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Abstract: The formalism for pulse propagation through dispersive
paraxial optical systems first presented by Kostenbauder (IEEE J. Quant.
Elec. 26 1148-1157 (1990)) using 4× 4 ray-pulse matrices is extended to
6 × 6 matrices and includes non-separable spatial-temporal couplings in
both transverse dimensions as well as temporal dispersive effects up to a
quadratic phase. The eikonal in a modified Huygens integral in the Fresnell
approximation is derived and can be used to propagate pulses through
complicated dispersive optical systems within the paraxial approximation.
In addition, a simple formula for the propagation of ultrashort pulses having
a Gaussian profile both spatially and temporally is presented.
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1. Introduction

The simple and elegant method of Kostenbauder for the description of spatial-temporal
couplings has been a powerful tool for modeling the propagation of ultrashort pulses through
dispersive optical systems [1]. The technique is based on the formulation of ray-pulse matrices
that linearly describe the spatial and dispersive properties of an individual optical element or
a cascaded series of elements that compose an optical beamline. The vectors that describe
the rays take into account both the spatial and temporal variations in the propagating sig-
nal independent of the particular beamline components. As such, the matrix that describes
the optical system properties has no dependence on the field and can therefore be used to
independently evaluate the beamline. This powerful fact allows for the identification of spatio-
temporal couplings inherent in a given optical system [2,3]. Additionally, these matrices can be
used to geometrically propagate rays that carry the spatial and temporal information through an
entire beamline in a single step without having to model each individual element independently.
A modified Huygens integral can also be constructed to propagate complex fields with arbitrary
shape, both spatially and temporally and in both amplitude and phase, through the same
beamline within the paraxial approximation in one step. Finally, pulses that have a Gaussian
spatial and temporal shape can be propagated using a simple analytic expression.

The Kostenbauder description of optical elements and systems is limited to one spatial
dimension (x) along with the temporal dimension (t). Pulses and optical systems with
ever increasing complexity, however, will require a complete three-dimensional and non-
separable description that includes both transverse dimensions, (x, y). For example, self-
amplified spontaneous emission free-electron laser (SASE FEL) light has significant spatial and
temporal structure (see, for example, [4–10]). These narrow bandwidth pulses are composed of
phase uncorrelated but coherent spikes of radiation that are randomly distributed along the
longitudinal profile in both the temporal and spectral domains. The transverse mode content
may also vary along the temporal profile of the pulse because the gain medium, which is a
highly relativistic particle beam composed of free electrons, often has significant longitudinal
slice variation of the properties that determine the growth rate of the dominant optical transverse
mode. Furthermore, state-of-the-art schemes that are used to create temporal coherence from a
SASE FEL often use optical systems that may introduce significant additional spatio-temporal
couplings [11–13].
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An extension of the ray-pulse formalism to both spatial dimensions for the specific case
of linearly chirped systems is given in [14]. There, however, the optical systems under
consideration were only “ideal chirpers” and the pulses under investigation were assumed to
be linearly chirped, i.e., the instantaneous frequency of the pulse only had a linear dependence
on time. In this paper, the formalism used in [1] is extended to capture generalized three-
dimensional spatio-temporal couplings up to a quadratic phase. 6×6 linear ray-pulse matrices
are defined from which the eikonal in a modified and time-dependent Huygens integral can
be derived and used to propagate pulses with complicated (in both amplitude and phase)
spatial and temporal structure in the paraxial approximation. Finally, an analytic and simple
propagation formula for three-dimensional Gaussian pulses is presented, which can also be
used to analytically estimate the couplings introduced by a given optical beamline.

2. Ray-pulse matrix formalism

The description of the ray-pulse matrix formalism follows the outline in [1], which is repeated
here to draw a direct connection to the original work. It is useful to begin with the definition
of an ‘optical axis’ when using geometric optics to specify a dispersive system that can be
described using propagation matrices. Here, the optical axis is defined as the path a reference
ray with a given frequency, f0, called the reference frequency, takes through the system. For the
purpose of this study, all optical elements, such as gratings, lenses, etc., are considered to be
aligned to this reference path. A transverse plane with cartesian coordinates (x,y) is constructed
orthogonal to the reference ray at each location along the reference path, which is defined to
be located at the origin, (0,0). In addition, clocks are located at each plane and are defined to
read zero when the reference ray passes. For any particular section of the beamline, additional
rays that propagate through the system can now be studied as deviations from the reference
path using the relative coordinates (x,θx,y,θy, t, f ). Here, the θx,y refer to the slope normalized
to the index of refraction a particular ray has relative to the reference path in each cartesian
direction and f is the frequency deviation of the ray from the reference frequency.

At the beginning of an optical beamline, z = zi, a ray may be defined relative to the reference
path using the six-dimensional vector

X = (xi,θxi ,yi,θyi , ti, fi). (1)

A similar expression exists for the ray after propagation through the various optical elements
that compose the beamline to the location z = zo,

Y = (xo,θxo ,yo,θyo , to, fo). (2)

If the reference path is a monotonically increasing function in time, meaning the reference ray
does not backtrack, the six-dimensional location of the output ray may be parameterized by a
vector function of the input coordinates,

Y = F(X) . (3)

This transfer map can potentially be a non-linear function of the input coordinates. Considering
only small deviations, the function F can be Taylor expanded about the reference path, (0) =
(0,0,0,0,0,0),

Y = F(0)+
6

∑
j=1

∂F
∂Xj

∣
∣
∣
∣
0
Xj +

1
2

6

∑
k,l=1

∂ 2F
∂Xk∂Xl

∣
∣
∣
∣
0
XkXl + · · · . (4)
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F(0) = 0, since this is just the path of the reference ray. Keeping only linear terms as a first
approximation produces

Yn =
6

∑
j=1

Mn, jXj, (5)

where

Mn, j =
∂Fn

∂Xj

∣
∣
∣
∣
0

(6)

are the Jacobian matrix elements of the the 6× 6 matrix M for the transformation from initial
to final coordinates. Equation (5) can be explicitly written as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

θx

y

θy

t

f

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

o

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂xo
∂xi

∂xo
∂θxi

∂xo
∂yi

∂xo
∂θyi

∂xo
∂ ti

∂xo
∂ fi

∂θxo
∂xi

∂θxo
∂θxi

∂θxo
∂yi

∂θxo
∂θyi

∂θxo
∂ ti

∂θxo
∂ fi

∂yo
∂xi

∂yo
∂θxi

∂yo
∂yi

∂yo
∂θyi

∂yo
∂ ti

∂yo
∂ fi

∂θyo
∂xi

∂θyo
∂θxi

∂θyo
∂yi

∂θyo
∂θyi

∂θyo
∂ ti

∂θyo
∂ fi

∂ to
∂xi

∂ to
∂θxi

∂ to
∂yi

∂ to
∂θyi

∂ to
∂ ti

∂ to
∂ fi

∂ fo
∂xi

∂ fo
∂θxi

∂ fo
∂yi

∂ fo
∂θyi

∂ fo
∂ ti

∂ fo
∂ fi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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θx

y

θy
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f

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

(7)

The determinant of this matrix gives the ratio of the trace space volume element of the
output coordinates to the input coordinates. For the time-invariant (no time-dependent optical
elements) and linear (non-linear optical effects such as second harmonic generation are not
considered) systems studied here, and for the qualitative reasons given in [1], det(M) = 1.

The matrix in Eq. (7) has 36 terms, many of which can be simplified based on the following
assumptions and constraints. Only passive optical elements are treated here. This implies that
the output coordinates, Y, cannot depend on the time a ray with a particular frequency is
launched into the system; only the output time, to, depends on the input time, ti. This, in
turn, requires that the elements in the fifth column of matrix M must be zero except for
∂ to/∂ ti = 1. Also, since only linear propagation through dispersive optical systems is treated
here the frequency of a particular ray is invariant, implying that the elements in the last row of
matrix M must be zero except for ∂ fo/∂ fi = 1. Equation (7) simplifies to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

θx

y

θy

t

f

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

o

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Axx Bxx Axy Bxy 0 Ex f

Cxx Dxx Cxy Dxy 0 Fx f

Ayx Byx Ayy Byy 0 Ey f

Cyx Dyx Cyy Dyy 0 Fy f

Gtx Htx Gty Hty 1 It f

0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

θx

y

θy

t

f

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

, (8)

where the partial derivatives in M have been replaced in order to represent a generalized
propagation matrix. The A,B,C,D matrix elements have been written suggestively, indicating
they correspond to the usual A,B,C,D matrix elements of single frequency but non-orthogonal
systems (this will be proved later) [15]. The E and F elements represent the output spatial
coordinate and the output slope dependence on the ray frequency, respectively, while the G and

#259327 Received 11 Feb 2016; revised 25 Mar 2016; accepted 25 Mar 2016; published 1 Apr 2016 
© 2016 OSA 4 Apr 2016 | Vol. 24, No. 7 | DOI:10.1364/OE.24.007752 | OPTICS EXPRESS 7755 



H elements represent the output temporal dependence on the ray spatial and angular input
coordinates, respectively. The subscripts indicate the coupling a particular matrix elements
exhibits between two coordinates. For example, It f represents the system on-axis dispersion
and relates the output temporal dependence on the ray frequency. The number of terms needed
to describe a system has already been reduced to 25.

3. Construction of the eikonal in a generalized time-dependent Huygens integral

It has been well established that monochromatic (in our notation f = 0 at the reference
frequency) paraxial optical waves with a generalized transverse amplitude and phase can be
transported through optical systems that are characterized by ABCD matrices using a Huygens
integral in the Fresnell approximation that takes the form (see [16] and references therein)

E (ro) = e−ikL0

ˆ ∞

−∞
K (ro,ri)E (ri)dri, (9)

where L0 is the on-axis optical path length through the system and the integral kernel is given
by

K (ro,ri) =
i

|B|1/2 λ0

e−
iπ
λ (ri·B−1A·ri−2ri·B−1·ro+ro·DB−1·ro). (10)

Here, the ray vector coordinates have been organized such that the output ray functional
dependence on the input ray is described by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y

θx

θy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

o

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Axx Axy Bxx Bxy

Ayx Ayy Byx Byy

Cxx Cxy Dxx Dxy

Cyx Cyy Dyx Dyy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y

θx

θy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

, (11)

or in shorthand notation,
[

r

r′

]

o

=

[
A B

C D

][
r

r′

]

i

, (12)

where r = [x,y] and r′ = [θx,θy]. It should be noted that the eikonal function (the argument of
the exponential in Eq. (10)) is only dependent on the input and output coordinates and not on
the angles.

Equation (9) is valid for both orthogonal (having rotational symmetry where each transverse
coordinate can be analyzed independently - the cross terms in the transfer matrix in Eq. (11) are
zero) and non-orthogonal optical systems. The eikonal function can be constructed by invoking
Fermat’s principle and equating the general optical path length a ray takes between object and
image conjugate points that includes an ABCD optical system to the optical path length a ray
takes along the optical axis. Equations (9) and (10) indicate that the optical path length a ray
takes through the ABCD system includes the on-axis distance, L0, and an additional contribution
that is quadratic in the displacement r and involves only the ABCD matrix elements of the
system. Some issues in applying Eq. (9) to time-dependent fields in dispersive optical systems
are evident. The path length along the optical axis, L0, can be frequency dependent if the lattice
contains dispersive elements. The relative phase accumulation between the various frequency
components in the field, therefore, would have to be calculated separately from the integral and
carried through an entire optical system to obtain the correct longitudinal frequency distribu-
tion. Furthermore, the matrix used to propagate each frequency component would be slightly
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different, requiring an independent integral kernel for each frequency. One goal, therefore, is to
find a single integral kernel that incorporates this time and frequency dependence.

To this end, the spatio-temporal analog of the single-frequency Huygen’s integral is
proposed, based on Eqs. (9) and (10), to account for these disparities in a simple way. This
integral can be used to propagate time-dependent fields having a narrow bandwidth around
the reference frequency, f0, through dispersive optical systems that can be described by the
matrices given in Eq. (8) and include non-orthogonal spatio-temporal couplings (x,y, t) within
the paraxial approximation:

Eo (xo,yo, to) =
˚

K (xo,xi,yo,yi, to, ti)Ei (xi,yi, ti)dxidyidti. (13)

The integrals in Eq. (13) all range from [−∞,∞]. The foundation for this integral relation is
discussed in more detail in Appendix A in section 7. We make the following ansatz for the
spatio-temporal kernel functional form based on Eq. (10):

K (xo,xi,yo,yi, to, ti) ∝ e−i2πL(xo,xi,yo,yi,to,ti)/λ0 (14)

where λo = c/ fo is a reference wavelength, c is the speed of light, and the eikonal, L, is only
dependent on the input and output spatial and temporal coordinates. Expanding the eikonal
to second order in these coordinates produces a constant term, Lo, which is equivalent to the
constant phase factor in Eq. (9), terms that are linear in the coordinates, which are zero because
of the way the optical axis and reference clocks have been defined, and terms that are quadratic
in the coordinates just as in Eq. (10). The spatio-temporal Huygens integral can therefore be
written as

Eo (xo,yo, to) = Δ
˚

Ei (xi,yi, ti)exp

⎡

⎢
⎢
⎢
⎢
⎣

− iπ
λ0

⎛

⎜
⎜
⎜
⎜
⎝

xi

xo

yi

yo

T

⎞

⎟
⎟
⎟
⎟
⎠

T ⎛

⎜
⎜
⎜
⎜
⎝

α β γ δ ε
β η μ ρ κ
γ μ ν σ ψ
δ ρ σ τ ω
ε κ ψ ω ϑ

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

xi

xo

yi

yo

T

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

dxidyidti,

(15)
where Δ is needed to ensure energy conservation and T = ti − to for time-invariant and linear
systems. It should be noted that not all 25 real 6× 6 matrix elements that describe the optical
system in Eq. (8) can be independent since there are only 15 real coefficients that define the
eikonal (e. g. AD−BC = 1 for orthogonal and monochromatic systems).

The correspondence between (α,β ,γ, . . .) and
(

Axx,Hty, It f , . . .
)

can be established by the
procedure outlined in [1]. Consider an incident wave with a well defined average position,
slope, and frequency and perform the integration in Eq. (15). To this end, we consider the
Gaussian input field

Ei (xi,yi, ti) = exp

⎡

⎢
⎢
⎢
⎣

2π

⎛

⎜
⎜
⎜
⎝

− (xi − x̄)2

λ 2
0

− (yi − ȳ)2

λ 2
0

− c2 (ti − t̄)2

λ 2
0

−

i
θ̄x

λ0
(xi − x̄)− i

θ̄y

λ0
(yi − ȳ)+ i f̄ (ti − t̄)

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦
. (16)

The output wave involves an exponential of a very complicated second degree polynomial in xo,
yo and to with coefficients that depend on (α,β ,γ, . . .). This polynomial can be separated into an
envelope and a phase based on the real and imaginary parts of the argument of the exponential.
The position and time of the output pulse can be found by setting the derivative of the envelope
with respect to (xo,yo, to) to zero and solving for (xo,yo, to). The frequency and slope of the
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output pulse can be found by evaluating the derivative of the phase at the position and time
found above. Finally, the coefficients of the averages defined in Eq. (16) above correspond to
(

Axx,Hty, It f , . . .
)

. Intermediate steps in the computation were performed with MATHEMATICA

[17] and are omitted for brevity. The results of the involved and rather lengthy computation are
summarized in section 8.1, Appendix B. In addition, the derivation of the coefficient Δ is given
in section 8.2, Appendix B.

For the matrix elements Axx = Axx (α,β ,γ, . . .), Bxx = Bxx (α,β ,γ, . . .), etc., the matrix M as
defined in Eq. (8) satisfies det(M) = 1. In addition, matrix M satisfies the constraint

MT SM = S, (17)

where

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 −λ0

0 0 0 0 λ0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (18)

Equation (17) is the symplectic condition (with an appropriate change of coordinates) and can
be used to define the constraints on the overdetermined system of equations:

−BxxCxx −ByxCyx +AxxDxx +AyxDyx = 1

−AxyCxx +AxxCxy −AyyCyx +AyxCyy = 0

−BxyCxx −ByyCyx +AxxDxy +AyxDyy = 0

−CxxEx f −CyxEy f +AxxFx f +AyxFy f = Gtxλ0

BxxCxy +ByxCyy −AxyDxx −AyyDyx = 0

−BxyDxx +BxxDxy −ByyDyx +ByxDyy = 0

−DxxEx f −DyxEy f +BxxFx f +ByxFy f = Htxλ0

−BxyCxy −ByyCyy +AxyDxy +AyyDyy = 1

−CxyEx f −CyyEy f +AxyFx f +AyyFy f = Gtyλ0

−DxyEx f −DyyEy f +BxyFx f +ByyFy f = Htyλ0

(19)

The expressions for the matrix elements in section 8.1 along with the constraints listed above
can be inverted to write the eikonal in Eq. (15) in terms of the matrix elements of the linear
transport matrix, M. The expressions for α = α (Axx,Bxx,Gty, . . .), β = β (Axx,Bxx,Gty, . . .),
etc., can be found in section 8.3, Appendix B. Many of these expressions contain the term
(−BxxByyIt f +BxxEy f Hty +BxyByxIt f −BxyEy f Htx −ByxEx f Hty +ByyEx f Htx) and others in the
denominator that can be problematic when evaluating the integrals in Eq. (13) if a particular
beamline makes them zero. Special care must be taken when evaluating these systems. This
is analogous to the care that must be taken in representing the monochromatic integral kernal,
Eq. (10), for systems where |B|= 0. The importance of Eq. (15) should not be underestimated.
It allows for fully three-dimensional fields to be numerically propagated through entire optical
systems in a single step rather than resorting to more complicated wave optics propagation
methods where single frequency components are propagated individually.

#259327 Received 11 Feb 2016; revised 25 Mar 2016; accepted 25 Mar 2016; published 1 Apr 2016 
© 2016 OSA 4 Apr 2016 | Vol. 24, No. 7 | DOI:10.1364/OE.24.007752 | OPTICS EXPRESS 7758 



4. Limiting forms of the spatio-temporal Huygens integral

At this point it is useful to consider various simplified forms of Eq. (15) written in terms of
(Axx,Bxx,Gty, . . .) to ensure the spatio-temporal Huygens integral reduces to the appropriate
expressions for specific limiting cases and to gain valuable insight and intuition into the
propagation method. Consider, first, single-frequency propagation through a dispersive optical
system at a frequency, f , defined relative to the reference frequency. The input field can be
written as

Ei (xi,yi, ti) = E (xi,yi)ei2π f ti . (20)

Plugging this expression into Eq. (15), evaluating the time integral, and substituting the
expressions α = α (Axx,Bxx,Gty, . . .), β = β (Axx,Bxx,Gty, . . .), etc. produces the following
integral kernal for the output pulse

exp

(

{Byy(AyyB
2
xy −AxxBxyByx +AxxBxxByy −AxyBxyByy)x

2
i +BxxByy(AyyBxx −AxyByx)y

2
i

2BxxByy(AxyByy −AyyBxy)xiyi +BxxByy(ByyDxx −ByxDxy)x
2
o +Bxx(B

2
xyDxx+

BxxByyDyy −Bxy(BxxDxy +ByxDyy))y
2
o +2BxxByy(BxxDxy −BxyDxx)xoyo−

2BxxB
2
yyxixo +2BxxBxyByyxiyo +2BxxByxByyxoyi −2B2

xxByyyiyo+

f 2BxxByy(BxyEy f Htx +ByxEx f Hty −ByyEx f Htx −BxxEy f Hty +[BxxByy −BxyByx]It f )λ0+

2 f BxxByy([ByyEx f −BxyEy f ]xi +[BxxEy f −ByxEx f ]yi +[(ByyHtx −ByxHty)xo+

(BxxHty −BxyHtx)yo]λ0) }× −iπ
BxxByy(BxxByy −BxyByx)λo

)

.

(21)

The eikonal of this kernel has components that are proportional to f and f 2. The elements that
are proportional to f 2 are independent of the spatial input variables. As such, these elements
can be pulled out in front of the remaining spatial integrals. Furthermore, some of these
terms are proportional to It f , which is the linear transport matrix element that contains the
information regarding the on-axis dispersion and is unique to the spatio-temporal formalism.
This formalism, therefore, automatically captures potential frequency dependent path length
and phase accumulation dependencies. The terms that are proportional to f (off-frequency)
enter the eikonal linearly and are analogous to terms that enter the eikonal linearly in the spatial
coordinates in monochromatic but misaligned (off-axis) optical systems. Frequencies that are
detuned from the reference frequency, therefore, can be thought of as simple misalignments
where the effect on the eikonal is captured with the help of the E, F , G, and H elements. Finally,
the reduction of Eq. (15) from three to two integrals greatly reduces the computational resources
that are needed to propagate fields that often require high spatial and temporal resolution as long
as the incident field can be written in the form Ei (xi,yi, f ).

Assuming that the optical beamline is spatially symmetric so that transverse components are
separable (Axx = Ayy = A, Axy = Ayx = 0, etc.), the integral kernel in Eq. (21 ) can be further
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simplified to

exp

(

− iπ
Bλo

{A
(

xi
2 + yi

2)−2(xixo + yiyo)+D(xo
2 + yo

2)+

f 2λo(BI−2EH)+2 f Hλo(xo + yo)+2 f E(xi + yi) }
)

.

(22)

This is the two-dimensional and symmetric analogue of the integral kernel given in [1]
for monochromatic spatio-temporal wave propagation, with the exception that the last two
terms of the eikonal, 2 f Hλo(xo + yo)+ 2 f E(xi + yi), include a missing factor of f , which is
needed simply based on dimensional arguments. Finally, analyzing the kernel in Eqs. (21) or
(22) at the reference frequency ( f = 0) reduces the eikonal to the familiar two-dimensional
non-separable or separable and symmetric monochromatic case respectively. Therefore, as
mentioned previously, the generalized A, B, C, and D elements of the 6×6 ray-pulse matrix are
identical to those of the usual monochromatic matrix.

5. Simple propagation formula for generalized three-dimensional Gaussian pulses

A simple propagation formula can be found using the 6×6 spatio-temporal ray-pulse matrices
for generalized three-dimensional Gaussian pulses that is equivalent in form to both the usual
one-dimensional and monochromatic formula (qo = (Aqi+B)/(Cqi+D)) as well as the spatio-
temporal two-dimensional result obtained by Kostenbauder (Qo = [AQi +B][CQi +D]−1) [1].
This is done by expressing the input field in Eq. (15) as a generalized three-dimensional
Gaussian pulse and performing the integration. The input field takes the form:

Ei (xi,yi, ti) = exp

⎧

⎨

⎩
− iπ

λ0

⎛

⎝

xi

yi

−ti

⎞

⎠

T

Q−1
i

⎛

⎝

xi

yi

ti

⎞

⎠

⎫

⎬

⎭
, (23)

where

Qi =

⎡

⎢
⎢
⎣

Q11 Q12 Q13

Q12 Q22 Q23

−Q13 −Q23 Q33

⎤

⎥
⎥
⎦

i

. (24)

Qi is defined as above so that the field has a quadratic form. After performing the integration it
can be shown that the output field is transformed according to

Qo = [AQi +B][CQi +D]−1, (25)

which is identical to the transformation found by Kostenbauder except now A, B, C, and D are
defined as

A =

⎡

⎢
⎢
⎣

Axx Axy 0

Ayx Ayy 0

Gtx Gty 1

⎤

⎥
⎥
⎦
, B =

⎡

⎢
⎢
⎣

Bxx Bxy Ex f /λ0

Byx Byy Ey f /λ0

Htx Hty It f /λ0

⎤

⎥
⎥
⎦
,

C =

⎡

⎢
⎢
⎣

Cxx Cxy 0

Cyx Cyy 0

0 0 0

⎤

⎥
⎥
⎦
, D =

⎡

⎢
⎢
⎣

Dxx Dxy Fx f /λ0

Dyx Dyy Fy f /λ0

0 0 1

⎤

⎥
⎥
⎦
.

(26)
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Equation (25) is a very powerful tool. It allows Gaussian fields to be quickly propagated
through a potentially complicated optical beamline in a single algebraic step. Furthermore,
it allows for a more rigorous definition and identification of spatio-temporal distortions or
couplings that can be introduced by a given beamline using the formalism of [2] rather than
resorting to computationally costly wave optics numerical simulations. Analytic expressions
that explicitly show the functional dependence of spatio-temporal couplings on an optical
beamline’s parameters should be useful for optical lattice design and optimization.

6. Conclusion

We have extended the Konstenbauder ray-pulse matrix formalism to include non-separable
spatio-temporal couplings with both transverse dimensions. This formalism allows for
the three-dimensional (x,y, t) propagation of narrow bandwidth pulses within the paraxial
approximation through a time-invariant and linear optical beamline in a single step both
geometrically, using 6×6 transport matrices, or physically using a modified Huygens integral.
The extension of the formalism is important for fields that contain significant and non-separable
spatio-temporal couplings or for beamlines that can introduce them. A simple propagation
formula for generalized three-dimensional Gaussian pulses was also presented that should be
useful in optical beamline design and optimization.

7. Appendix A: Discussion of Eq. (13); the spatio-temporal Huygens integral

Consider the input-output relationship between a general monochromatic, free-space, source-
free, linear system (for instance, see [18])

fo (ro,ω) =

ˆ
G(ro,ri,ω) fi (ri,ω)dri, (27)

where G describes the impulsive response of the system to a point-source disturbance

L [G(ri,r,ω)] = δ (r− ri) (28)

and L is a linear differential operator (e. g. the linear operator describing the scalar Helmholtz
equation: L = ∇2 + k2). Assuming the Fourier transform of the input signal, output signal, and
impulsive response exist, Eq. (27) can be recast as

fo (ro, to) =
1

(2π)3/2

ˆ ˆ ˆ
G
(

ro,ri, t
′
i

)

e−iωt ′i dt ′i

ˆ
fi (ri, ti)e−iωtidtie

iωtodridω

=
1

(2π)3/2

ˆ ˆ ˆ ˆ
G
(

ro,ri, t
′
i

)

fi (ri, ti)eiω(to−ti−t ′i)dωdtidt ′i dri

=
1√
2π

ˆ ˆ
G(ro,ri, to − ti) fi (ri, ti)dridti.

(29)

For time-invariant systems this can be re-written as

fo (ro, to) =
1√
2π

ˆ ˆ
G(ro,ri, ti, to) fi (ri, ti)dridti. (30)

It is possible, therefore, to build up a generalized time-dependent input-output relationship (Eq.
(30)) from a monochromatic relationship (Eq. (27)) by Fourier superposition, supporting the
functional representation given in Eq. (13).
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8. Appendix B: Correspondence between (A,B,C, . . .) and (α,β ,γ, . . .)

8.1. (A,B,C, . . .) in terms of (α,β ,γ, . . .)

Axx =
αψω −ασϑ + γδϑ − γωε −δψε +σε2

−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

Bxx =
σϑ −ψω

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Axy =
γψω − γσϑ −δψ2 +δνϑ −νωε +σψε

−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

Bxy =
δϑ −ωε

−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

Ex f =
λo(σε −δψ)

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Cxx =−

⎡

⎢
⎣

αηψω −αησϑ +ακ2σ −ακμω −ακρψ +αμρϑ +β 2(σϑ −ψω)+

γ(βκω −βρϑ +δηϑ −δκ2 −ηωε +κρε)+β (δκψ −δ μϑ −2κσε+

μωε +ρψε)−δηψε +δκμε +ησε2 −μρε2

⎤

⎥
⎦

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Dxx =−ηψω +ϑ(μρ −ησ)+κ2σ −κ(μω +ρψ)

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Cxy =

⎡

⎢
⎣

−βκνω +βκσψ +β μψω −βρψ2 −β μσϑ +βνρϑ + γ(−ηψω+

ησϑ +κ2(−σ)+κμω +κρψ −μρϑ)+δ (ηψ2 +ϑ(μ2 −ην)+κ2ν−
2κμψ)+ηνωε −ησψε +κμσε −κνρε +μ2ω(−ε)+μρψε

⎤

⎥
⎦

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Dxy =− βκω −βρϑ +δηϑ −δκ2 −ηωε +κρε
βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Fx f =− βκω −βρϑ +δηϑ −δκ2 −ηωε +κρε
βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Ayx =
ακψ −αμϑ +βγϑ −βψε − γκε +με2

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Byx =
μϑ −κψ

−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

Ayy =
βψ2 −βνϑ −ψ(γκ +με)+ γμϑ +κνε

−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε
(31)

Byy =
βϑ −κε

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Ey f =
λo(με −βψ)

−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

Cyx =

⎡

⎢
⎣

ω2(αμ −βγ)−αω(κσ +ρψ)+ακτψ −αμτϑ +αρσϑ +δ (βψω−
βσϑ + γκω − γρϑ +κσε −2μωε +ρψε)+ ε(βσω −βτψ − γκτ+

γρω)+βγτϑ +δ 2(μϑ −κψ)+ ε2(μτ −ρσ)

⎤

⎥
⎦

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε
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Dyx =− κσω −κτψ −μω2 +ρψω +μτϑ −ρσϑ
βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Cyy =−

⎡

⎢
⎣

βνω2 −2βσψω +βτψ2 −βντϑ +βσ2ϑ + γ(κσω −κτψ −μω2+

ρψω +μτϑ −ρσϑ)+δ (−κνω +κσψ +μψω −ρψ2 −μσϑ+

νρϑ)+κντε −κσ2ε +μσωε −μτψε −νρωε +ρσψε

⎤

⎥
⎦

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Dyy =− βω2 −βτϑ −ω(δκ +ρε)+δρϑ +κτε
βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Fy f =−λo(βσω −βτψ −δ μω +δρψ +μτε +ρσ(−ε))
βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Gtx =
−ακσ +αμω −βγω +βσε + γδκ −δ με
−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

Htx =
κσ −μω

βψω −βσϑ −δκψ +δ μϑ +κσε −μωε

Gty =
−βνω +βσψ − γκσ + γμω +δκν −δ μψ
−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

Hty =
δκ −βω

−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

It f =
λo(δ μ −βσ)

−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε

8.2. Derivation of Δ

The field energy is a conserved quantity and must be equal at the beginning and end of a
particular beamline. This condition can be expressed as

˚
|Ei (xi,yi, ti)|2 dxidyidti =

˚
|Eo (xo,yo, to)|2 dxodyodto. (32)

Inserting Eq. (15) into Eq. (32) and considering only the right hand side yields

|Δ|2
ˆ

· · ·
ˆ

Vi,V′
i,Vo

Ei (xi,yi, ti)E∗
i

(

x′i,y
′
i, t

′
i

)

exp

{

− iπ
λo

[

α
(

x2
i − x′2i

)

+ν
(

y2
i − y′2i

)

+ϑ
(

t2
i − t ′2i

)

+

2γ
(

xiyi − x′iy
′
i

)

+2ε
(

xiti − x′it
′
i

)

+2ψ
(

yiti − yit
′
i

)

+

2xo
{

β
(

xi − x′i
)

+μ
(

yi − y′i
)

+κ
(

ti − t ′i
)}

+

2yo
{

δ
(

xi − x′i
)

+σ
(

yi − y′i
)

+ω
(

ti − t ′i
)}

+

2to
{−ε

(

xi − x′i
)−ϑ

(

yi − y′i
)−ψ

(

ti − t ′i
)}]

}

dVidV′
idVo,

(33)

where dVi = dxidyidti, dV′
i = dx′idy′idt ′i , and dVo = dxodyodto. The terms in the argument of

the exponential that are proportional to xo, yo, and to result in delta functions (with factors of
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2π) when evaluating the integral over dVo. Changing variables to

u =
2π
λo

{

β
(

xi − x′i
)

+μ
(

yi − y′i
)

+κ
(

ti − t ′i
)}

,

v =
2π
λo

{

δ
(

xi − x′i
)

+σ
(

yi − y′i
)

+ω
(

ti − t ′i
)}

,

z =
2π
λo

{−ε
(

xi − x′i
)−ϑ

(

yi − y′i
)−ψ

(

ti − t ′i
)}

,

(34)

will reduce the number of volume integrals by leveraging the delta functions. Solving for xi, yi,
and ti,

xi = x′i +
λo (u [ψω −σϑ ]+ v [−κσ +μω]+ z [−κψ +μϑ ])

2π (βψω −βσϑ −δκψ +δ μϑ +κσε −μωε)
,

yi = y′i +
λo (u [δϑ −ωε]+ v [−βω +δκ ]+ z [κε −βϑ ])

2π (βψω −βσϑ −δκψ +δ μϑ +κσε −μωε)
,

ti = t ′i +
λo (u [−δψ +σε]+ v [βσ −δ μ ]+ z [βψ −με])
2π (βψω −βσϑ −δκψ +δ μϑ +κσε −μωε)

,

(35)

and relating the differential volume elements dxidyidti = |J|dudvdz, where the Jacobian
determinant is given by

|J|=

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂xi
∂u

∂xi
∂v

∂xi
∂ z

∂yi
∂u

∂yi
∂v

∂yi
∂ z

∂ ti
∂u

∂ ti
∂v

∂ ti
∂ z

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
λ 3

o

8π3 (−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε)
, (36)

reduces Eq. (32) to
˚

|Ei (xi,yi, ti)|2 dxidyidti =

|Δ|2 λ 3
o

(−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε)

˚
∣
∣Ei
(

x′i,y
′
i, t

′
i

)∣
∣2 dx′idy′idt ′i .

(37)

Solving for Δ after canceling the integrals yields

Δ = K

√

(−βψω +βσϑ +δκψ −δ μϑ −κσε +μωε)
λ 3

o
, (38)

where K is a complex constant of unit magnitude that can be found by evaluating Eq. (15) for
the case of single-frequency free-space propagation and comparing the final integral expression
with the well-known integral described by Huygens-Fresnel diffraction theory. Thus, K = i3/2.
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8.3. (α,β ,γ, . . .) in terms of (A,B,C, . . .)

α =
AxxBxxByy −AxxBxyByx −AxyBxyByy +AyyB2

xy

Bxx(BxxByy −BxyByx)
−

(ByyEx f −BxyEy f )
2

λo(BxyByx −BxxByy)

(

−BxxByyIt f +BxxEy f Hty +BxyByxIt f

−BxyEy f Htx −ByxEx f Hty +ByyEx f Htx

)

β =
Ey f Hty −ByyIt f

BxxByyIt f −BxxEy f Hty −BxyByxIt f +BxyEy f Htx +ByxEx f Hty −ByyEx f Htx

γ =
−AxyByy +AyyBxy +

(ByxEx f −BxxEy f )(ByyEx f −BxyEy f )

λo(−BxxByyIt f +BxxEy f Hty+BxyByxIt f −BxyEy f Htx−ByxEx f Hty+ByyEx f Htx)

BxyByx −BxxByy

δ =
Ex f Hty −BxyIt f

−BxxByyIt f +BxxEy f Hty +BxyByxIt f −BxyEy f Htx −ByxEx f Hty +ByyEx f Htx

ε =
ByyEx f −BxyEy f

−BxxByyIt f +BxxEy f Hty +BxyByxIt f −BxyEy f Htx −ByxEx f Hty +ByyEx f Htx

η =

λo(ByyHtx−ByxHty)
2

BxxByyIt f −BxxEy f Hty−BxyByxIt f +BxyEy f Htx+ByxEx f Hty−ByyEx f Htx
+ByxDxy −ByyDxx

BxyByx −BxxByy

μ =
Ey f Htx −ByxIt f

−BxxByyIt f +BxxEy f Hty +BxyByxIt f −BxyEy f Htx −ByxEx f Hty +ByyEx f Htx

ρ =
− λo(BxyHtx−BxxHty)(ByyHtx−ByxHty)

BxxByyIt f −BxxEy f Hty−BxyByxIt f +BxyEy f Htx+ByxEx f Hty−ByyEx f Htx
−BxxDxy +BxyDxx

BxyByx −BxxByy

κ =
λo(ByyHtx −ByxHty)

−BxxByyIt f +BxxEy f Hty +BxyByxIt f −BxyEy f Htx −ByxEx f Hty +ByyEx f Htx

ν =
AxyByx −AyyBxx +

(ByxEx f −BxxEy f )
2

λo(BxxByyIt f −BxxEy f Hty−BxyByxIt f +BxyEy f Htx+ByxEx f Hty−ByyEx f Htx)

BxyByx −BxxByy

σ =
Ex f Htx −BxxIt f

BxxByyIt f −BxxEy f Hty −BxyByxIt f +BxyEy f Htx +ByxEx f Hty −ByyEx f Htx

ψ =
ByxEx f −BxxEy f

BxxByyIt f −BxxEy f Hty −BxyByxIt f +BxyEy f Htx +ByxEx f Hty −ByyEx f Htx

τ =

Bxy(BxyDxx−BxxDxy)
BxxByy−BxyByx

+Dyy

Byy
−

λo(BxyHtx −BxxHty)
2

(BxyByx −BxxByy)

(

−BxxByyIt f +BxxEy f Hty +BxyByxIt f

−BxyEy f Htx −ByxEx f Hty +ByyEx f Htx

)

ω =
λo(BxyHtx −BxxHty)

BxxByyIt f −BxxEy f Hty −BxyByxIt f +BxyEy f Htx +ByxEx f Hty −ByyEx f Htx

ϑ =
λo(BxyByx −BxxByy)

BxxByyIt f −BxxEy f Hty −BxyByxIt f +BxyEy f Htx +ByxEx f Hty −ByyEx f Htx

(39)

#259327 Received 11 Feb 2016; revised 25 Mar 2016; accepted 25 Mar 2016; published 1 Apr 2016 
© 2016 OSA 4 Apr 2016 | Vol. 24, No. 7 | DOI:10.1364/OE.24.007752 | OPTICS EXPRESS 7765 



Acknowledgments

The author would like to thank W. M. Fawley, Y. Feng, E. Hemsing, Z. Huang, J. Krzywinski,
and G. Stupakov for many insightful and helpful discussions. This work was supported by U.S.
Department of Energy Contract No. DE-AC02-76SF00515.

#259327 Received 11 Feb 2016; revised 25 Mar 2016; accepted 25 Mar 2016; published 1 Apr 2016 
© 2016 OSA 4 Apr 2016 | Vol. 24, No. 7 | DOI:10.1364/OE.24.007752 | OPTICS EXPRESS 7766 




