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We measure the highly-resolved inelastic x-ray scattering spectrum of isochorically ultrafast heated
aluminum. In the x-ray forward scattering spectra the electron temperature could be measured from
the down- and upshifted plasmon, where the electron density of ne = 1.8 × 1023 cm−3 is known a
priori. We have studied the plasmon damping by applying electron-particle collision models beyond
the Born approximation determining the electrical conductivity of warm dense aluminum.

PACS numbers: 52.25.Os, 52.35.Fp, 52.50.Jm, 78.70.Ck

I. INTRODUCTION

Warm dense matter (WDM) [1, 2] is characterized by
densities of solid density up to compressed matter and
temperatures of 1 eV to several 10 eV. Occurring in plan-
ets and stars, WDM is relevant for astrophysics to model
the interior structure of such objects [3–5]. As transient
state to hot dense matter during the laser compression of
thermonuclear fuel capsules, WDM is also important for
the understanding of inertial confinement fusion (ICF)
experiments [6, 7].

In particular, the knowledge of electrical conductivities
in the WDM region is of paramount interest to model,
e.g., the magnetic field generation in the interior of plan-
ets and stars [8, 9]. These fields are induced by WDM
fluid streams composed of metals in case of rocky plan-
ets [10, 11] and metallic hydrogen in case of Jovian plan-
ets [12, 13]. Their magnetic fields are strongly depen-
dent on the electrical conductivity of these streams [14].
Such conductivities are also relevant to model ICF exper-
iments. Here, Rayleigh-Taylor instability growth prevent
an efficient fusion process, which is dependent on the elec-
trical conductivity in the WDM region [15]. Therefore,
the knowledge of such conductivities is required to model
the assembly of thermonuclear fuel capsules for the ICF.

Previous measurements of the electrical conductiv-
ity in warm dense matter [16–22] exist, but show or-
der of magnitude discrepancies to theoretical predictions
[16, 23, 24]. Due to the lack of accurate plasma char-
acterization techniques the validation of such predictions
is challenging. Therefore, widely used theoretical models
[25–27] and simulations [28–30] as well as predictions of
non-Drude like behaviors in metals in the WDM region
[31, 32] await experimental testing.

With the advent of the Linac Coherent Light Source
(LCLS) [33, 34] a brilliant x-ray source becomes avail-

able, that allows the investigation of microscopic matter
properties. For instance, the LCLS enables with its band-
width of 10−4 and an unprecedented small signal-to-noise
ratio the study of electrical conductivities via inelastic x-
ray Thomson scattering [35]. X-ray Thomson scattering
as a versatile tool to diagnose WDM [36] was developed
during the last decades [35, 37–42] to allow an accurate
determination of electron density and temperature [36].
Together with this accurate WDM characterization [37],
the validation of existing models and simulations of the
electrical conductivity became recently available.

In this work we discuss the experimental findings of the
electrical conductivity and their comparison with existing
theoretical models [35]. First, we present the experimen-
tal setup in Sec. II. After, we discuss the LCLS heat-
ing process and show simulations that predict electron
density and temperature in the experiment. In Sec. IV,
we present our measured scattering signals and compare
with our calculations. Furthermore, the determination of
the experimental electron temperature and the extraction
of the dynamical collision frequency from the measured
scattering signal is described. In Sec. V we extract the
ac and dc conductivity from the data, that allow us to
validate different models of the dc conductivity in the
liquid and plasma phase of aluminum.

II. EXPERIMENTAL SETUP

In order to allow an isochorical and homogeneous heat-
ing of the aluminum target, the LCLS [33] has been op-
erated at E = 7980 eV photon energy. The x-ray beam
delivers ≈ 7 × 1010 photons within 25 fs pulse length
(FWHM) (see Fig. 2) on target. The focal spot size of 1
and 10 µm, realized by a compound beryllium refractive
lens [43], and the pulse energy of 0.1 mJ provide intensi-
ties of ≈ 1017 W/cm2 and ≈ 1015 W/cm2, respectively,
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FIG. 1. Schematic of the experimental setup and raw data
(figure from [35]). The 50 µm thick aluminum foil is isochor-
ically heated by 7980 eV LCLS photons. For each shot, the
photon scattering is observed via two detectors to monitor
the source function.

which allow temperature dependent measurements.
As target we use solid aluminum foils with a mass den-

sity of 2.7 g/cm3. To isochorically heat aluminum by
photoabsorption, the foil thickness of 50 µm matches the
attenuation length. For each shot, an unperturbed alu-
minum target is provided by a X-Y stage. The target is
heated and probed simultaneously by the LCLS [44].

The experiment measures the spectral and angular re-
solved x-ray scattering. We apply the LCLS in seeded
beam mode to avoid a distortion of the plasmon spectra
with spectral noise from x-ray amplification. The scat-
tered photons (as illustrated in Fig. 1) were measured in
forward direction at θ = 18◦ (k = 1.26 Å−1) and θ = 24◦

(k = 1.68 Å−1) by a Highly Annealed Pyrolytic Graphite
(HAPG) crystal in a von Hámos configuration [45]. In
addition, scattered photons are collected at an angle of
θ = 60◦ (k = 4.04 Å−1) by a GaAs crystal [46]. The com-
parison of both spectrometer signals allows an accurate
monitoring of the source function for each shot (shown
later). An extremely small angle uncertainty of δθ = 0.3◦

(δk = 0.02 Å−1) is ensured by a small source size and
focusing of the seeded LCLS [47]. In addition, the LCLS
provide excellent statistics by repetition rates of 120 Hz
and small signal-to-noise ratio and spectral resolution by
a bandwidth of ∆E/E ≈ 0.25%.

III. X-RAY HEATING OF THE TARGET

We simultaneously heat and probe the aluminum tar-
get with the LCLS beam. Its 7 × 1010 photons with an
energy of 7980 eV heat the target isochorically and homo-
geneously via photoabsorption [35, 38, 48]. LCLS pho-
tons transfer its energy by photoionisation to the target,
where electrons from the valence and conduction band of
aluminum are excited to higher electronic energy states.
Subsequent relaxation effects as Auger decay and colli-
sions form a local thermal equilibrium.

FIG. 2. Idealized Gauss-shaped LCLS pulse and temporal
evolution of the electron temperature (upper panel) and mean
ionization degree (lower panel) for different LCLS focal spot
sizes. The calculations are performed by the code SCFLY
[49].

A. Photoionization

The electron temperature and mean ionization degree
of the laser-heated aluminum target are predicted by the
code SCFLY [49]. The electron density is determined by
solving a set of rate equations using collisional-radiative
rates. The collisional rates describe excitation, ionization
and electron capture whereas the radiative rates charac-
terize spontaneous emission and radiative recombination.
In addition, autoionization rates are included. Within
the code, ionization potential depression is taken into ac-
count by the model of Stewart and Pyatt [50]. The elec-
tron temperature is calculated via the absorbed LCLS en-
ergy for each time step, where a instantaneous relaxation,
e.g., via Auger decay and collisions, is assumed, so that a
local thermal equilibrium of the electronic subsystem is
formed instantaneously [51]. Therefore, a possible non-
equilibrium of the electronic subsystem in the aluminum
target can not be described by SCFLY. In addition, the
ion temperature can not be inferred by the SCFLY simu-
lations, which influences the ionic structure correlations
and thus the electrical conductivity. For predictions of
non-equilibrium electron distributions other calculations
have to be applied [52]. Instead, we will determine a
characteristic temperature from the measured scattering
spectra.

Fig. 2 shows the assumed Gauss-shaped LCLS pulse
and the temporal evolution of the electron temperature
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and mean ionization degree for different LCLS focal spot
sizes. For our experimental conditions, SCFLY predicts
final electron temperatures of 6 eV (0.06 eV) for focal
spot sizes of 1 µm (10 µm), whereas no significant pho-
toionization is observed indicated by an almost constant
ionization degree during the heating process.

IV. X-RAY THOMSON SCATTERING

A. Experimental scattering spectra

The x-ray scattering spectra are measured at angles
of θ = 18◦, 24◦, and 60◦ and focal spot sizes of 1 and
10 µm. Each spectrum, shown in Fig. 3, is a collection of
2000 shots. The source function was determined by the
spectrum collected at an angle of θ = 60◦ for each shot.
In comparison to the forward scattering spectrum, which
shows collective scattering on plasmons [36], the spec-
trum collected at θ = 60◦ shows the non-collective Comp-
ton scattering. This scattering is well investigated [36]
and can be subtracted from the spectrum. The remain-
ing spectrum defines the source function. The deconvo-
lution of the scattering spectra with this source function
leads to the deconvolved data.

Fig. 3 shows the experimental and deconvolved scat-
tering spectra together with the corresponding source
function. Both experimental spectra show a dominant
elastic peak at the incident photon energy characterizing
the scattering on bound electrons and an inelastic feature
downshifted by ≈ 20 eV (≈ 22.5 eV) for scattering angles
of 18◦ (24◦). In the deconvolved spectra the elastic peak
narrows, but a reproduction of the width of this peak is
not possible due to the use of a numerical deconvolution
method. After deconvolution, the inelastic downshifted
feature narrows and the peak position shifts.

Considering the blue wing of the spectra measured
with 1 µm focal spot sizes, a disagreement of the source
function and the spectrum indicates an upshifted plas-
mon. The downshifted (upshifted) inelastic feature de-
fines plasmon excitations (deexcitations) of the delocal-
ized electrons of the aluminum conduction band. The
plasmon width defines their lifetime that is affected by
electron-particle collisions.

B. Thomson scattering

In order to describe the measured scattering spectra
shown in Fig. 3, the theoretical background to calculate
such spectra is presented below. The scattered power on
N electrons per solid angle dΩ and frequency interval dω
is defined by [36]

PS(R, ω)dΩdω =
3P0σTdΩ

16π2A
NS(k, ω)dω|k̂S×(k̂S×Ê0)|2,

(1)

FIG. 3. Measured and deconvolved x-ray scattering spectra
and source function as a function of the photon energy for
focal spot sizes of 1 and 10 µm (offset by 1 for clarity) and
scattering angles of (a) 18◦ and (b) 24◦. The LCLS operates
at photon energies of 7980 eV.

and depends on the incident light power P0 irradiat-
ing the plasma area A and the Thomson cross section
σT = 8πr2

0/3 = 0.665 × 10−24 cm2, with the classical
electron radius r0 = 2.8× 10−15. The dipole character of
the Thomson scattering is taken into account by the in-
coming light polarization direction Ê0 and the unit wave

vector k̂S of the scattered light. For linearly polarized
light we find |k̂S × (k̂S × Ê0)|2 = (1− sin2 θ cos2 ϕ) [53],
with the azimuthal ϕ and polar angle θ. In the experi-
ment, the azimuthal angle is chosen so (ϕ = 90◦) that the
polarization term is unity. In addition, the scattering in
a many particle system depends on electron density fluc-
tuations characterized by the dynamic structure factor
S(k, ω). The energy and momentum transfer are given
by ∆E = ~ω = ~(ωf − ωi) and ~k = ~(kf − ki) with
the initial and final state of the wavenumber ki, kf and
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frequency ωi, ωf . The dynamic structure factor can be expressed by Chi-
haras approach [54, 55]

See(k, ω) = ZfreeS
0
ee(k, ω)︸ ︷︷ ︸

free−electron feature

+ |fi(k) + q(k)|2Sii(k, ω)︸ ︷︷ ︸
ion feature

+Zc

∞∫
−∞

dω′Sc(k, ω)Ss(k, ω − ω′)

︸ ︷︷ ︸
bound−free transitions

(2)

and is composed of contributions due to the individual
electronic states: the free (free-electron feature, S0

ee) and
bound state. After photon scattering, the final state of
a bound electron can be a bound (ion-feature, Sii) or
free (bound-free transitions, Sc) state. The structure
factor of free electrons S0

ee, ions Sii, and bound-free tran-
sitions Sc are weighted by the mean ionization degree
Zfree, the form factor fi accounting for core electrons
and the screening function q accounting for weakly bound
electrons, and the mean number of bound electrons per
atom/ion Zc, respectively. The bound-free transitions
has to be convolved with the structure factor Ss repre-
senting the motion of the ion.

In this work the photon scattering on free electrons is

studied. Their structure factor can be derived from the
fluctuation-dissipation theorem

S0
ee(k, ω) = − ε0~k2

πe2ne

Im ε−1
l (k, ω)

1− exp
(
−~ω
kBTe

) . (3)

The longitudinal dielectric function for non-interacting
plasmas εl can be expressed via the Random-Phase-
Approximation (RPA) εRPA

l . Considering interacting
plasmas, electron-ion collisions can be included via the
longitudinal dielectric function in Mermin approximation
(MA) [56, 57]

εM
l (k, ω, ν(ω)) = 1 +

(1 + iν(ω)/ω)(εRPA
l (k, ω + iν(ω))− 1)

1 + (iν(ω)/ω)(εRPA
l (k, ω + iν(ω))− 1)/(εRPA

l (k, 0)− 1)
, (4)

where collisions are taken into account via the dynami-
cal relaxation frequency ν(ω), which is complex in gen-
eral [27, 35]. The real part of the relaxation frequency
determines the damping by relaxation processes, e.g, col-
lisions, whereas the imaginary part determines a phase
shift between relaxation process and the electrical field.
In what follows, we will approximate the relaxation fre-
quency by an electron-particle collision frequency and ne-
glect other relaxing processes.

C. Dynamical collision frequency for Coulomb
plasmas

In this section, we will consider dynamical collisions for
Coulomb plasmas, where we assume a screened Coulomb
potential and neglect ionic structure correlations. The
static electron-particle collision frequency is well known
for ideal plasmas by the Spitzer expression [26]. In the
low density limit, complex dynamical collision frequen-
cies in degenerated and strongly coupled plasmas can
be consistently calculated within the generalized linear-
response theory [58]. These dynamical collisions can be
expressed by a Feynman diagram and is shown in Fig. 4

(a). However this expression can not be calculated ex-
actly and has to be approximated. For instance, collisions
in weakly coupled plasmas can be described within the
Born approximation, cf. Fig. 4 (b), taking into account
weak collisions

νBorn(ω) = −i
ε0niΩ

2
0

6π2e2neme
(5)

×
∞∫

0

dk k6V 2
ei(k)Sii(k)

εRPA
l (k, ω)− εRPA

l (k, 0)

ω
.

Vei is the electron-ion potential, Ω0 is the normalization
volume, and Sii is the static ionic structure factor.

Within strongly coupled plasmas higher-density effects
have to be taken into account, that can be realized via
the Gould-DeWitt approach [27]

νGDW(ω) = νTM(ω) + νLB(ω)− νBorn(ω), (6)

which includes contributions of strong collisions νTM [27,
59], dynamical screening νLB [27]
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(a)
d d′

c c′

{δP ′,p′−q′/2 − δP ′,p′+q′/2}

GVV(ωµ)

l + q/2 l′ + q′/2

l − q/2 l′ − q′/2

P − k/2− q/2 P ′ − k/2− q/2

P + k/2 + q/2 P ′ + k/2 + q/2

Vc′,d′(q
′)Vcd(q)

{δP,p−q/2 − δP,p+q/2}

full problem

(b)

Born approximation

(c)

dynamical screening

(d)

T

T

strong collisions

FIG. 4. Feynman-diagrams of electron-particle collisions for
a) the ideal solution, b) one realization of weak collisions, c)
dynamical screening, and d) strong collisions.

νLB(ω) = i
ε0niΩ

2
0

6π2e2neme
(7)

×
∞∫

0

dk k6V 2
ei(k)Sii(k)

1

ω

[
1

εRPA
l (k, ω)

− 1

εRPA
l (k, 0)

]

and weak collisions νBorn, cf. Eq. (5). In the picture
of Feynman diagrams, the dynamical screening is cal-
culated by the summation over the ring diagrams, cf.
Fig. 4 (c), and strong collisions by performing the par-
tial summation over the ladder diagrams, cf. Fig. 4 (d).
To avoid double counting the Born collision frequency is
subtracted in Eq. (6) since it is contained in the strong
collision and dynamical screening contribution. All used
collisional effects used in Eq. (6) are calculated in the
low-density and long wavelength limit, k → 0, where
the self-energy correction and three vertex terms are ne-
glected.

Following the predictions of the SCFLY simulations
in Fig. 2, our calculations are performed for isochorically
heated aluminum with ion densities of ni = 6×1022 cm−3

and ionization degrees of Zfree = 3 leading to electron
densities of ne = 1.8× 1023 cm−3. For the electron tem-
perature we use 6 eV (0.2 eV) for the focal spot sizes
1 µm (10 µm), which is determined by comparing mea-
sured and calculated scattering spectra. The electron
temperature is discussed in subsection IV E.

Fig. 5 shows the real and imaginary part of the calcu-
lated dynamical collision frequency for a electron tem-
perature of 6 eV. Due to the degeneracy parameter
θp ≈ 0.52 < 1 and the coupling parameter Γ ≈ 2.2 > 1, a
degenerated and strongly coupled plasma is considered.
For the calculation of the collision frequency we use the
Debye potential

FIG. 5. Real and imaginary part of the calculated collision
frequency for electron densities of ne = 1.8 × 1023 cm−3 and
electron temperatures of Te = 6 eV. The calculations use
the Debye potential and neglect ionic structure correlations
Sii = 1.

V D
ei (k) = − eiee

ε0Ω0

1

k2 + κ2
D

(8)

with the inverse Debye length

κ2
D =

e2m3/2

√
2π2ε0~3

∞∫
0

dEpE
−1/2
p fp, (9)

the Fermi distribution fp and the particle energy Ep. In
addition, we neglect ionic structure correlations Sii(k) =
1.

For the real part of the calculated collision frequency in
Fig. 5, we observe for ω → 0 an almost constant collision
frequency that decreases in the high frequency limit to
zero. The GDW collision frequency (see Eq. (6)) shows a
dominant peak, that is caused by the dynamical screen-
ing contribution (see Eq. (7)) and accounts for collective
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effects. This can not be observed in the Born collision
frequency. For the imaginary part of the GDW collision
frequency, we observe negative values. This is not be
observed in the Born approximation (see Eq. (5)) and
stems from the contribution of the dynamical screening
(see Eq. (7)).

D. Calculated scattering spectra

The dynamical collision frequencies calculated in the
previous subsection, are used to derive the scattering
spectrum via the Mermin approximation (MA) of Eq. (4)
below. Such collision frequencies were already applied in
other works [36, 39, 44, 60] and will be applied here on
strongly coupled plasmas.

Fig. 6 shows the measured, calculated and deconvolved
x-ray scattering spectra and the source function for a
scattering angle of θ = 24◦ and focal spot sizes of 1 µm.
The calculations apply the dielectric function in RPA and
MA of Eq. (4) considering electron-ion collisions within
the Born (see Eq. (5)) and GDW approximation (see
Eq. (6)) at electron temperatures of Te = 6 eV, cf. Fig. 5.
The ion-feature is fitted to the experimental data. The
bound-free transitions are not relevant for the considered
photon energy shifts below ≈ 50 eV and are neglected in
our calculations. To compare with the measured spectra,
the calculated spectra are convolved with the measured
source function. The spectrum using MA (best fit) apply
collision frequencies extracted from the data and will be
discussed in a later subsection.

The convolution of our calculations with the source
function show the dominant elastic scattering on bound
electrons and the downshifted inelastic scattering on free
electrons as observed in the data. However, our calcu-
lations can not reproduce the shape of the measured in-
elastic scattering spectrum. Comparing our calculations
with the deconvolved scattering spectra, our results using
GDW collision frequencies (see Eq. (6)) can explain the
plasmon resonance frequency and the downshifted plas-
mon slope for energies of 7.96 keV< E < 7.98 keV but
not the plasmon width. In contrast to the GDW approx-
imation, neglecting collisions all together (RPA) or using
Born collision frequencies (see Eq. (5)), neither of these
features can be described.

Our calculated complex dynamical collision frequency
often used for weakly coupled plasmas shows in the ap-
plication on strongly coupled plasma no agreement with
the experiment. In contrast to this and former calcu-
lations, an advanced potential as well as ionic structure
correlations has to be applied. In Sec. V below, we will
account for coupling effects considering a pseudopotential
and ionic structure correlations in the plasma.

FIG. 6. Measured, calculated and deconvolved spectra and
source function as a function of the photon energy for a scat-
tering angle of 24◦. The calculations apply RPA (green)
neglecting collisions and MA using experimentally extracted
(best fit, gold), Born (blue), and GDW (red) collision frequen-
cies. The deconvolved data and calculations are offset by 0.6
for clarity.

E. Determination of the temperature

The extraction of the electrical conductivity from the
measured scattering spectra is strongly dependent on an
accurate diagnostic of the temperature. The electron
temperature can be determined from the comparison of
calculated and measured scattering spectrum or from the
detailed balance relation [36]

S0
ee(k, ω)

S0
ee(−k,−ω)

= exp

(
− ~ω
kBTe

)
. (10)

Fig. 7 compares the measured and calculated blue wing
of the scattering spectra and the source function for focal
spot sizes of 1 and 10 µm. For the calculations at differ-
ent electron temperatures, the Mermin approximation of
Eq. (4) applying GDW collision frequencies, cf. Eq. (6),
is used. The source function defines the scattering sig-
nal from the bound electrons shifted to the blue wing
due to the non-monochromatic LCLS beam. Therefore,
a difference between source function and scattering signal
is caused by additional inelastic scattering that can only
stem from plasmons. Comparing the blue wing of the ex-
perimental spectra and the source functions, we observe
an agreement for the data using 10 µm focal spot sizes
and a disagreements for data using 1 µm focal spot sizes.



7

FIG. 7. Blue wing of the measured and calculated x-ray scat-
tering spectra and instrument functions for a focal spot size
of 1 and 10 µm (offset by 0.1 for clarity) and scattering angle
of 24◦. The calculations apply GDW collison frequencies and
indicate measured electron temperatures of 6 eV (0.2 eV) for
focal spot sizes of 1 µm (10 µm).

This disagreement indicates additional inelastic scatter-
ing signal at the blue wing. From that peak, the electron
temperature can be determined via the comparison to the
calculations shown in Fig. 7 or via comparing with the
downshifted plasmon peak within the detailed balance
relation Eq. (10).

Here, the electron temperatures were determined by
the comparison of the calculated and measured blue wing
of the scattering spectrum, where we have applied a least
square method. We have allowed a maximal deviation
between calculated and measured blue wing of the scat-
tering spectrum of 5%, that leads to an electron temper-
ature of 6(0.2) eV for the focal spot size of 1(10) µm.
For the data measured at focal spot sizes of 10 µm only
a maximal Te could be indicated because of the lack of
an upshifted plasmon, cf. Fig. 7. The lowest electron
temperature which show in the calculations no upshifted
plasmon could be found at Te = 0.6 eV.

In Fig. 8 we studied the dependence of the used col-
lision frequency model on the determination of the elec-
tron temperature. The calculations use the RPA and the
Mermin approximation Eq. (4) applying the Born Eq. (5)
and GDW Eq. (6) collision frequency at electron temper-
atures of Te = 6 eV. Our calculations applying different
models show an agreement with the data. In addition,
the deviation between the different calculations is less
than 5 %. Therefore we find only a negligible collision fre-
quency model dependency of the temperature that leads
to temperature deviations below 1 %.

FIG. 8. Blue wing of the measured and calculated x-ray scat-
tering spectrum and the source function for a focal spot size
of 1 µm and scattering angle of 24◦. The calculations use
RPA and MA applying GDW and Born collision frequencies.
The blue wing shows only a slight dependency on the used
collision frequency.

F. Temporally evolved temperature

Since the scattering spectra is measured during the iso-
chorical heating process of the aluminum target by the
LCLS, the scattering spectra characterize a composition
of matter states defined by different electron tempera-
tures, cf. Fig. 2. In contrast, our calculations are per-
formed for a single representative temperature. In order
to test the influence of the temporally evolving temper-
ature on the scattering spectra, we calculate the scatter-
ing spectra as a composition of SCFLY temperatures, see
Fig. 2. For that, the calculated spectrum at each time
is weighted by the time interval and the FEL intensity.
The composition of the spectra for all times results into
the characteristic scattering spectrum.

Fig. 9 shows the measured and calculated scattering
spectrum and the source function. The MA calculations
applying Born collision frequencies (see Eq. (5)) use a
single temperature and the temporally evolved SCFLY
electron temperature, cf. Fig. 2, respectively. Similar to
the findings in Fig. 6, both calculations cannot reproduce
the plasmon width as well as the plasmon peak position.
In addition, both calculations show an upshifted plasmon
resonance peak due to the disagreement to the source
function on the blue wing. This peak of the character-
istic scattering spectrum defines a characteristic electron
temperature of ≈ 5 eV.
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FIG. 9. Measured and calculated scattering spectrum and
source function for a focal spot size of 1 µm and a scattering
angle of 24◦. In the calculations, a single representative (blue)
as well as a temporal evolved electron temperature (red) is
used.

G. Dynamical collision frequencies extracted from
the data

For conditions, where the Landau damping is small in
comparison to collisions, the free electron contribution
of the scattering spectrum is characterized by electron-
particle collisions influencing plasmon lifetime and width.
In our calculated spectra, the electron-particle collisions
are included via the Mermin formula Eq. (4). However,
our collisional model cannot explain the data as seen in
Fig. 6 by using a Debye potential and neglecting ionic
structure correlations. Therefore, we will extract relax-
ation (collision) frequencies from the data, that is pre-
sented below. The relaxation frequencies has to be ex-
tracted from the deconvolved spectra. This deconvolu-
tion was realized numerically, whose error can not be
estimated.

The imaginary part of the inverse longitudinal dielec-
tric function ε−1

l can be extracted from the electronic
part of the deconvolved measured scattering power, see
Eq. (1), if the fluctuation-dissipation theorem Eq. (3) is
applied

Iexp
s ∼ Im ε−1

l (k, ω)

1− exp
(
−~ω
kBTe

) .
This relation needs an exact knowledge of the electron
temperature determined before from the data. The nor-
malization of the imaginary part of the inverse longitudi-
nal dielectric function can be realized via the f-sum rule

∞∫
−∞

dω ω Im ε−1
l (k, ω, ν(ω)) = −πω2

e,pl.

The plasma frequency ωe,pl = (nee
2/ε0me)

1/2 is known
from the electron density ne. The real part of the inverse
longitudinal dielectric function can be calculated via the
Kramers-Kronig relation

Re ε−1(k, ω, ν(ω)) = 1+2P
∞∫

0

dω′

π

ω′ Im ε−1(k, ω′ + i0, ν(ω′))

ω′2 − ω2

(11)
describing the causality in the system. Due to the con-
tamination of the deconvolved inelastic scattering spectra
of the free electrons with the elastic scattering on bound
electrons, cf. Fig. 3, the signal for photon frequency
shifts below 7 eV has to be neglected. The neglected data
was extrapolated to apply the Kramers-Kronig relation
Eq. (11) and can influence the results for higher frequency
transfers. For that, we have applied the Kramers-Kronig
relation on our extracted collision frequency and compare
with corresponding extracted real and imaginary part of
the frequency, respectively. We find a good agreement
for energy transfers above 15 eV and therefore the error
of our extracted collision frequencies increases below this
energy transfer, see Fig. 10.

With the knowledge of the experimental dielectric
function εexp

l from Eq. (11) we can determine the re-
laxation (collision) frequency νexp by the numerical com-
parison with the Mermin dielectric function Eq. (4)
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FIG. 10. Real and imaginary part of the collision frequency
extracted from the data as a function of the energy per plasma
frequency ~ωpl,e = 15.75 eV (ne = 1.8 × 1023 cm−3) for a
scattering angle of 24◦. The results are extracted from the
data using 1 (upper panel) and 10 µm (lower panel) focal spot
sizes. The Kramers-Kronig relation of the collision frequency
indicated in blue are offset by 0.66(0.22) Ryd for focal spot
sizes of 1(10) µm.

εexp
l (k, ω, νexp(ω)) = εM

l (k, ω, νexp(ω)).

This comparison requires the exact knowledge of electron
density and temperature, which are included in εM

l .
Fig. 10 shows the extracted complex dynamical colli-

sion frequency, cf. Fig. 3. For energies below 0.5 ωpl,e

the results are not shown due to the contamination of
the inelastic scattering spectra of the free electrons by
the elastic scattering on bound electrons. Note, that the
imaginary part of the collision frequency has to be zero
for ω → 0 per definition. In order to compare with the
measured data, the extracted collision frequency is ap-
plied in the MA (see Eq. (4)). The resulting scattering
spectra (MA (best fit)) is shown in Fig. 6 and agrees with
the data.

As observed for the calculations in Fig. 5, the real part
of the extracted collision frequency in Fig. 10 show for
ω → 0 an almost constant collision frequency that de-
creases at an certain energy. This energy is in disagree-
ment with the energy found from the calculated collision
frequencies. In disagreement to the GDW approxima-
tion, no pronounced peak can be observed.

In agreement to the GDW approximation, the imagi-
nary part of the extracted collision frequency shows neg-
ative values. This can not be observed in the Born ap-
proximation (see Eq. (5)). Following the GDW approx-
imations, these negative collision frequencies stem from
dynamical screening. Furthermore, we observe only a
qualitative agreement of the real and imaginary part of

the extracted and calculated collision frequency, whereas
a quantitative description of the measurements can not
be given. On the one hand, this can be caused by ne-
glecting the ionic correlations and the use of the Debye
potential in the calculations. On the other hand, inac-
curacies are generated in the deconvolution of the data,
the contamination of the inelastic scattering spectrum of
the free electrons by the elastic scattering on bound elec-
trons in the extraction, and the subsequent extrapolation
of this data for the application of the Kramers-Kronig re-
lation Eq. (11).

V. ELECTRICAL CONDUCTIVITY

A. Dynamical electrical conductivity

With the extraction of the collision frequency from the
data, we are able to determine the electrical conductivity
in isochorically heated aluminum. In plasmas and met-
als, the electrical conductivity can be derived from the
dynamical electron-particle collisions via the generalized
Drude formula [27]

σ(ω) =
ε0ω

2
pl,e

ν(ω)− iω . (12)

The electrical conductivity characterizes the electrical
current induced by an electrical field J(ω) = σ(ω)E(ω)
and is complex in general. The real part of the conduc-
tivity defines the field induced current strength whereas
the imaginary part determines the phase shift between
electrical field and current.

Fig. 11 shows the extracted and calculated real and
imaginary part of the electrical conductivity for solid
density aluminum at temperatures of Te = 6 eV. The ex-
tracted conductivity apply the data measured at angles
of θ = 24◦ and focal spot sizes of 1 µm, cf. Fig. 10. The
calculations apply collision frequencies in Born Eq. (5)
and GDW Eq. (6) approximation (see Fig. 5) in the gen-
eralized Drude formula Eq. (12). The approximations use
a screened Coulomb potential and neglect ionic structure
correlations Sii(k) = 1. The functional behavior is given
by the generalized Drude formula Eq. (12). In order to
indicate the experimental error, we show selected points
of the extracted electrical conductivity.

Our results show a decreasing real part of the elec-
trical conductivity for increasing freqeuency transfers in
the entire frequency transfer range. The imaginary part
goes to zero in the long-wavelength limit (ω → 0), shows
a maximum and decreases in the high-frequency limit
(ω → ∞). In comparison to the electrical conductiv-
ity defined by Born collision frequencies, the conductiv-
ity defined by GDW collision frequencies shows a drop
of the real and imaginary part close to the plasma fre-
quency caused by collective effects induced by dynamical
screening described by Eq. (7), cf. Fig. 10. In addition,
the maximum of the imaginary part is shifted to smaller
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FIG. 11. Real (lower panel) and imaginary (upper panel) part
of the electrical conductivity as a function of the frequency
transfer per plasma frequency ~ωpl,e = 15.75 eV. The electri-
cal conductivity is calculated via the generalized Drude fro-
mula Eq. (12) using the extracted, Born, and GDW collision
frequencies. The extracted conductivity stems from spectra
measured at scattering angles of 24◦ and focal spot sizes of
1 µm, cf. Fig. 10, and the Born and and GDW collision fre-
quencies are calculated for temperatures Te = 6 eV, cf. Fig. 5.
The selected black points are for estimation of the experimen-
tal error.

frequency transfers due to the negative imaginary part of
the GDW collision frequency. In comparison to these cal-
culations, the imaginary part of the extracted electrical
conductivity agrees within the error bars above 0.5 ωpl,e

with the generalized Drude calculations using the GDW
collision frequencies.

In the long-wavelength limit (ω → 0), the real part
of the extracted electrical conductivity is comparable to
the calculations but for increasing frequency transfers an
unpredicted strong decrease is observed which is induced
by the negative imaginary part and the fast raise of the
real part of the extracted collision frequency, cf. Fig. 10.

B. dc conductivty

As long-wavelength limit (ω → 0), the dc conductiv-
ity can be calculated from the generalized Drude expres-
sion of Eq. (12) via σdc = ε0ω

2
e,pl/ν(0). The static colli-

sion frequency ν(0) can be calculated from the Born and
GDW approximation, cf. Fig. 5. However, the dc con-
ductivity cannot be inferred directly from the extracted
electrical data shown in Fig. 11 due to the contamina-

tion of the scattering signal from the free electrons by
bound electron scattering contributions. Instead, we fol-
low the theoretical predictions, that the real part of the
collision frequency can be assumed as almost constant
for ω < 0.5 ωpl,e, cf. Fig. 5. Therefore, we apply for the
dc conductivity the extracted electrical conductivity for
ω → 0, cf. Fig. 11. For ω = 0, the imaginary part of the
collision frequency has to be zero by definition.

Fig. 12 shows the dc conductivity extracted from the
data of this work, of the experiments of Milchberg et al.
[16], Gathers [61], Desai et al. [62] and of theoretical
models of Spitzer and Härm [26], Faussurier and Blan-
card [63], Lee and More [25], and the Drude approach
using collision frequencies in Born and GDW approxi-
mation. In the Spitzer and Lee and More model, the
approximation of the effective quantum Coulomb loga-
rithm in Ref. [65] was applied. This Coulomb logarithm
was calculated within a Born approximation using the
Debye potential. The model of Faussurier and Blancard
applies a average-atom model [66].

For our collision frequency calculated via the Born
approximation Eq. (5), we use a screened Coulomb po-
tential and neglect ionic structure correlations Sii(k) =
1. The resulting dc conductivity is indicated as (Born
Coulombpot.) in Fig. 12. In order to account also
for ionic structure correlations and degeneracy effects in
strongly coupled plasmas, we apply a pseudopotential ac-
counting for degeneracy effects, e.g., Pauli-blocking, and
an ionic structure factor Sii(k), accounting for ionic struc-
ture correlations. This model is explained in the next
subsection. In Fig. 12 this calculation is indicated as
(Born pseudopot.).

Our calculations and measurements show for temper-
atures below the Fermi energy EF ≈ 12 eV, that the
dc conductivity increases for decreasing temperatures
caused by ionic structure correlations and electron-ion
repulsions not explainable by the model of Spitzer. For
temperatures above the Fermi energy a rising dc conduc-
tivity is observed, that is induced by excited electrons in
the conduction band. Here it is to mention, that our cal-
culations assume for all temperatures a mean ionization
degree of Zf = 3.

Within our experiments, we find at temperatures of
Te = (0.2±0.1) eV a dc conductivity of σdc = (1.3±0.7)×
106 S/m. This finding is slightly below the measured dc
conductivities of Gathers 2.3×106 S/m, but agrees within
the temperature and conductivity error bars. Here it is
to mention, that the experimental electron temperature
could only determined in a range below 0.6 eV due to the
lack of an upshifted plasmon.

At temperatures of Te = (6 ± 0.5) eV our result
(0.36 ± 0.12) × 106 S/m agrees within the error bars
with our model using Born collision frequencies applying
a Coulombpotential 0.37× 106 S/m and a pseudopoten-
tial 0.46 × 106 S/m. Here, our measurement is smaller
than our calculations using GDW collision frequencies
[27], 0.59 × 106 S/m, and larger than the models of Lee
and More [25], 0.24× 106 S/m.
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FIG. 12. dc conductivity as a function of temperature for
solid density aluminum ρ = 2.7 g/cm3 and a mean ionization
degree of Zf = 3 (figure from [35]). Extracted results, exper-
imental results of Desai et al., Gathers, and Milchberg et al.
and theoretical models of Lee and More, Spitzer, Faussurier
et al., and the generalized Drude model using GDW and Born
collision frequencies. The Born collision frequency applies a
screened Coulomb potential and no ionic structure correla-
tions (Coulombpot., blue line) and ionic structure correlations
and a pseudopotential including temperature-dependent Pauli
blocking (pseudopot., violett line).

In contrast to former conductivity measurements of
Milchberg et al. [16] at Te = 6 eV, 1.053× 106 S/m, our
results show smaller dc conductivities. They have mea-
sured the conductivity via optical laser reflectivity that
results into ac conductivities. Following works [22, 67]
have suggested corrections by downshifted temperatures
after comparing with theoretical estimations. These sug-
gestions are motivated by the inaccurate temperature de-
termination within the experiment of Milchberg et al.
[16], where the temperature was determined separately
by radiation-hydrodynamic simulations. In contrast, we
could determine the electrical conductivity and temper-
ature from the experiment.

C. Calculation of the dc conductivity considering
warm dense matter effects

The collision frequency in Born approximation apply-
ing a screened Coulomb potential and neglecting ionic
structure correlations Sii(k) = 1 [39, 44] often used in
plasma physics could not reproduce the extracted dc con-
ductivity (see Fig. 12) in the strongly coupled liquid alu-
minum phase close to the melting point. Instead, we in-
clude for the considered conditions more realistic ionic
structure correlations and electron-ion potentials. As

shown in Fig. 12, such an approach can reproduce our
measurements, see Ref. [68, 69]. In this subsection we
will present this approach, which has to be valid for the
temperature interval 0.08 eV< T < 100 eV. Therefore,
we require within this interval a temperature dependence
of the ionic structure factor Sii(k) and the electron-ion
potential Vei(k).

The collision frequency in Born approximation Eq. (5)
simplifies in the long-wavelength limit [70, 71], so that
the dc conductivity can be expressed by [72]

σBorn
dc =

ε0ω
2
pl,e

νBorn(0)
(13)

=
12π3e2~3ne

m2Ω2
0

 ∞∫
0

dk k3V 2(k)Sii(k)fk/2

−1

.

This approximation takes into account the ionic structure
correlations via the ionic structure factor Sii(k) and the
electron-ion pseudopotential Vei(k). In what follows, we
will take into account expressions for Sii(k) and Vei(k)
which are suited to model the strongly coupled plasma
regime of aluminum in dependence on the temperature.
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1. Ionic structure correlations

The ionic structure correlations in Eq. (13) has to be
known in a wide temperature interval. On the one hand,
measurements of Sii(k) in liquid aluminum up to T =
0.1 eV exist [73, 74], which are well-described by hard-
sphere models of the Percus-Yevick (PY) expression [68,
75]

Sii(ζ) =
1

1− C(ζ)
, (14)

with

C(ζ) = −24η

∫ 1

0

ds (15)

s2 sin(sζ)

sζ

[
(1 + 2η)2

(1− η)4
− 6η

(1 + η/2)2

(1− η)4
s+

η

2

(1 + 2η)2

(1− η)4
s3

]
,

the parameter ζ = 2krhc, the filling factor η =
8(π/6)nir

3
hc, and the ion density ni. By comparing with

measurements of the ionic structure factor in liquid solid
density aluminum ρ = 2.7 g/cm3 with the melting tem-
perature of Tm = 0.08 eV [73, 74], the hard-core radius
rhc = 2.39 aB and the filling factor η ≈ 0.45 could be
determined. In addition, the change of η with T near
the melting point has been extracted from the measured
structure factor.

On the other hand, in the high-temperature limit of
aluminum plasmas the ionic structure factor is given by
the Debye expression

Sii(k) =
k2 + κ2

e

k2 + κ2
e + κ2

i

(16)

with the inverse screening lengths κe, κi, cf. Eq. (9). For
the WDM we have to interpolate between the liquid and
plasma case. In order to describe the ion structure factor
for temperature between these limits, we use Classical-
Map HyperNetted-Chain (CHNC) calculations [76]. In
the high temperature limit, the CHNC calculations coin-
cide with the Debye approximation, whereas results for
temperatures T < 1 eV, in particular liquid aluminum,
are not reliable, see Appendix. A 1.

Fig. 13 shows the measured [73] and calculated ion
structure factor Sii(k) for aluminum at solid density and
different temperatures. The calculations apply the PY
expression, CHNC calculations and the Debye model. In
the liquid aluminum phase, for temperatures close to the
melting point Tm ≈ 0.08 eV, we find a good agreement
between measurement and the PY expression Eq. (14).
Of particular interest for the determination of the con-
ductivity is the first peak of Sii(k), and we consider the
position of the maximum of this peak as characteristic.
For higher temperatures the PY is not valid and shows
no agreement with CHNC and, as limiting case, with
the Debye results. For T = 8.6 eV we find an almost

FIG. 13. Measured [73] and calculated dynamic ion structure
factor Sii(k) of solid density aluminum ρ = 2.7 g/cm3 as a
function of the wave number for different temperatures. The
calculations use the PY expression (see Eq. (14)), CHNC [76],
and the Debye approximation (see Eq. (16)).

uncorrelated system. Here, Sii can be approximated by
the Debye expression Eq. (16). For temperatures below
T < 1 eV the CHNC calculations yield a correct position
of the first correlation peak in the ionic structure factor,
but overestimates the first peak maximums Smax

ii in com-
parison with the experimental data around the melting
point [73, 77]. Therefore, we combine PY and CHNC in
a simple way by determining the PY parameters rhc, η at
T = 6 eV by the first peak position and maximum calcu-
lated by CHNC. Despite discrepancies of CHNC and PY
at T = 6 eV at low wave number k, the resulting conduc-
tivity changes are below 1% because of the suppression
of the low-k contributions in Eq. (13). From this tem-
perature down to the melting point an interpolation of
the PY parameters as function of T has been performed.
This combination of CHNC and PY calculations is shown
in Appendix A 1.

2. Pseudopotential

The theory of dc conductivity in liquid metals has been
worked out on the basis of the Ziman formula (13),
and excellent results have been obtained using appropri-
ate expressions for the electron-ion pseudopotential, see
Ref. [78]. In particular, the dc conductivity of aluminum
near the melting point was well reproduced [68, 69]. Our
approach to WDM should implement the properties near
the melting point as a benchmark.

In order to model the electron-ion potential Vei in a
strongly coupled and degenerated system, we apply in the
Born approximation Eq. (13) the potential of Schneider
and Stoll [69]
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Vei(k) =
V ps
ei (k)

1 +W (k)
(17)

V ps
ei (k) = (niΩ0)−1

[
−Znie

2

ε0k2
+ γ1H1(kr1) + γ2H2(kr2)

]
,

W (k) =
κ2

TF

k2

(
1− 1

2

k2

k2 + 2.39k2
F

)
f(k/(2kF)),

f(t) =
1

2
+

1− t2
4t

ln

∣∣∣∣1 + t

1− t

∣∣∣∣ .
Here, kF = 3

√
3π2ne is the Fermi wave number, κ2

TF =

e2m(3Zni/π)1/3/(πε0~2) is the Thomas-Fermi screening
parameter, and Ω0 is the normalization volume. For
the pseudopotential V ps

ei a composition of the long-range
Coulomb potential and Pauli repulsion, represented by
the overlap of hydrogenic core wave functions (s and p-
like orbitals) and a plane wave function

H1 =
1

(1 + (kr1)2)
2 , H2 =

kr2

(1 + (kr2)2)
3 ,

was applied. The parameters γn and rn at the melting
point of aluminum are obtained from comparisons with
measured phonon dispersion relations [69] (r1 = 0.32 aB,
r2 = 0.30 aB, γ1 = 0.338 Ryd and γ2 = 0.163 Ryd).Using
this pseudopotential together with appropriate expres-
sions for the structure factor Schneider and Stoll [69]
could reproduce the electrical conductivity measured in
liquid solid density aluminum ρ = 2.7 g/cm3 close to
the melting point. A similar method was also used by
Ashcroft and Lekner [68].

Within the WDM approach, we have to go from the
temperatures near the melting point to high tempera-
tures where a plasma description is applicable. This
refers also to the electron-ion pseudopotential which has
to be considered as a temperature-dependent quantity.
Considering the expression (17), the screening expres-
sion by the contribution W (k) has to be replaced by
a temperature dependent term known from the RPA
expression for the dielectric function, which interpo-
lates between the Thomas-Fermi and the Debye limit,
so we replace κ2

TF with κ2
D, see Eq. (9). In addition,

the Pauli repulsion term in Eq. (17) have to be con-
sidered as function of T . Originated by the antisym-
metrization of the wave function, this exchange inter-
action is non-local and can only approximately repre-
sented by a local, energy-dependent potential. In ex-
tension to Ref. [69], we consider the parameters γ1, γ2

as functionof T to use the pseudopotential within a
wide temperature range. In particular, we use tempera-
ture dependent parameters γ1 = 0.336 e−2T/13.6 eV Ryd
and γ2 = 0.162 e−2T/13.6 eV Ryd, as motivated in Ap-
pendix B. The temperature effects are caused by screen-
ing which interpolates between Thomas-Fermi screening
in the degenerated case and Debye screening in the non-
degenerated case. In addition, we have included the Pauli

blocking in the s and p orbitals characterized by the pa-
rameter γ1H

2
1 and γ2H

2
2 , respectively.

If we compare in Fig. 12 the Born approximation using
a pseudopotential and ionic structure correlations with
the approximation using the Debye potential and neglect-
ing ionic structure correlations, we find a large discrep-
ancy for temperatures below 6 eV. Applying such pseu-
dopotentials and ionic structure correlations, we observe
an agreement of our measured and calculated dc conduc-
tivity for temperatures of T = 6 eV as well as close to
the melting point.

3. Dynamical electrical conductivity

After the influence of the ionic structure factor and
the electron-ion pseudopotential on the dc conductivity
has been discussed, it is evident that also the dynamic
(ac) conductivity is changed in an essential way if these
quantities are taken into account. According to Eq. (13),
also the dynamical collision frequency is modified if the
ionic structure factor and the electron-ion pseudo poten-
tial is taken into account, as already seen in the Born
approximation, Eq. (5). Whereas in Sec. IV C the corre-
lations between the ions has been neglected, Sii(k) = 1,
and the screened Coulomb potential has been considered
instead of the pseudopotential V ps

ei (k), we discuss now
the change of the dynamical collision frequency if these
effects are taken into account.

We stay in the Born approximation, higher order terms
such as T matrix and dynamical screening have also an
essential influence on the dynamical collision frequency
ν(ω) as discussed in Sec. IV C for the pure Coulomb in-
teraction but will not be considered here.

Let us discuss the real part of the dynamical collision
frequency in Born approximation, long-wavelength limit,
for a general, non-local form of the electron-ion interac-
tion V (p, q, α, α′)

Re νBorn(ω) = −πβ~
mN

e−β~ω − 1

−β~ω
∑

p,k,α,α′

k2

3
(18)

× |V (p, k, α, α′)|2Sii(k)δ(~ω + Ep+k − Ep)fp+q(1− fp)

which is valid for any degeneracy (see Ref. [79]). Here,
α describes the internal state of the core electrons of the
ion which can be excited to α′ by the interaction with
an electron, momentum p changing to p + k. For more
discussions see Appendix B. Neglecting excitations of
the internal state α and considering local interactions,
i.e. depending only on k, but not on the momentum p,
the expression for the dc conductivity given above are
recovered in the limit ω → 0. The imaginary part of
νBorn(ω) follows from the Kramer-Kronig relation.

The account of the ionic structure factor Sii(k) in the
dynamical collision frequency Eq. (5) can immediately
performed, as already discussed for the case of static col-
lision frequency Eq. (13). Using the interpolation be-
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tween the PY expression Eq. (14) and the CHNC results
given in the previous section, only small modifications
are obtained. In contrast, the pseudopotential will have
a strong influence on the dynamical collision frequencies,
in particular the behavior at large k values. For instance,
we can use the Schneider/Stoll expression for the pseu-
dopotential [69] given above. The treatment of finite fre-
quencies in the pseudopotential for the dynamical case is
problematic because of the effective, non-local, dispersive
potential. The Pauli blocking terms determined by the
orbitals of the core electrons are sensitive to the energy,
in contrast to the Coulomb interaction which is local and
non-dispersive. This means that the parameters γ1, γ2

should be considered not only as a function of the tem-
perature T but also of the frequency transfer ω. If a sim-
ilar suppression as with T is also assumed with ω, at very
high frequencies only the screened Coulomb potential re-
mains leading to higher values for the real part of the
Born collision frequency Re νBorn(ω) Eq. (18). This ten-
dency that Re νBorn(ω) is not going down at the plasma
frequency, is also seen in the data observed for focal spot
sizes of 10 µm shown in Fig. 10. At high temperatures,
the Pauli blocking terms are already suppressed so that
the reduction happens earlier.

We will not go here in more details. In order to model
the frequency and temperature dependent ionic structure
correlations and pseudopotentials DFT-MD calculations
can be performed. By this way more reliable results for
the dynamical collision frequency Re νB(ω) are expected.

VI. CONCLUSIONS AND OUTLOOK

We successfully studied highly resolved plasmons by
x-ray Thomson scattering in warm dense aluminum iso-
chorically heated and probed with the seeded LCLS
beam. We obtained down- and up-shifted plasmons that
provide an accurate measurement of the electron tem-
perature. The highly accurate measurements allowed us
to infer the microscopic collisional properties of WDM
and determine the macroscopic properties, i.e. the com-
plex dynamical electrical conductivity. Compared to our
quantum statistical theory, the imaginary part of the dy-
namical conductivity agrees but discrepancies for the real
part persist.

Using standard relations, we also infer the dc conduc-
tivity which could be reproduced in the warm dense mat-
ter as well as near the melting point by applying the
Born approximation. We take into account ionic struc-
ture correlations as well as temperature dependent Pauli-
blocking and could reproduce our experimental findings.

In the present work, some semi-empirical concepts such
as the pseudopotential and the parametrization of the
ionic structure factor have been used which may be im-
proved using more sophisticated approaches, in particu-
lar DFT-MD simulations.

The measurement of dc conductivities is important for
modeling inertial confinement fusion plasma generation

and the assembly of the fuel capsules. However, accu-
rate measurements of the electrical conductivity for these
plasma regimes not exist but are strongly needed. Apply-
ing this newly developed technique to pump-probe exper-
iments using optical lasers as pump and hard x-ray FEL
as probe will also allow to infer the electrical conductiv-
ity of plasma states relevant for modeling the magnetic
field generation of planets and stars. Hence our results
provide strongly needed accurate measurements of elec-
trical conductivities, which will give important impulses
to develop new models for transport properties within
dense plasmas.
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Appendix A: Temperature dependent ionic
structure correlations and Pauli-blocking

1. Interpolated ionic structure factor

As already explained in Sec. V C 1 the ionic structure
factor within a temperature interval of 0.08 eV< T <
6 eV was interpolated between CHNC and PY Eq. 14 cal-
culations. For temperatures below T < 1 eV the CHNC
calculations yield a correct position of the first correlation
peak in the ionic structure factor, but overestimates the
first peak maximums Smax

ii in comparison with the exper-
imental data around the melting point [73]. Therefore,
we combine PY and CHNC in a simple way by determin-
ing the PY parameters rhc, η by the first peak positions
calculated by CHNC at T = 6 eV. The first peak max-
imums are used from the PY result. At temperatures
close to the melting point we know the PY-parameters
by comparison with the experimental data, see Tab. I.
On the other hand for high temperatures we determine
the PY parameters by comparison with the CHNC cal-
culations, see Tab. I. The PY-parameter η determines
the maximum, whereas the parameter rhc determines the
position of the first correlation peak. These parameters
are interpolated between the temperature T = 0.08 eV
and T = 6 eV. Assuming correct peak positions in the
CHNC calculations the PY-parameter rhc is adjusted.
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The temperature dependent filling parameter η is fitted
by η(T ) = 0.192/ 3

√
T [eV], that reproduces within the PY

expression the experimental data at the melting point
[73, 74]. In contrast to the exponential fit suggested by

Waseda et al. [73] ηW(T ) = 0.613 exp (−3.992T [eV])
which is not applicable in the plasma region, our fit
agrees also with the CHNC calculations at T = 6 eV.
For T > 6 eV, the CHNC results are used.

T [eV] measured first
peak position

[73] [a−1
B ]

measured first
peak maximum

Smax
ii

CHNC first peak
position [a−1

B ]
CHNC first peak
maximum Smax

ii

PY η PY
rhc[aB ]

PY first peak
position [a−1

B ]
PY first peak

maximum
Smax
ii (η)

0.08 1.43 2.475 - - 0.45 2.39 1.43 2.513
0.09 1.43 2.271 - - 0.43 2.36 1.43 2.304
0.11 1.43 1.934 - - 0.40 2.32 1.43 1.975
0.17 - - 1.43 3.88 0.35 2.26 1.43 1.709
0.43 - - 1.42 2.41 0.25 2.18 1.43 1.370
0.86 - - 1.42 1.81 0.20 2.12 1.43 1.246
1.72 - - 1.45 1.44 0.16 2.07 1.45 1.172
6.03 - - 1.61 1.10 0.11 1.84 1.61 1.096
8.62 - - 1.74 1.06 0.09 1.69 1.74 1.083

TABLE I. Measured [73] and calculated position and maximum Smax
ii of the first correlation peak in the ionic structure factor

Sii(k), cf Fig. 13. The calculations apply CHNC and the PY approximation. Shown is also the filling parameter η and the hard
sphere radius rrh used in the PY calculations to reproduce the measured and the CHNC results.

Appendix B: Temperature dependent Pauli-blocking

In order to give an argument for the reduction of
Pauli blocking at increasing temperature as mentioned
in Sec. V C 2, we start from the single-particle in-medium
equation

(ĥ− En)|ψn〉+ B̂V̂ |ψn〉 = 0, (B1)

where the single-particle Hamiltonian ĥ contains the
quasiparticle mass, V̂ the (mean-field) Coulomb inter-

action with the core ion, and B̂ = 1 −∑occ
m |ψm〉〈ψm|

contains the Pauli blocking, in particular by the core elec-
trons. At finite temperatures, we describe the occupation
of the phase space by the Fermi distribution function, in
homogeneous matter f(p;µ, T ) = [exp(βEp−βµ) + 1]−1

and B̂ = 1 −∑p f(p;µ, T )|p〉〈p|. B̂ is diagonal in mo-
mentum space for homogeneous matter, it is depending
on the chemical potential µ or, correspondingly, the elec-
tron density n according to the well-known equation of
state n =

∑
p f(p;µ, T ) (spin variable is dropped).

To describe the motion in a potential, it is advanta-
geous to pass to the position representation. Using the
complete set of single-particle eigenstates |ψm〉, we have

V (p;p + k) = 〈p|B̂V̂ |p + k〉

=

∫
d3r1

∫
d3r2

∑
m

ψm(r1)ψ∗m(r2)[1− f(Em;µ, T )]

× −Ze
2

4πε0|r2|
eip·r1−i(p+k)·r2

=

∫
d3q

(2π)3

Ze2

ε0q2

∫
d3r

∫
d3R

[
δ3(r)− fWigner(r,R;µ, T )

]
×eir·(p+q/2−k/2)−iR·(q−k), (B2)

where relative (r = r2 − r1) and c.o.m. coor-
dinates (R = (r1 + r2)/2) have been introduced,
and fWigner(r,R;µ, T ) =

∑
m ψm(R − r/2)ψ∗m(R +

r/2)f(Em;µ, T ) is the Wigner distribution function.
In a homogeneous Fermi gas (no dependence on R),

the integral over R yields δ3(q−k). According Eq. (B1)
the Coulomb interaction is replaced by

V (p;p + k) =
Ze2

ε0Ωk2

[
1−

∫
d3rfWigner

hom (r;µ, T )eip·r
]
.

(B3)

With plane wave eigenstates |ψm〉 corresponding to the
homogeneous Fermi gas, we have at zero temperature
T = 0 the Wigner distribution function

fWigner
hom (r;µ, T = 0) =

∫
d3p

(2π)3
f(p;µ, T = 0)eip·r

=
1

2π2r3
[−pF r cos(pF r) + sin(pF r)] , (B4)
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pF denotes the Fermi momentum. For finite T this re-
sult has to be modified. In the classical limit we obtain
(Rydberg units)

fWigner
hom (r;µ, T ) =

∫
d3p

(2π)3

nΛ3

2
e−p

2/T eip·r =
1

2
ne−Tr

2/4.

(B5)
The Pauli blocking term is suppressed with increasing

temperature according to the exponential term e−Tr
2/4.

To give an estimation, a characteristic value r̂ is of in-
terest. In Eq. (B2) the interference term eir·(p+q/2−k/2)

is washed out for pr ≈ π. For the scattering processes
considered here, the momentum p is near the Fermi mo-
mentum pF , p̂ ≈ 1/aB so that r̂ ≈ πaB . This gives an

estimation e−(π2/4)T/13.6 eV for the suppression factor of
the Pauli repulsion term.

In case of an inhomogeneous Fermi gas, the density
n(R) or the chemical potential µ(R) are depending on
the position R. The local density approximation where
the density or the chemical potential are depending on
the position R in a parametric way, can be applied for
a smooth dependence on R so that gradient terms can
be neglected. A more detailed analysis of Eq. (B2) us-
ing a density distribution n(R) of the core electrons, i.e.

fWigner(r,R;µ, T ) ≈ fWigner
hom (r;µ(R), T ), is not intended

in the present section.

Appendix C: Model calculation of the Pauli
repulsion interaction

To discuss the effects of the Pauli repulsion interaction
as introduced by the pseudopotential, Eq. (17), we con-
sider a simple model where a positive nucleus, charge Z e,
is surrounded by bound electrons. The origin of the pseu-
dopotential is the additional exchange interaction with
these core electrons which leads, as a consequence of the
Pauli blocking, to a repulsion. For simplicity we consider
the core electron in the orbit

ψα(r) = (πa3
eff)−1/2e−r/aeff (C1)

with the effective radius aeff . The matrix element of the
interaction of an electron, momentum p with the ion,
internal state α (we assume the adiabatic limit where the
momentum pi of the ion is not relevant) and momentum
transfer k is given by

V (p,p + k, α, α′) = 〈p, α,pi|re, rc, ri〉

×
(
− Ze2

4πε0|re − ri|
+

e2

4πε0|re − rc|

)
× 〈re, rc, ri|p + k, α′,pi − k|〉 . (C2)

For equal spin orientation of the core electron at rc and
the interacting free electron at re, the wave function

〈re, rc, ri|p, α,pi|〉 must be antisymmetrized,

〈re, rc, ri|p, α,pi|〉 =
1

Ω

1√
Np,α

eipi·ri

×
[
eip·reψα(rc − ri)− eip·rcψα(re − ri)

]
(C3)

with the normalization volume Ω and the normalization
factor Np,α = 2 − (2/Ω)[8

√
πa

3/2
eff /(1 + a2

effp
2)2]2 for the

1s-like state of the core electron.
The evaluation of the matrix element of the interac-

tion gives eight contributions, we focus here only on the
direct term of the e − i interaction Vd(p,p + k, α, α′) =
−Ze2/(ε0Ωk2)δα,α′ what is the well-known Coulomb in-
teraction, and the exchange term

Vex(p,p + k, α, α′) =
Ze2

4πε0Ω

∫
d3reψα(re)

1

re
e−i(p+k)·re

×
∫
d3rce

−ip·rcψ∗α′(rc)

=
8a2

effZe
2

ε0Ω(1 + a2
effp

2)2(1 + a2
eff(p + k)2)

(C4)

if we consider only the 1s-like internal quantum state α,
Eq. (C1), of the core electron.

In contrast to the Coulomb interaction
Vd(p,p + k, α, α′) which is local, i.e. not depend-
ing on p, the exchange term Vex(p,p + k, α, α′),
Eq. (C4), is non-local, depending on p. It can
be approximated by a local interaction after inte-
gration over p so that

∫
d3pVex(p,p + k, α, α′) =

a2
effZe

2π(28 + a2
effk

2)/[ε0Ω(4 + a2
effk

2)4] results. This
expression can be compared with the Pauli repulsion
terms shown in the empirical pseudopotential, Eq. (17).
In addition the these contributions Vd, Vex, further
terms are obtained from the expression (C2) containing
the interaction with the core electron.

For an exploratory calculation, we can insert
V (p,p + k, α, α′) ≈ Vd + Vex in Eq. (18). Identify-
ing aeff with the parameter r1 = 0.17 Å the potential
∝ 1/(k2 +κ2)− 0.3/[(1 + 0.1p2)(1 + 0.1(p + k)2]3/2 (Ry-
dberg units) reproduces well the static limit (ω → 0) of
the collision frequency which is related to the dc conduc-
tivity. Whereas for the Debye potential Vd the real part
of the dynamical collision frequency decreases with ω, see
Fig. 5, the Pauli repulsion term together with the ionic
structure factor gives at low temperatures a more con-
stant value which goes down only at larger values of ω.
For high temperatures, the effect of the Pauli repulsion
term is reduced. Qualitatively, these findings correspond
to the result shown in Fig. 10. The core electrons, in
particular the Pauli blocking effects, have an important
influence on the physical properties. A more detailed
descriptions demands a systematic investigation of the
interaction with the core electrons in complex systems
such as aluminum, what is not intended in the present
work.
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[79] R. Reinholz and G. Röpke, Phys. Rev. E 85, 036401
(2012).




