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Abstract
Similar to a super B-factory, a circular Higgs factory will

require strong focusing systems near the interaction points
and a low-emittance lattice in the arcs to achieve a factory
luminosity. At electron beam energy of 125 GeV, beam-
strahlung effects during the collision pose an additional
challenge to the collider design. In particular, a large mo-
mentum acceptance at the 2 percent level is necessary to
retain an adequate beam lifetime. This turns out to be the
most challenging aspect in the design of a circular Higgs fac-
tory. In this paper, an example will be provided to illustrate
the beam dynamics in a circular Higgs factory, emphasizing
the chromatic optics. Basic optical modules and advanced
analysis will be presented. Most importantly, we will show
that 2% momentum aperture is achievable.

INTRODUCTION
Since the discovery of the Higgs particle at LHC, the re-

cent results for ATLAS and CMS have shown that the dis-
covered particle resembles the Higgs boson in the standard
model of elementary particles. Because of this remarkable
discovery, it becomes increasingly important to precisely
measure the property of the particle that gives the mass to all
and to study the nature of the spontaneous symmetry break-
ing in the standard model.

The relatively low mass of the Higgs boson provides an
opportunity to build an e+ and e− collider to efficiently and
precisely measure its properties. In the production chan-
nel of e+e− → H Z , the beam energy required for such a
collider is 125 GeV, which is about 20% higher than the
energy reached about two decades ago at LEP2. Can we
design and build a circular Higgs factory (CHF) within a
decade? What are the major challenges in the design? In
this paper, we will address these questions.

LUMINOSITY
In a collider, aside from its energy, its luminosity is the

most important design parameter. For Gaussian beams, we
can write the bunch luminosity as

Lb = f0
N2
b

4πσxσy

Rh , (1)

where f0 is the revolution frequency, Nb the bunch popu-
lation, σx ,y transverse beam sizes, and Rh is a factor of
geometrical reduction due to a finite bunch length σz and
is given by

Rh =

√
2
π

aea
2
K0(a2), (2)
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a = β∗y/(
√

2σz ), β∗y is the vertical beta function at the in-
teraction point (IP), and K0 the modified Bessel function.
In order to prevent Rh from becoming too small, we shall
require σz ≈ β∗y . Obviously, for a number of nb bunches,
the total luminosity is L = nbLb .

In general, the beam sizes in the luminosity formula are
not static variables. They are subject to the influence of the
electromagnetic interaction during the collision. Typically,
for flat beams, the vertical beam size will be blown up by
the beam-beam force. To take this effect into account, we
introduce the beam-beam parameter as [1]

ξy =
reNb β

∗
y

2πγσy (σx + σy )
, (3)

where γ is the Lorentz factor and re the classical electron
radius. Using this formula for ξy , we can rewrite the lumi-
nosity as [2]

L =
cIγξy

2r2
e IA β∗y

Rh , (4)

where I is the beam current and IA = ec/re ≈ 17045 A,
the Alfven current. Since ξy is limited below 0.1 in most
colliders, this formula is often used for estimating an upper
bound of the luminosity.

Table 1: Main parameters of a Circular Higgs Factory.

Parameter LEP2 CHF
Beam energy, E0 [GeV] 104.5 125.0
Circumference, C [km] 26.7 52.7
Beam current, I [mA] 4 13
SR power, PSR [MW] 11 50
Beta function at IP, β∗y [mm] 50 1
Hourglass factor, Rh 0.98 0.73
Beam-beam parameter, ξy 0.07 0.10
Luminosity/IR, L [1034cm−2s−1] 0.0125 2.55

In Table 1, we tabulated a set of consistent parameters for
a CHF. In contrast to the B-factories [3,4], the beam current
is severely limited by the power of synchrotron radiation
at very high energy. To reach the factory luminosity, we
need to have very strong final focusing systems and a very
low emittance lattice. This combination makes the design
of optics much more difficult compared with that of the B-
factories.

SYNCHROTRON RADIATION
When an electron is in circular motion with a bending

radius ρ, its energy loss per turn to synchrotron radiation is
given by

U0 =
4πremc2γ4

3ρ
. (5)
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This loss has to be compensated by an RF system. The re-
quired RF power per ring is

PSR = U0I/e. (6)

For the beam energy of 125 GeV with a bending radius
of ρ = 6.1 km in arcs, we have U0 = 3.56 GeV. Adding
additional bends in the interaction region, it increases to
U0 = 3.85 GeV, which means that electron loses about 3.1%
of its energy every turn. The loss has to be compensated
by the RF cavities. Here we have used a RF system with
fRF = 650 MHz and VRF = 8.45 GV. The voltage also pro-
vides the longitudinal focusing to the beam so that its length
is not too long comparing to the vertical beta function at the
interaction point. Assuming PSR has to be less than 50 MW,
the beam current is limited to 13.0 mA in the ring. Applying
the expression of PSR to the luminosity formula, we obtain

L =
3cξy ρPSR

8πr3
eγ3 β∗y PA

Rh , (7)

where PA = mc2IA/e ≈ 8.7 GW. This scaling property of
luminosity in e+e− colliders at extremely high energy was
given by Richter [5].

For a CHF with beam energy larger than 125 GeV, its
beam current will be severely capped by the electrical power
consumed by the RF system and therefore a smaller β∗y
seems the only available option to reach the required fac-
tory luminosity.

BEAMSTRAHLUNG
Another important aspect of very high energy collid-

ing beams is the emission of photons during collision. In
general, this phenomenon is well known and called beam-
strahlung. Recently, Telnov found [6] that the most limiting
effects to a CHF is an event when a high-energy photon is
emitted by an electron in the beamstrahlung process. The
electron energy loss can be so large that it falls outside of
the momentum aperture η in the colliding ring. For a typical
CHF, is was suggested that the following,

Nb

σxσz
<

0.1ηα
3γr2

e

, (8)

has to be satisfied to achieve 30 minutes of beam lifetime.
Here α ≈ 1/137 is the fine structure constant. If we intro-
duce aspect ratios of beta functions at the IP and emittances
in the ring, namely κβ = β∗y/β∗x and κe = ϵ y/ϵ x , this crite-
ria can be rewritten as

Nb√
ϵ x
<

0.1ηασz
3γr2

e

√
β∗y
κβ

(9)

.
On the other hand, to achieve the beam-beam parameter
ξy , we need

Nb

ϵ x
=

2πγξy
re

√
κe
κβ
. (10)

Combining this equation with Eq. (9), we have

ϵ x <
β∗y
κe

(
0.1ηασz
6πγ2ξyre

)2
. (11)

Since the quantities like ξy , β∗y , and σz are largely deter-
mined by the required luminosity and γ by the particle to
be studied, this inequality specifies a low-emittance lattice
that is required to achieve 30 minutes of beam lifetime. Nor-
mally, the natural emittance scales as γ2. Here it requires a
scaling of γ−4, indicating another difficulty in designing a
factory with much higher energy beyond 125 GeV.

Table 2: Additional parameters selected to mitigate the
beamstrahlung effects so that beamstrahlung beam lifetime
is longer than 30 minutes.

Parameter LEP2 CHF
Beam energy, E0 [GeV] 104.5 125.0
Circumference, C [km] 26.7 52.65
Horizontal emittance, ϵ x [nm] 48 4.5
Vertical emittance, ϵ y [nm] 0.25 0.0045
Momentum acceptance, η [%] 1.0 2.0
Bunch length, σz [mm] 16.1 1.85
Momentum compaction, αp [10−5] 18.5 2.5

As shown in Table 2, we need to design a lattice with
much smaller emittance than the one in LEP2 to mitigate
the beamstrahlung effect. In particular, to satisfy the condi-
tion in Eq.(11), the emittance has to be smaller than 7 nm.
Typically, a low emittance lattice requires smaller disper-
sion and stronger focusing. Both will lead to an increase in
the strength of the sextupole, therefore dramatically reduc-
ing the dynamic aperture of the storage ring.

In the choice of the main design parameters, we want a
factor of 100 increase in luminosity from LEP2. Due to
the limit of the electric power, the increase of luminosity is
largely achieved by a combination of very small beta func-
tions at the IP and a low emittance lattice. In summary, the
lattice of a CHF has the following main challenges:

• Low emittance lattice at high energy
• High packing factor of magnets
• Strong final focusing
• Large momentum acceptance
• Short bunches

A high packing factor is required to reduce synchrotron ra-
diation in the bending magnets and not increase the circum-
ference of the ring. In this design, the dipoles in the arcs
occupy 73% of the space in the ring. We will proceed to
this specific design to show how to meet these challenges.

ARC
For a simple electron ring, the horizontal emittance is

given by
ϵ x = Cqγ

2θ3Fc , (12)



where Cq is a constant,

Cq =
55

32
√

3
~

mc
, (13)

and θ = 2π/Nc is the bending angle per cell, and Nc the
number of cell. Fc depends only on the structure of the cell.
For FODO cells with equal phase advances, µx = µy = µ,
we have,

FFODO
c =

1 − 3
4 sin2 µ

2 + 1
60 sin4 µ

2

4 sin2 µ
2 sin µ

, (14)

which is plotted as a function of µ in Fig. 1. For a 600 cell,
we have FFODO

c (π/3) = 781/480
√

3 ≈ 0.94.
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Figure 1: The emittance scaling parameter Fc as a function
of phase advance µ in FODO cells.

Clearly, as seen in Eq. (12), the most effective way to
reduce the emittance is to make the bending angle in a cell
small. That implies that we use more cells. To reach 4 nm
emittance, we used Nc = 1176.
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Figure 2: Lattice functions in a 600 FODO cell.

In the arcs, we choose FODO cells because of their high
packing factor and use many cells to reach the required emit-
tance. The 600 phase advance is selected due to its property
of resonance cancellation that we will explain later. The op-
tics of the cell is illustrated in Fig. 2. Every six cells makes

a unit transformation of betatron oscillation. In our design,
each arc consists of 24 units and ends with dispersion sup-
pressors. Similar to LEP2, we have eight arcs and eight
straight sections to complete a ring with parameters shown
in Table 2.

Table 3: The nonlinear chromaticities and tune shifts due to
betatron amplitudes in the lattice that consists of arcs and
simple straight sections.

Derivatives of tunes Values
∂νx ,y/∂δ 0, 0
∂2νx ,y/∂δ

2 −52, +102
∂3νx ,y/∂δ

3 +1152, +197
∂νx/∂Jx [m−1] −8.43 × 104

∂νx ,y/∂Jy ,x [m−1] −3.11 × 105

∂νy/∂Jy [m−1] −5.34 × 104

In this study, we set two families of sextupoles to make
the linear chromaticity zero in the ring. For the third-order
resonances, the contribution of sextupoles to all driving
terms along the storage ring are computed [7] using the Lie
method and plotted in Fig. 3. As one can see from the fig-
ure, they are all canceled out within one betatron unit (made
with six cells), as predicted by theorem [8].

0 1 2 3 4 5 6

x 10
4

0

20

40

60

80

100

120

140

s(m)

A
m

pl
itu

de
 o

f D
riv

in
g 

T
er

m
s 

in
 f 3 [m

−
1/

2 ]

 

 

3ν
x
(J

x
3/2)

ν
x
(J

x
3/2)

ν
x
+2ν

y
(J

x
1/2J

y
)

ν
x
(J

x
1/2J

y
)

ν
x
−2ν

y
(J

x
1/2J

y
)

Figure 3: All third-order resonances driven by sextupoles.

For the fourth-order resonances, we find similar cance-
lations [7] as shown in Fig. 4 except for one resonance:
2νx − 2νy = 0. Since this resonance overlaps the same line
as the linear coupling resonance in the betatron tune space,
we can ignore it because the ring cannot operate near the
linear resonance anyway.

It is also worth noting that there are three more terms of
geometric aberrations in f4. To quantify their effects on
the beam, we compute the tune shifts along with the high-
order chromaticities using the normal form analysis [9] and
tabulate the result in Table 3. Compared with the existing
storage rings, these tune shifts are too large at least by an
order of magnitude.
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Figure 4: Fourth-order resonances driven by sextupoles.

FINAL FOCUSING SYSTEM
Note that the beam lifetime condition in Eq. (11) does

not depend on κβ . Therefore, according to Eq. (10), κβ
(or β∗x ) can be used to adjust the bunch population Nb or
equivalently the number of bunches nb when the total cur-
rent is limited by the electrical power. Here we would like
to choose a large β∗x , leading to a smaller nb . Our choice
of the parameters in the interaction region are tabulated in
Table 4.

Table 4: Other parameters determined by a specific design
of final focusing system.

Parameter LEP2 CHF
Beam energy, E0 [GeV] 104.5 125.0
Circumference, C [km] 26.7 52.65
β∗x [mm] 1500 100
β∗y [mm] 50 1
Bunch population, Nb [1010] 57.5 7.77
Number of bunches, nb 4 184

It is always challenging to design a final focusing system
(FFS) in a circular collider. In the CHF, it becomes even
more so because of a smaller β∗y (1 mm) and a longer dis-
tance L∗ (2 meter) which is the distance between the IP and
the first focusing quadrupole.

Here we adopt an optics similar to the design of a linear
collider. The optics of the FFS is shown in Fig. 5. The FFS
starts with a final transformer (FT), continues with a chro-
matic correction in the vertical (CCY) and then the horizon-
tal plane (CCX), and ends with a matching section. The FFS
has two secondary imaging points and fits in a 321-meter
section.

The FT contains four quadrupoles, including the final fo-
cusing doublet. The betatron phase advances are 1800 in
both planes. At the end of the FT, we have the first imaging
point where the beta functions remain very small.

The CCY consists of four 900 FODO cells and makes a
unit of betatron transformer. The module starts at the mid-

0.0 50. 100. 150. 200. 250. 300. 350. 400.
s (m)

δE/ p0c = 0.
Table name = TWISS

FFS
A Circular Higgs Factory, Yunhai Cai, 10/1/15
 Unix version 8.51/15s 06/11/15  16.21.04

0.0

10.

20.

30.

40.

50.

60.

70.

80.

β1/
2

(m
1/

2 )

-0.25

-0.20

-0.15

-0.10

-0.05

0.0

0.05

0.10

0.15

0.20

0.25

Dx
(m

)

βx
1/ 2 βy

1/ 2 Dx

Figure 5: Lattice functions in a final focusing system with
local chromatic compensation section.

dle of the defocusing quadrupole to enhance the peak of
the vertical beta function at the positions of a pair of sex-
tupoles separated by “-I” transformation. Five dipoles with
an equal bending angle provide dispersions at the locations
of the sextupoles. At the end of the CCY, we have the sec-
ond imaging point at which the lattice functions are identi-
cal to those at the first one.

Similarly, we construct the CCX, but starting at the mid-
dle of the focusing quadrupole. There are five dipoles that
generate the dispersion with negative bending angles. The
amplitude of the angles are chosen to be the same as those
in the CCY so that there is no net bending from the FFS.
At the end of the CCX, we have a section matching to the
optics of the dispersion suppressor.
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Figure 6: W function and the second order dispersion in
the final focusing system with the local chromatic compen-
sation.

The nonlinear chromatic effects can be characterized by
the high order derivatives of the lattice functions. These



derivatives can be computed [10] using the technique of the
differential algabra [11]. For the FFS, we start with the ini-
tial condition: βx = 0.1 m and βy = 1 mm and calculate the
lattice functions and their derivatives element-by-element
down to the end.

The first order chromaticity is compensated by two pairs
of sextupoles in the CCY and CCX respectively in the hor-
izontal and vertical planes; the second order ones by slight
changes of betatron phases between the final doublet and the
sextupole pairs; and finally the third order ones by the two
sextupoles at the two secondary imaging points where the
beta functions are at the minimum. The results of the chro-
matic compensation is summarised in Table 5. Clearly, the
nonlinear chromatic effects in the FFS have been reduced to
similar values as in the arcs shown in Table 3. In addition,
we plot the W functions and the second order dispersion in
Fig. 6. It is worth noting that there is a small amount of
second order dispersion leaking out of the FFS.

Table 5: The chromatic tune shifts from the FFS after the
correction.

Derivatives of tunes Values
∂νx ,y/∂δ −0.43, −0.34
∂2νx ,y/∂δ

2 +127, +49
∂3νx ,y/∂δ

3 −954, −852

COLLIDER
Replacing two interaction regions with two simple

straights in the arc lattice, we build a collider lattice shown
in Fig. 7. The main parameters are summarized in Table 6.
Since the lattice has a two-fold symmetry, the half of the
betatron tunes are slightly above the half integer, which en-
hances the dynamic focusing from the beam-beam interac-
tion. As a result, the beam-beam parameter becomes larger
as demonstrated in the B-factories [3, 4].

Table 6: Main parameters of the Circular Higgs Factory.

Parameter Value
Energy, E0 [GeV] 125.0
Circumference, C [km] 52.7
Tune, νx , νy , νz 225.04, 227.14, 0.165
Natural emittance, ϵ x [nm] 4.5
Bunch length, σz [mm] 1.85
Energy spread, σδ 1.44 × 10−3

Momentum compaction 1.25 × 10−5

Damping time, τx , τy , τz [ms] 11.4, 11.4, 5.7
Energy loss per turn, U0 [GeV] 3.85
RF voltage, VRF [GV] 8.45
RF frequency, fRF [MHz] 650.0
Harmonic number 114144
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Figure 7: Lattice functions in the CHF that includes two
interaction regions.

Since the strongest quadrupoles and sextupoles are po-
sitioned at the highest beta functions in the FFS, naturally
the IR contains many high-order aberrations. We compute
the third-order and fourth-order driving terms in the collider.
The cancellation of the resonances at third-order remains in-
tact. But the fourth-order resonance driving terms become
much larger as shown in Fig. 8. Clearly, the aberrations in
the IR are dominant in the entire ring.
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Figure 8: Fourth-order resonances driving terms in the col-
lider with two interaction regions.

To quantify their nonlinear effects in the collider, we com-
pute the tune shifts, the high-order chromaticities, and geo-
metric and chromatic tune shifts using the normal form anal-
ysis and tabulate the results in Table 7. The table shows that
the geometric-chromatic tune shifts are at the same level
at δ = 0.01 than the geometric tune shifts. This result is
achieved by adding a few octopoles and decapoles at the
beta peaks in the interaction regions.

Finally, we evaluate the dynamic aperture of the col-
lider by tracking the particles with various momentums.
The tracking is carried out with synchrotron oscillation and



Table 7: The nonlinear chromaticities and tune shifts due to
betatron amplitudes in the collider that contains two inter-
action regions.

Derivatives of tunes Values
∂νx ,y/∂δ 0, 0
∂2νx ,y/∂δ

2 −167, +790
∂3νx ,y/∂δ

3 +27978, −19146
∂νx/∂Jx [m−1] −8.18 × 104

∂νx ,y/∂Jy ,x [m−1] −4.03 × 105

∂νy/∂Jy [m−1] +6.09 × 104

∂2νx/∂δ∂Jx [m−1] −2.23 × 106

∂2νx ,y/∂δ∂Jy ,x [m−1] −8.95 × 107

∂2νy/∂δ∂Jy [m−1] −1.49 × 107

the radiation damping. The orbit and optics errors due to
the saw-tooth energy profile are corrected by tapering the
settings for all magnetic elements. As shown in Fig. 9,
though the degradation of the off-momentum aperture is
large, there is sufficient momentum acceptance to retain the
particles in the long tail distribution of energy due to beam-
strahlung. Most importantly, there is large enough dynamic
aperture in the vertical plane to accommodate the large tail
generated by the beam-beam interaction.
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Figure 9: Dynamic aperture of the collider with various mo-
mentum deviations.

CONCLUSION
We have analyzed the impact on lattice design due to

beamstrahlung in a Circular Higgs Factory. In particular,
we found that a minimum emittance is necessary to retain
an adequate beam lifetime. As a result, we developed a sys-
tematic procedure that can be applied to the lattice design.

Furthermore, we have developed a method to effectively
compensate nonlinear chromaticity in the final focusing sys-

tem. In particular, we have demonstrated that the chromatic
aberration can be reduced down to the required level in the
arcs.

We have achieved 2% momentum acceptance in a lattice
with an ultra-low beta interaction region. Six families of
sextupoles are used in the chromatic correction. Octupoles
and decapoles in the final focusing system are helpful to
correct high order chromatic-geometric aberrations.

As shown in our paper, a Circular Higgs Factory requires
not only a final focusing system with an ultra-low beta at
the interaction point but also a very low-emittance lattice
at very high energy. Such optics in a collider with a consis-
tent set of accelerator parameters and especially with a large
momentum aperture has been demonstrated in design.
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