated analysis required
to tease out the character of various spectral peaks.
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APPENDIX A: DERIVATION OF THE UCL
APPROXIMATION FOR RIXS AT THE CU

L-EDGE

The UCL approximation should be valid when all the
relevant eigenenergies of the intermediate state Hamil-
tonian H are much smaller than the inverse core-hole
lifetime Γ. We use the following spectral decomposition

1

ωi −H+ iΓ
=
∑
|N〉

|N〉〈N | 1

ωi − EN + iΓ
, (12)

where {|N〉} are eigenstates of H with energy {EN}. We
are interested in RIXS at the resonant edge between the
2p03d∗1 initial configuration and the 2p13d∗0 intermedi-
ate state configuration. (All expressions are presented in
hole language.) This means that we need to exclude all
intermediate states |N〉 which contain one hole in the d
orbital on site j, i.e. on the core-hole site. We add a
projection operator P̃j and rewrite the above expression
as∑
|N〉

|N〉〈N | 1

ωi − EN + iΓ
→
∑
|N〉

P̃j|N〉〈N |P̃j
1

ωi − EN + iΓ
.

(13)

We define the following Hamiltonians H̄ = H +
Uc
∑

iασσ′ n
d
iσn

p
iασ′ and H̄c = Hc − Uc

∑
iασσ′ n

d
iσn

p
iασ′ .

Note that H̄ and H̄c commute (and H = H̄ + H̄c), since
the intermediate states of RIXS are such that they al-
ways contain either a hole in the 2p shell or in the 3d
shell (guaranteed by the projection operators P̃j). Then
we obtain:

|N〉 = |n〉|nc〉 EN = εn + εnc , (14)

where |n〉 are eigenstates of H̄ with energy εn, |nc〉 are
eigenstates of H̄c with energy εnc . Consequently we can
write

1

ωi −H+ iΓ
=

∑
|n〉,|nc〉

P̃j|n〉〈n|nc〉〈nc|P̃j

× 1

ωi − εn − εnc
+ iΓ

. (15)

Note that with a single hole in the p shell, there are
just two eigenstates of H̄c: nc ∈ |L2〉, |L3〉 with energies
εL2

, εL3
. They correspond to the two ‘j’ eigenstates j =

1/2 and j = 3/2, respectively, split by the spin-orbit
coupling ∝ λ. (We note that j represents the angular
momentum and j represents site j on the cluster.) This
implies

1

ωi −H+ iΓ
=
∑
|n〉

P̃j|n〉〈n|L2〉〈L2|P̃j
1

ωi − εn − εL2 + iΓ

+
∑
|n〉

P̃j|n〉〈n|L3〉〈L3|P̃j
1

ωi − εn − εL3 + iΓ
.

(16)
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Resonance approximation We assume that the incom-
ing x-ray photons are tuned to the L3 resonance, i.e.
ωi ' εL3

. Since λ � Γ (and all eigenenergies εn � λ),
we can neglect the contribution from the L2 resonance
and obtain

1

ωi −H+ iΓ
=
∑
|n〉

P̃j|n〉〈n|L3〉〈L3|P̃j
1

−εn + iΓ
. (17)

UCL expansion We adopt the UCL expansion [32, 40,
41] for Cu L-edge RIXS to obtain

1

ωi −H+ iΓ
= P̃j|L3〉〈L3|

+∞∑
l=0

H̄ l

(iΓ)l+1
P̃j. (18)

This means that the RIXS operator can be rewritten as

Oj,e =
1

iΓ
D†

j,ef P̃j|L3〉〈L3|
+∞∑
l=0

H̄ l

(iΓ)l
P̃jDj,ei . (19)

Second order UCL approximation Keeping only terms
with l = 0 and l = 1 gives

Oj,e =O
(1)
j,e +O

(2)
j,e (20)

O
(1)
j,e =

1

iΓ
D†

j,ef P̃j|L3〉〈L3|P̃jDj,ei

O
(2)
j,e =

1

(iΓ)2
D†

j,ef P̃j|L3〉〈L3|H̄P̃jDj,ei . (21)

The validity of this approximation has been discussed in
detail in the main text of the paper.

Change of projection operators It is convenient to use
another operator – Pj – which projects to the sector with
no doubleoccupancy in the d level on site j, i.e. where
the core-hole is created. This gives

P̃jDj,ei = Dj,eiPj. (22)

A similar expression holds also for the D†
j,ef dipole oper-

ator.
The l = 1 term Next we evaluate

PjD
†
j,ef |L3〉〈L3|H̄Dj,eiPj|i〉. (23)

Since

PjD
†
j,ef |L3〉〈L3|H̄mjDj,eiPj|i〉 = 0 (24)

where

H̄mj =− t
∑
m(j),σ

(d†mσdjσ+h.c.)− t′
∑

m′(j),σ

(d†m′σdjσ+h.c.)

+ Uc
∑
ασσ′

ndjσn
p
jασ′ +Undj↑n

d
j↓ (25)

due to the fact that all terms in the Hamiltonian which
contain site j will vanish when “sandwiched”’ between
the dipole operators D and evaluated on the initial state

|i〉. Here m(j) and m′(j) are nearest and next nearest
neighbors of site j.

Thus, the following expression holds:

PjD
†
j,ef |L3〉〈L3|H̄Dj,eiPj|i〉 = PjD

†
j,ef |L3〉〈L3|

× (H̄ − H̄mj)Dj,eiPj|i〉. (26)

Commuting the Hamiltonian H̄ − H̄mj (which does not
contain operators on site j) with the operator Dj,ei and
Pj to gives

PjD
†
j,ef |L3〉〈L3|H̄Dj,eiPj|i〉 = PjD

†
j,ef |L3〉〈L3|

×Dj,eiPj(H̄ − H̄mj)|i〉. (27)

Since H̄|i〉 = H|i〉 = Ei|i〉 = 0 to set the en-
ergy zero, we are left with the following expression

PjD
†
j,ef |L3〉〈L3|Dj,eiPjH̄mj|i〉. However, due to Pj,

the U and the Uc terms will never contribute and
PjD

†
j,ef |L3〉〈L3|Dj,eiPjd

†
lσdjσ)|i〉 = 0 for any l = m,m′.

Thus, we obtain

PjD
†
j,ef |L3〉〈L3|H̄Dj,eiPj|i〉 = −PjD

†
j,ef |L3〉〈L3|Dj,ei

× [−t
∑

m(j),σ

(d†jσdmσ)− t′
∑

m′(j),σ

(d†jσdmσ)]Pj|i〉. (28)

Note the asymmetry in the above expression, i.e. the

lack of the hermitian conjugate terms ∝ d†jσdmσ – this
asymmetry expresses the fact that in RIXS we are only
sensitive to sites on which the 3d holes reside.

Introducing so-called local matrix elements of RIXS,
we obtain

1

iΓ
PjD

†
j,ef |L3〉〈L3|Dj,eiPj ≡WePjnjPj + W̃ePjS

z
j Pj,

(29)

where the local RIXS form factors follow from e.g. Ref.
[27] (cf. Eq. (2) and Fig. 1 in Ref. [27]):

Wπ−σ = −ı2(eiye
f
x − eixe

f
y)/(3Γ),

Wπ−π = −2(eixe
f
x + eiye

f
y)/(3Γ). (30)

Let PjnjPj = ñj [where ñj =
∑
σ ñjσ =

∑
σ d̃
†
jσd̃jσ and

d̃†jσ = d†jσ(1 − nj,−σ)] and PjS
z
j Pj = Szj . Combining the

above equations, we finally arrive at the expression for
the RIXS operators in the UCL approximation

O
(1)
j,e =Weñj + W̃eS

z
j ,

O
(2)
j,e =

t

iΓ
We

∑
m(j)

d̃†jσdmσ +
t

iΓ
W̃eS

z
j

∑
m(j)

d†jσdmσ

+
t′

iΓ
We

∑
m′(j)

d̃†jσdmσ +
t′

iΓ
W̃eS

z
j

∑
m′(j)

d†jσdmσ.

(31)

Substituting the above expressions into Eq. (1) and
performing Fourier transformations, we obtain Eqs. (6)
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and (9). As the first (second) order UCL terms have real
(imaginary) contributions, the interference terms vanish
and the full RIXS cross-section consists of separate first
and second order UCL terms. Note that if only these
first two terms are considered in the UCL approximation,
then the RIXS spectrum does not depend on the size of
the core-hole potential Uc (the latter will appear only in
higher order corrections in the UCL approximation).

APPENDIX B: UCL APPROXIMATION FOR
THE t− J MODEL

For completeness, we have evaluated the UCL expan-
sion of the RIXS cross-section for the t–J model – the
strong coupling expansion of the Hubbard model, valid
for the low energy physics well below the energy scale
U = 8t. For the qualitative discussions here, we can
safely neglect t′ and the three-site terms in this expan-
sion. Following similar steps as described in the previous
section for the Hubbard model, we obtain for the π − σ
channel:

I
UCLt−J

π−σ (q, ω) = |Wπ−σ|2
{∑

f

∣∣∣〈f ∣∣∣Szq∣∣∣i〉∣∣∣2δ(ω + Ei − Ef )

+
z2J2

N2Γ2

∑
f

∣∣∣〈f ∣∣∣∑
k,k′

γk′+k−qS
z
k′SkS−k′−k+q

∣∣∣i〉∣∣∣2
× δ(ω + Ei − Ef )

+
z2t2

N2Γ2

∑
f

∣∣∣〈f ∣∣∣∑
k,k′

Szk′γ−k′+k+qd̃
†
k,σd̃−k′+k+q,σ

∣∣∣i〉∣∣∣2
× δ(ω + Ei − Ef )

}
, (32)

and for the π − π channel:

I
UCLt−J

π−π (q, ω) = |Wπ−π|2
{∑

f

∣∣∣〈f ∣∣∣ñq∣∣∣i〉∣∣∣2δ(ω + Ei − Ef )

+
z2J2

NΓ2

∑
f

∣∣∣〈f ∣∣∣∑
k

γq−kSkS−k+q

∣∣∣i〉∣∣∣2δ(ω + Ei − Ef )

+
z2t2

NΓ2

∑
f

∣∣∣〈f ∣∣∣∑
k

γq+kd̃
†
k,σd̃q+k,σ

∣∣∣i〉∣∣∣2
× δ(ω + Ei − Ef )

}
. (33)

Here J = 4t2/U and the spin operators are defined in a
standard way as

SkS−q−k =
1

2N

∑
q1,q2,σ

d̃†q1,σd̃q1+q,σ̄d̃
†
q2,σ̄d̃q2−q−k,σ

+
1

4L

∑
q1,q2

(d̃†q1,↑d̃q1+k,↑ − d̃†q1,↓d̃q1+k,↓)

(d̃†q2,↑d̃q2−q−k,↑ − d̃
†
q2,↓d̃q2−q−k,↓). (34)

3

2
~

FIG. S1. Comparison between S′ and 3-spin Green’s func-
tions S3 and between Ñ ′ and 2-spin Green’s functions S2 cal-
culated using exact diagonalization and following the Eqs.
(8) and (11) from the main text of the paper and Eqs. (35)
and (36). Top (bottom) panels show spectra for the π − σ
(π − π) polarization setups, see main text of the paper for
further details. Left, middle, and right panels show RIXS
spectra calculated for n = 0.83, n = 1, and n = 1.17 elec-
tron fillings, respectively. The spectra are summed over all
momenta along the nodal direction and along the ky = 0 di-
rection that are accessible in RIXS and on a 12-site cluster
used in the exact diagonalization calculations and weighted
with the RIXS form factors, i.e.: S′(ω) =

∑
q |Wπ−σ|2S′(q, ω),

Ñ ′(ω) =
∑

q |Wπ−π|2Ñ ′(q, ω), S2(ω) =
∑

q |Wπ−π|2S2(q, ω),

and S3(ω) =
∑

q |Wπ−σ|2S3(q, ω). The intensity scale is dif-

ferent on each panel (it is chosen in such a way that each of
the 6 spectra can be well visible) and the elastic response has
been removed.

Note that all the operators d̃i,σ and d̃†i,σ are defined in the
constrained Hilbert space without double occupancies.

These equations show that in the second order of the
UCL expansion we obtain two terms. The first ones con-
tain only the spin operators and correspond to the ‘2-
spin’

S2(q, ω) =
z2J2

NΓ2

∑
f

∣∣∣〈f ∣∣∣∑
k

γq−kSkSk−q

∣∣∣i〉∣∣∣2
× δ(ω + Ei − Ef ), (35)

and ‘3-spin’ Green’s functions

S3(q, ω) =
z2J2

L2Γ2

∑
f

∣∣∣〈f ∣∣∣∑
k,k′

γk′+k−qS
z
k′

× SkS−k′−k+q

∣∣∣i〉∣∣∣2δ(ω + Ei − Ef ). (36)

The second terms always involve charge excitations be-
low the gap. Since these terms do not contribute at
half-filling (due to the constrained Hilbert space without
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double occupancies), it is expected that at relatively low
doping levels, the first terms should be dominant (even
though their amplitude scales with J/Γ and not with
t/Γ). Hence, we compare the spectra of these first two
terms, S2(q, ω) and S3(q, ω), in the second order of the

UCL expansion with the spectra of S′(q, ω) and Ñ ′(q, ω)
(cf. Fig. S1) from the Hubbard model. We see that at
half-filling S′(q, ω) can be approximated relatively well
by the ‘3-spin’ excitations probed by S3(q, ω) and that

Ñ ′(q, ω) can be approximated relatively well by the “2-
spin” or bi-magnon excitations probed by S2(q, ω). Most
of the discrepancies between these two spectra can be
found in the high energy regime and are therefore at-
tributed to the failure of the t–J model expansion at
higher energies. The electron- and hole-doped cases show
much less pronounced agreement, where the projected
spin and charge excitations S′(q, ω) and Ñ ′(q, ω) also
probe the low energy charge excitations below the gap
which can give a relatively large contribution in the spec-
trum.

The prediction that RIXS can probe the “2-spin” and
the “3-spin” excitations at half-filling already has been
put forward in Refs. [29–32, 42, 43] in the case of the
Heisenberg model, consistent with our UCL expansions
for the Hubbard and t–J models. Note that usually the
Greens functions containing the ‘2-spin’ and the ‘3-spin’
operators are referred to as probing the ‘two-magnon’ and
the ‘three-magnon’ spectrum, though this terminology
may be used loosely in this context. Finally, the fact that
the charge dynamical structure factor for the half-filled
Hubbard model probes the ‘two-magnon’ spectrum also
has been discussed in the context of nonresonant Raman
scattering (cf. Ref. [18, 44, and 45]).

APPENDIX C: VISUALIZATION OF THE FINAL
STATE CONFIGURATIONS

Fig. S2 shows the dominant Cu L-edge RIXS process
in the cross-polarized channel in hole language. The hole
in the 3d∗ orbital on a particular site j in the initial state
of RIXS is transferred via the dipole operator D into
the 2p orbital on the same site j with a non-uniquely
defined spin in the intermediate state of RIXS due to
spin-orbit coupling in the core. This is transferred back
via the dipole operator D† to the d orbital on the same
site j with a spin flip in the final state compared to the
initial state of the RIXS process. While we demonstrate
this process on a single site j in real space, in reality
a coherent superposition of such excitations are created
with phase factors eıqj; this leads to a well-defined, single
spin flip with momentum q in the final state of RIXS, i.e.
RIXS is sensitive to the spin dynamical structure factor
S(q, ω).

Fig. S3 shows the dominant Cu L-edge RIXS process
in the parallel-polarized channel in hole language. The
hole in the 3d∗ orbital on a particular site j in the initial
state of RIXS is transferred via the dipole operator D
into the 2p orbital on the same site j with a well defined
spin in the intermediate state. In the intermediate state
a “shakeup” happens, which creates a “2-spin” and/or
charge excitation in the final state. While this process is
shown on a single site j (and its neighbors) in real space,
in reality a coherent superposition of such excitations is
created with a phase factor eıqj; leading to a “2-spin” or
charge excitation created with momentum q in the final
state, i.e. RIXS has some sensitivity to Ñ ′(q, ω), which
unfortunately have no simple analog in the standard two-
particle charge response function.
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