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We report on a beam-based experiment performed at the SPEAR3 storage ring of the Stanford
Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory, in which a
model-independent optimization algorithm was utilized to minimize betatron oscillations in the pres-
ence of a time-varying kicker magnetic field, by automatically tuning the pulse width, voltage, and
delay of two other kicker magnets, and the current of two skew quadrupole magnets, simultaneously,
in order to optimize injection kick matching. Adaptive tuning was performed on all 8 parameters
simultaneously based only on minimization of a measure of betatron oscillation magnitudes over 256
turns. The scheme was able to quickly re-tune the lattice to minimize oscillations after a magnet
settings step change, as well as able to continuously retune the lattice while the field strength of
the third kicker was continuously, quickly varied (±6% sinusoidal voltage change over 1.5 hours).
The results of this work are a particular in-hardware demonstration of the adaptive scheme’s ability
to model-independently tune many coupled components simultaneously, which may be useful for
uncertain systems, especially time-varying parameters which require repeated re-tuning.

PACS numbers: 41.85.Lc, 02.30.Yy, 29.20.-c, 02.60.-x

I. INTRODUCTION

Particle accelerators are large, complex systems, with
nonlinear coupling between many components, and time-
varying, uncertain disturbances, including magnet power
source fluctuations, thermal cycling of various compo-
nents, magnet position and alignment perturbations dur-
ing construction/maintenance, and hysteresis, to name a
few. For the problem of tuning many coupled compo-
nents which have a deterministic effect on the particle
beam, there exist a large family of optimization schemes
which take place offline, during the design stage [1].

Genetic algorithms (GA) and multi-objective genetic
algorithms (MOGA) have been very successful for the
design and optimization of radio frequency cavities [2],
photoinjectors [3], damping rings [4], storage ring dy-
namics [5], lattice design [6], neutrino factory design [7],
simultaneous optimization of beam emittance and dy-
namic aperture [8], free electron laser linac drivers [9]
and various other accelerator physics applications [10].
Furthermore, multi-objective particle swarm optimiza-
tion (MOPSO), an extension of MOGA, has recently
been demonstrated for emittance reduction, with conver-
gence rates exceeding those of MOGA approaches [11].
Genetic algorithms are able to search over a large pa-
rameter space and result in global optimization, however,
model-based results are optimal only relative to a known
model. In most cases, once the machine is actually built,
further tweaking is required due to imperfect models and
finite precision of construction. Recently, the GA method
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has been demonstrated on-line, on an actual accelerator
rather than based on a model, successfully minimizing
the vertical beam size of the SPEAR3 storage ring [12].
Another optimization method is Robust conjugate direc-
tion search (RCDS), a local (may be trapped in local
minima) model-independent algorithm which is able to
optimization many parameter systems with fast conver-
gence rates and is able to handle noisy systems [13, 14].
RCDS and particle swarm have also been used for online
optimization of nonlinear storage ring dynamics [15].

Both the GA and RCDS approaches are best suited
for time-invariant systems, an RCDS method for dealing
with slowly drifting systems is under consideration, but
further development is needed. In this work, we utilize
a local, model-independent extremum seeking (ES) al-
gorithm, whose convergence can also suffer due to local
minima, but whose simplicity and speed of convergence
allows for real time tracking of a many parameter time-
varying nonlinear system. The ES algorithm utilized in
this work is a recently developed general approach for
the stabilization of noisy, uncertain, open-loop unstable,
time-varying systems [16, 17]. This method has been
implemented in simulation to automatically tune large
systems of magnets and RF set points to optimize beam
parameters [18], it has been utilized in hardware at the
proton linear accelerator at the Los Alamos Neutron Sci-
ence Center (LANSCE) to automatically tune two RF
buncher cavities to maximize the RF system’s beam ac-
ceptance, based only on a noisy measurement of beam
current [19], and it has been utilized at the Facility for
Advanced Accelerator Experimental Tests (FACET), to
non-destructively predict electron bunch properties via a
coupling of simulation and machine data [20].

The model independence of ES and its ability to op-
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timize uncertain time-varying system, makes it ideal for
performing automatic feedback for continuous re-tuning
of many parameter systems in response to uncertain,
time-varying disturbances. In this work we utilize ES
for continuous re-tuning of the eight parameter system
shown in Figure 1, in which the delay, pulse width, and
voltage of two injection kickers, K1 and K2, as well as the
current of two skew quadrupoles Q1 and Q2, were tuned
in order to optimize the injection kicker bump match,
minimizing betatron oscillations. In general, the coupled
transverse motion of beams can be described as

x′′ + kx(s)x = f(x, y, s; t) (1)

y′′ + ky(s)y = g(x, y, s; t) (2)

where the sources of coupling functions f(x, y, s; t) and
g(x, y, s; t) include misaligned magnets, magnetic field er-
rors, solenoid fields, and skew components of magnetic
field gradients, all of which may be time dependent due
to the fluctuation of magnet power sources or diurnal
thermal variations. In the case of injection kicks, the im-
perfect match of parameters (voltage, pulse width, etc...)
of all of the magnets involved results in betatron oscilla-
tions. The main focus of this work was of automatically
optimizing injection magnet matching, thereby decreas-
ing the amplitude of betatron oscillations.

The experiment was performed on the SPEAR3 stor-
age ring, a 3-GeV third-generation light source at SLAC
National Accelerator Laboratory. The experimental
setup for this work, of optimization by kicker bump
matching, has been successfully tested via RCDS for a
time-invariant system [13]. In this work, we demonstrate
the ability of ES to optimize a many parameter, coupled,
time-varying system, by purposely mismatching the in-
jection kicker bump by continuously, quickly varying the
magnetic field strength of the third kicker, K3(t), chang-
ing its power source voltage (and thereby it’s magnetic
field strength) ±6% via a sinusoidal trajectory over 1.5
hours. The ES feedback was able to continuously re-tune
the four other magnets, maintaining minimal betatron
oscillations, without knowledge of the voltage of the third
kicker K3(t), based only on the measured variance of the
electron beam’s betatron oscillations over 256 turns.

II. ADAPTIVE TUNING ALGORITHM

The ES feedback scheme is designed for dynamic sys-
tems with many coupled parameters

p(t) = (p1(t), p2(t), . . . , pm(t)) , (3)

with the goal of minimizing an analytically unknown,
time-varying, user-defined “cost function,” C(p, t),
whose minimization corresponds to optimization of cer-
tain system properties (such as a beam loss monitor).
The parameter adaptation takes place based on a possi-
bly noise corrupted measurement of this function:

Ĉ(p, t) = C(p, t) + ν(t)︸︷︷︸
noise

. (4)
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FIG. 1. Kicker magnets and skew quadrupole magnets.
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FIG. 2. Kicker magnet delay (d), pulse width (w), and voltage
(v) were adaptively adjusted, as well as the skew quadrupole
magnet currents (i).

All of the parameters are initialized with physics-based
estimates of their optimal settings, pi(1). The discrete,
iterative feedback parameter update law is then imple-
mented as

p1(n+ 1) = p1(n) + ∆
√
αω1 cos

(
ω1∆n+ kĈ(n)

)
p2(n+ 1) = p2(n) + ∆

√
αω2 cos

(
ω2∆n+ kĈ(n)

)
...

pm(n+ 1) = pm(n) + ∆
√
αωm cos

(
ωm∆n+ kĈ(n)

)
,

(5)
so that each new parameter setting is based only on the
previous parameter setting and the previous, possibly
noise-corrupted, cost function measurement

Ĉ(n) = C(p(n), t) + ν(t). (6)

The iterative scheme (5) is based on dynamic feedback

dpi(t)

dt
=
√
αωi cos

(
ωit+ kĈ(p(t), t)

)
, ωi 6= ωj , (7)

by utilizing the finite difference approximation

dpi(t)

dt
≈ pi(t+ ∆)− pi(t)

∆
. (8)
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FIG. 3. The adaptive scheme is activated at around step 75, quickly minimizing the transverse beam oscillations by tuning
8 components simultaneously, with all values normalized within [−1, 1]. Within roughly 200 steps a minimum value has been
reached. The black data points are the cost function evaluations and the colored data points, which all start at 0, show the
amount of deviation of each component from its initial settings.
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FIG. 4. Left: As the third kicker magnetic field, K3(t), is varied (black), the injector lattice becomes mis-matched, leading to
large betatron oscillations, which are measured as the variance of the horizontal and vertical beam position monitor readings.
Right: When ES is utilized, despite a time-varying K3(t), the remaining magnets are continuously re-tuned in order to maintain
a good match and minimal betatron oscillations.

For large ωi, (7) or (5) result in average parameter dy-
namics of the form

dp(t)

dt
= −kα

2
∇CT (p(t), t), (9)

which is a gradient descent towards a minimizing value
of C(p(t), t), which does not require analytic knowledge
of the function C, and does not perform any kind of
finite-difference gradient estimation which is especially
problematic in noisy environments. Several important
features of this feedback scheme are:

1. On average the gradient descent, (9), takes place
relative to the actual, unknown function C(p(t), t),
despite being based only on its noise-corrupted
measurement Ĉ(n) = C(p(n), t) + ν(t).

2. Despite operating on an analytically unknown func-
tion, Ĉ, this feedback has the nice (and safe) fea-
ture of having analytically known bounds on pa-
rameter variation and update rates, because the
unknown function enters the parameter dynamics
as the argument of a known, bounded function:

|pi(n+ 1)− pi(n)| =
∣∣∣∆√αωi cos

(
ωi∆n+ kĈ(n)

)∣∣∣
= |∆

√
αωi|

∣∣∣cos
(
ωi∆n+ kĈ(n)

)∣∣∣
≤ |∆

√
αωi| . (10)

Enforcing bounds on parameters is trivially accomplished
by checking that each parameter is within prescribed
bounds pi,min < pi(n + 1) < pi,max before performing
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FIG. 5. BPM readings of x and y beam displacement over
500 turns, before and during tuning.

parameter updates. A more detailed mathematical back-
ground is available in [16–20].

A. Choosing the parameters k, α, ωi, and ∆.

The parameter k > 0 acts as the feedback gain, with
the velocity of the on-average gradient descent (9) being
proportional to k. If gradient ascent is desirable (maxi-
mization instead of minimization), k > 0 may simply be
replaced with k < 0.

The parameter α > 0 also acts as a feedback gain, as
it shows up in (9), but more importantly, as feedback
takes place, the size of the dither of each parameter is
proportional to

√
α, as shown in (5) and (7). Therefore,

increasing α may help one to escape local minima by
introducing larger perturbations in parameter values.

Once α and k are chosen, the dithering frequencies, ωi
must be chosen to be distinct,

ωi = ωri, i 6= j → ri 6= rj , (11)

so that the perturbing functions are orthogonal in the fre-
quency domain. Orthogonality in the frequency domain
means the products of the functions uniformly converge
to zero in the L2 norm on compact sets of the form [0, T ],
as ω is increased to infinity:

lim
ω→∞

∫ T

0

cos(ωr1t) cos(ωr2t)dt = 0. (12)

The cos(·) functions in (5), (7) may be replaced by sin(·)
functions or any orthogonal functions including triangle
or square waves or mixtures of sines and cosines. The
analytical result giving the average system (9) is based
on an assumption that ω is chosen large enough so that

it dominates any other time-varying components of the
system. Therefore, in practice, first α and k are chosen
and then ω is increased until the desired performance is
achieved.

The term ∆ must be chosen small enough relative to
the ωi so that the finite difference approximation (8) is
reasonable and the various dithering frequencies are dis-
tinguishable. For example, a typical value of ∆ may be
∆ = 2π

20max{ωi} .

B. Implementation at SPEAR3

At SPEAR3, we simultaneously tuned 8 parameters:

• p1: K1 delay

• p2: K1 pulse width

• p3: K1 voltage

• p4: K2 delay

• p5: K2 pulse width

• p6: K2 voltage

• p7: SQ1 current

• p8: SQ2 current

which are illustrated in Figure 2. While controlling the
voltage for the kicker magnets K1,K2, and the current
for the skew quadrupole magnets SQ1, SQ2, in each case
a change in the setting resulted in a change in magnetic
field strength.

The cost used for tuning was a combination of the hor-
izontal and vertical variance of beam position monitor
readings over 256 turns, the minimization of which re-
sulted in decreased betatron oscillations,

C(t, p(t)) = σx + 3σy

=

√√√√ 1

256

256∑
i=1

(x(i)− x̄)
2

+3

√√√√ 1

256

256∑
i=1

(y(i)− ȳ)
2
, (13)

where the factor of 3 was added to increase the weight
of the vertical oscillations, which require tighter control
since the vertical beam size is much smaller and therefore
users are more sensitive to vertical oscillations.

III. EXPERIMENTAL RESULTS

A. Tuning of a time-invariant system

We started by demonstrating the ability to tune the 8
parameter system without adding artificial time-varying
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perturbations. The ES scheme was implemented by set-
ting parameter values, kicking an electron beam out and
back into the ring, and recording beam position monitor
data for 256 turns. Based on this data the cost was calcu-
lated as in (13), based on a measurement of the horizontal
and vertical variance of beam position monitor readings.

Minimization of the cost resulted in better matched mag-
net settings and smaller residual betatron oscillations.
The results are shown in Figure 3, where ES is turned
on at step 75 and the cost is quickly minimized within
∼ 150 steps of the algorithm, after which the parameters
continued to oscillate about their steady state values. In
order to prevent persistent parameter oscillation, a dead
zone based on desired performance may easily be imple-
mented, so that the feedback turns on only when system
performance drifts out of some pre-determined bounds.

B. Tuning of a time-varying system

In the second experiment, to demonstrate the scheme’s
ability to compensate for an uncertain, time-varying per-
turbation of the system, we purposely varied the voltage
(and therefore resulting magnetic field strength) of the
third kicker magnet, K3(t). The kicker voltage was var-
ied sinusoidally over a range of ±6% over the course of 1.5
hours, which is a very dramatic and fast change relative
to actual machine parameter drift rates and magnitudes.

The left side of Figure 4 shows the influence that vary-
ing the magnetic field strength, K3(t), has on the vari-
ance of the vertical and horizontal beam position mon-
itor readings as the kicker settings, and therefore, from
the point of view of the beam, the injection lattice is re-
peatedly brought in and out of match. The right side of
Figure 4 shows the result when the feedback ES scheme
is activated. Despite a quickly time varying K3(t), the
ES is able to continuously re-tune the other kicker and
lattice parameters to maintain a good match. Figure 5
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shows a typical beam position monitor reading without
and with ES tuning, during variation of K3(t), over 500
turns. Figure 6 shows the evolution of all parameters,
cost, and K3(t) over 1.5 hours. Finally, Figure 7 shows
the cost, which is a function of betatron oscillation, ver-
sus magnet setting K3(t), with and without ES feedback.
For large magnetic field deviations, the improvement is
roughly a factor of 2.5.

IV. CONCLUSIONS AND FUTURE WORK

In this work we have demonstrated, in hardware, a
very simple model-independent feedback scheme for the
tuning of many coupled parameters for the optimization

of an uncertain, time-varying system. We believe that
this scheme can be useful for any complex, noisy, time-
varying system which typically requires operator-based
re-tuning by hand or for systems for which accurate, real-
time analytic models do not exist or are prohibitively
computationally expensive.
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