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Abstract

We develop analytical models of the longitudinal and transverse wakes, on and off

axis for realistic structures, and then compare them with numerical calculations, and

generally find good agreement. These analytical “first order” formulas approximate

the droop at the origin of the longitudinal wake and of the slope of the transverse

wakes; they represent an improvement in accuracy over earlier, “zeroth order” for-

mulas. In example calculations for the RadiaBeam/LCLS dechirper using typical

parameters, we find a 16% droop in the energy chirp at the bunch tail compared to

simpler calculations. With the beam moved to 200 µm from one jaw in one dechiper

section, one can achieve a 3 MV transverse kick differential over a 30 µm length.
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Introduction

The corrugated, metallic beam pipe has been proposed as a “dechirper”

for linac-based X-ray FELs [1]. The idea is to install this passive device in

the beam line at the end of acceleration, in order to remove residual energy

chirp in the beam before it enters the undulator for lasing. Several corru-

gated dechirpers have been built and tested [2]-[7], as well as one based on

dielectric-lined structures [8]. For adjustability, a dechiper section is built as

two flat, corrugated plates with the beam meant to pass in between. A com-

plete dechirper unit normally comprises two identical sections, with one orien-

tated horizontally and the other vertically, in order to cancel the unavoidable

quad wake that is excited and can lead to emittance growth. The Radia-

Beam/LCLS dechirper has recently become the first one that has been tested

at high energies (multi GeV) and short bunch lengths (10’s of microns) [7].

The calculation of wakes of corrugated structures, assuming small corru-

gations and using a perturbation approach, has been performed for round

structures [9], [10], and also for flat geometry [11]. In the case the corrugation

parameters are not small compared to the aperture, as is true for dechirpers

that have been built (assuming the nominal aperture), numerical methods are

needed. Calculations have been performed using field matching methods [12],

and time domain simulations [13]-[15]. In Ref. [16], for the case of flat geome-

try and assuming the impedance can be characterized by a surface impedance,

equations for the generalized wakefields, valid for arbitrary bunch length, are

derived. By “generalized” we here mean (point charge) wake functions for

which the transverse positions of driving and test particles are arbitrary, and

are not limited to being near the symmetry plane.

In the perturbation regime, where the corrugation parameters are small

compared to the aperture, the (point charge) wakes are dominated by a single
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mode. Thus, the longitudinal wake starts with a zero slope and, for short

distances, can be approximated by a constant; for the transverse wakes, the

approximation is a straight line starting from zero. However, for the Radia-

Beam/LCLS dechirper we are not in the perturbation regime; consequently,

the contribution of higher modes is not negligible, and the longitudinal wake

will begin with an exponential drop—a “droop,” and the transverse wakes will

have a droop in the slope (see e.g. [14]). In Ref. [17] the generalized impedances

found in Ref. [16] were used to obtain analytical formulas for the generalized

wakes in the “zeroth order approximation”, i.e. assuming the longitudinal

wake is a constant and the transverse wakes have a constant slope. These

results give the structure of the wakes, and—for sufficiently short bunches—

reasonable approximations to their strengths. In the LCLS (at the end of the

linac) the bunch is short, with an approximately uniform distribution and a

full bunch length . 50 µm. In Ref. [17] it was also shown that, when the full

bunch length is e.g. 30 µm, the zeroth order (on-axis) wakes agree to within

20–30% with numerical results. The goal of the present report is to improve

on this, by generating more accurate “first order” expressions of the wakes.

In this report we begin our calculations with the generalized wakes obtained

assuming the validity of the surface impedance model in flat geometry [16].

We will limit ourselves to considering the wakes of “pencil” beams, i.e. beams

of little transverse extent, where driving and test charges follow along the same

path or very close by. We make an assumption about the form of the wakes

that we check by comparing with two numerical methods: (1) we numeri-

cally perform the inverse Fourier transform of generalized expressions for the

impedance found in [16] to obtain the (point charge) wake, and (2) we obtain

the bunch wake for a short Gaussian bunch using the time-domain, wakefield

solving program for rectangular geometry, ECHO(2D) [15]. There is interest

in using a dechirper as a fast kicker, by passing the beam close to one jaw
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of the dechirper (see e.g. [14]) and, in fact, this idea has already been used

in two-color, self-seeding operation at the LCLS [18]. Therefore, in addition

to performing calculations for a beam on axis, we also study the wakes for a

beam off axis.

This report is organized as follows: The first section concerns the case of a

dechirper in round geometry. This is followed by the derivation of analytical

expressions for longitudinal wakes in flat geometry, both on and off axis. Next

come the quad and dipole wakes on axis. And finally we calculate the dipole

and quad wakes away from the axis. This is followed by a short section esti-

mating some wake effects for example LCLS machine and beam parameters.

The final section gives a discussion and the conclusions.

The RadiaBeam/LCLS dechirper device consists of two modules, where the

first has movable jaws that are aligned horizontally (in x) and is called the

“vertical dechirper,” and the second one with jaws that are aligned vertically

(in y), the “horizontal dechirper.” Each section is 2 m long, and is corrugated

in the longitudinal direction (Fig. 1 gives the geometry of three periods of the

second section). The parameters of the RadiaBeam/LCLS dechirper, that we

use in example calculations, are given in Table I. In this note most calculations

are performed in Gaussian units. To convert an impedance or wake to MKS,

one merely multiplies the cgs expression by Z0c/4π, with Z0 = 377 Ω.

Round Dechirper

Consider a periodic, disk-loaded structure in round geometry, with iris ra-

dius a, period p, longitudinal gap t (see Fig. 1). The high frequency longitu-

dinal impedance of this structure is given by [19]-[21]

Zl(k) =
4i

kca2

[
1 + (1 + i)

α(t/p)p

a

(
π

kg

)1/2
]−1

, (1)

5



z
y

2a

t

p

h

FIG. 1. Geometry of a dechirper unit. For a round dechirper the radius of the

aperture is designated as a; in the flat case, for a vertical dechiper unit, 2a represents

the gap, and the structure is unbounded in x. The blue ellipse represents an electron

beam propagating along the z axis.

with k the wave number, c the speed of light, and α is a function that can

be approximated by α(x) ≈ 1− 0.465
√
x− 0.070x. The units of longitudinal

impedance is [s/m2].The (point charge) wake is given by the inverse Fourier

transform of the impedance,

wl(s) =
c

2π

∫ ∞
−∞

dk Zl(k)e−iks , (2)

with s the distance the test particle is behind the driving charge (it is zero for

s < 0). The dimensions of longitudinal wake are [m−2]. The wake correspond-

ing to Eq. 1 is [22]

wl(s) =
4

a2
es/s0rerfc

(√
s/s0r

)
, (3)

with the distance scale factor (round case)

s0r =
a2t

2πα2p2
. (4)

For the RadiaBeam/LCLS dechirper parameters: p = 0.50 mm, t = 0.25 mm,

(and total depth of corrugation h = 0.5 mm). With half-gap a = 0.7 mm,
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TABLE I. RadiaBeam/LCLS Dechirper parameters, in [mm]. The dechirper com-

prises a vertical and a horizontal unit, each of which consists of two flat, corrugated

plates of length L = 2 m. The length scale factor s0r will be discussed in the text.

Parameter name Value

Period, p 0.50

Longitudinal gap, t 0.25

Depth, h 0.50

Nominal half aperture, a 0.70

Plate width, w 12.7

Plate length, L 2000

Length scale factor, s0r 0.190

s0r = 193 µm. Note that for large k, Eq. 1 can be Taylor expanded and

written in terms of s0r as

Zl(k) ≈ 4i

kca2

[
1− (1 + i)√

2ks0r

]
. (5)

For s small compared to s0r, Eq. 3 can be approximated by

wl(s) ≈
4

a2
e−
√
s/s0r . (6)

Note that this functional form has been found to be useful as a fitting function

to represent the longitudinal wake of periodic disk-loaded accelerating struc-

tures, even for bunches that are not ultra short (see e.g. Ref. [22]), and that

it is used in fitting expressions for dechirper wakes provided in Ref. [14]. In

Fig. 2 we plot Eq. 3 (blue curve) and compare with Eq. 6 (orange dashes) and

see that the agreement is better than 1.5% up to s = 0.25s0r. Also plotted in

the figure is Eq. 6, with the scale factor changed to πs0r/4, which is a function

that has the same two-term Taylor series expansion as the original equation,
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but does not agree as well with the real wake over the range plotted (green

dashes).
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FIG. 2. The function exerfc(
√
x) (blue solid), and the approximations: e−

√
x, which

differs by less than 1.2% over the range plotted (orange dashes); e−
√

4x/π, which

has the same two term Taylor expansion at the origin, 1− 2
√
x/π (green dashes).

Note that the equation for the impedance, Eq. 1 can be written in terms of

a surface impedance ζ(k) as

Zl(k) =
2

ca

1

(1/ζ(k)− ika/2)
, (7)

with the (high frequency) surface impedance of the structure given by

ζ(k) =
2

a

(
s0r
−ik

)1/2

=
1

αp

(
2t

−iπ

)1/2

. (8)

Note there is no dependence on the aperture, as should be the case for a surface

impedance. In terms of s0r, Eq. 7 becomes

Zl(k) =
4i

kca2

[
1 +

(1 + i)√
2ks0r

]−1
. (9)

In the calculations for the dechirper in flat geometry below, we will make the

assumption that a longitudinal impedance with the two-term, high frequency
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expansion of Eq. 5 implies the short-range wake of Eq. 6. At the end we

will test this assumption by two numerical calculation of the wake. In the

transverse it is (−ik) times the impedance that follows this pattern.

Flat Dechirper

Longitudinal Wake On and Off Axis

In Ref. [23] the generalized longitudinal impedance is given for a flat struc-

ture whose boundary interaction can be described by a surface impedance. By

generalized, we here mean to indicate the case where driving and test parti-

cle’s transverse coordinates can be located anywhere within the aperture of the

structure. In the present report we limit ourselves to the case where x0 = x

and y0 = y, where the driving (test) particle has subscript zero (no subscript).

In this particular case, for a vertical dechiper unit, Eqs. 13, 14, of [23] become

Zl(k, y) =
2ζ

c

∫ ∞
−∞

dq q csch3(2qa)f(q, y) , (10)

where the function f = N/D, with

N = q
(

cosh[2q(a− y)]− 2 + cosh[2q(a+ y)]
)
− ikζ

(
sinh[2q(a− y)]

+ sinh[2q(a+ y)]
)

D =
[
q sech(qa)− ikζcsch(qa)][q csch(qa)− ikζsech(qa)

]
. (11)

Substituting Eq. 8 into Eq. 10 and numerically performing the integration, we

can obtain the impedance; then inverse Fourier transforming, we obtain the

wake.

In Ref. [17] the wake at the origin (s = 0+) was obtained by expanding

the impedance at high k, keeping only the leading order (1/k) term in the

impedance, and then inverse Fourier transforming. This method gave an upper
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bound to the short-range wake function. Here we expand again, but keep also

the next term (1/k3/2), and then assume that the dependence, Wl ∼ e−
√
s/s0 ,

is a good approximation to the short-range wake. Thus, this calculation, in

addition to giving us the amplitude at the origin, also gives us the distance scale

factor s0. At the end we will need to verify that this functional dependence is

indeed a good approximation to the short-range wake.

Substituting for ζ(k) (Eq. 8) into the impedance, then expanding in 1/k

and keeping the first two terms, we obtain

Zl(k, y) =
1

kc

∫ ∞
−∞

dq
(

2iq cosh(2qy)csch(2qa) (12)

+
q2a csch3(2qa)

2(1 + i)
√

2s0rk
[4 sinh(2qa) + sinh(2q[2a+ y]) + sinh(2q[2a− y])]

)
.

The integrals can be performed analytically, giving

Zl(k, y) =
π2i

4kca2
sec2(

πy

2a
)

(
1− (1 + i)√

8ks0r

[
1 +

1

3
cos2(

πy

2a
) + (

πy

2a
) tan(

πy

2a
)

])
.

(13)

Comparing this expansion with that for the round case (Eq. 5), we see that

the equivalent distance scale factor for the flat case, s0l, is given by

s0l = 4s0r

[
1 +

1

3
cos2(

πy

2a
) + (

πy

2a
) tan(

πy

2a
)

]−2
. (14)

And the short-range longitudinal wake is given as

wl(s, y) =
π2

4a2
sec2

(πy
2a

)
e−
√
s/s0l . (15)

Note that for the beam on axis, s0l = 9
4
s0r.

Using the RadiaBeam/LCLS dechirper nominal parameters (Table 1), for

the case with the beam on axis, we compare wl(s, y = 0) from Eq. 15 with

the numerical result obtained by taking the inverse Fourier transform of the

general impedance equation, Eq. 10, with no approximations. The results

are shown in Fig. 3, where the numerical results are given by the blue curve,
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and the analytical approximation by the dashed orange curve. We see good

agreement.
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FIG. 3. Longitudinal wake on axis for the RadiaBeam/LCLS dechirper nomi-

nal parameters, comparing the numerical inverse Fourier transform of the gen-

eral impedance equation, Eq. 10 (blue curve), with the approximation, Eq. 15 (the

dashes). The scale factor s0r = 190 µm.

We also compare with results using the time domain, wakefield solver for

structures with rectangular geometry, ECHO(2D) [15]. The earlier calculations

were for flat geometry, which means—for a vertical dechirper—parallel plates

that extend to infinity in both horizontal directions, and have corrugations

in y vs. z. ECHO(2D), however, assumes smooth side walls at x = ±w/2,

and the wakes come as a sum of discrete modes, with odd mode numbers m,

corresponding to horizontal mode wave numbers kx = mπ/w. If the aspect

ratio 2a/w is small enough, and a sufficient number of modes are summed,

then the flat, short-range wake result and the ECHO(2D) result should agree.

For our ECHO(2D) caculations we take a = 0.7 mm and w = 12 mm, and the

aspect ratio 2a/w = 0.12 is sufficiently small. The highest mode number in the
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calculations is m = 89; such a large number was needed for good convergence

for the off-axis examples discussed below. For the ECHO runs we simulated a

Gaussian driving bunch with rms length σz = 10 µm passing through L = 2 m

of structure (for the wakes, we then normalize to length). Note that since the

catch-up distance zcu = a2/2σz = 2.4 cm is short compared to the structure

length, the transient wake contribution is negligible and can be ignored.

For the analytical wake we need to convolve with the longitudinal bunch

shape λ(s):

Wλ(s) =

∫ ∞
0

ds′wl(s
′)λ(s− s′) . (16)

In Fig. 4 we show the bunch wake Wλ(s) according to the ECHO results (blue),

the analytical zeroth order result (orange), and the result using the wake of

Eq. 15 (green, a result we call “first order”). We see that the first order

result agrees well with that of ECHO; in addition, we see that it is a great

improvement over the zeroth order result. Note, however, that the agreement

with ECHO is not perfect, while it seemed near-perfect in the comparison to

the numerical impedance calculation (Fig. 3). This suggests that there is some

inaccuracy in the impedance approach, probably related to inaccuracy in the

high frequency surface impedance used to represent the structure.

In Figs. 5 and 6 the comparison calculations are repeated for a beam offset

by y = 0.5 mm. We see that the analytical result for wl (“first order”) does

not agree so well with the numerical result for s ∼ 0.25s0r = 50 µm. However,

it still agrees well with the Gaussian wake obtained by ECHO. This is because,

in the former case, the agreement is still good until s = 0.05s0r = 10 µm. The

implication is that, for longer bunch lengths, the off-axis wake will begin to

deviate from the ECHO results, too. Note that the first order result is a great

improvement over the zeroth order one.
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FIG. 4. Longitudinal bunch wake for a Gaussian beam on axis, with σz = 10 µm, in

a 2-m section of the RadiaBeam/LCLS dechirper. Given are the numerical results

of ECHO(2D) (blue), and the analytical zeroth order (red) and 1st order results

(green). The bunch shape λ(s) with the head to the left is shown in black.

Transverse Wakes Near the Axis

Near the axis of a flat, vertical dechirper unit, for a complete description of

the transverse impedance we require two independent functions, the vertical

quad and dipole impedances, Zyq and Zyd. The transverse impedances in y

and x are then given, to leading order in offset, by (see e.g. [23])

Z̃y = y0Zyd + yZyq , Z̃x = (x0 − x)Zyq , (17)

where (x0,y0) and (x,y) are the offsets of, respectively, the driving and test

particles. Note that the transverse wakes have the same properties, with the

two wake functions being the vertical quad and dipole wakes, wyq and wyd.

The transverse wakes, like the quad wake, are obtained from the impedance
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FIG. 5. Longitudinal wake off axis by y = 0.5 mm, comparing the numerical inverse

Fourier transform of the general impedance equation, Eq. 10 (blue curve), with the

first order approximation, Eq. 15 (the dashes).

by taking the inverse Fourier transform:

wyq(s) =
ic

2π

∫ ∞
−∞

dk Zyq(k)e−iks . (18)

In the transverse case, for example with the quad wake, it is the slope of

the wake for which w′yq(s) = Ae−
√
s/s0q , with A and s0q constants. Thus, by

expanding −ikZyq(k) to second order in 1/k we will find the short-distance

approximation of w′yq(s). And then the wake itself will be given by integrating;

e.g. wyq = 2Asyq[1− (1 +
√
s/s0q)e

−
√
s/s0q ].

The vertical quad impedance is given by [23]

Zyq(k) =
2

kca3

∫ ∞
0

dx x2
sech(x)

cosh(x)/ζ − ika sinh(x)/x
. (19)

Multiplying by (−ik) and expanding in terms of 1/k for high k, we obtain

−ikZyq(k) =
1

kca3

∫ ∞
0

dx

[
2x3csch(x)sech(x)− (1 + i)√

2s0rk
x4csch2(x)

]
. (20)
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FIG. 6. Longitudinal bunch wake for a Gaussian beam with σz = 10 µm offset in

the RadiaBeam/LCLS dechirper. The offset is y = 0.5 mm and the half-aperture is

the nominal a = 0.7 mm. Given are the numerical results of ECHO(2D) (blue), and

the analytical zeroth order (red) and 1st order results (green). The bunch shape

λ(s) with the head to the left is shown in black.

The integrals are performed analytically, and after rearrangement we obtain

−ikZyq(k) =
iπ4

32kca4

[
1− (1 + i)√

2ks0r

(
16

15

)]
. (21)

Thus, the quad wake is given by

wyq(s) ≈
π4

16a4
s0q

[
1−

(
1 +

√
s

s0q

)
e−
√
s/s0q

]
, (22)

with

s0q = s0r

(
15

16

)2

. (23)

Finding the vertical dipole wake follows a similar process. The vertical

dipole impedance is given by [23]

Zyd(k) =
2

kca3

∫ ∞
0

dx x2
csch(x)

sinh(x)/ζ − ika cosh(x)/x
. (24)
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Multiplying by (−ik) and expanding in terms of 1/k for high k, we obtain

−ikZyq(k) =
1

kca3

∫ ∞
0

dx

[
2x3csch(x)sech(x)− (1 + i)√

2s0rk
x4sech2(x)

]
. (25)

The integrals are performed analytically, and after rearrangement we obtain

−ikZyq(k) =
iπ4

32kca4

[
1− (1 + i)√

2ks0r

(
14

15

)]
. (26)

The form of the dipole wake is the same as the quad wake (Eq. 22), but with

the quad scale factor replaced by the dipole scale factor,

s0d = s0r

(
15

14

)2

. (27)

For the RadiaBeam/LCLS dechirper nominal parameters, for the quad and

dipole wakes, we compared the numerical inverse Fourier transform of the

impedance equations, Eqs. 19, 24, with the approximations, Eqs. 22, 23, 27.

The results are shown in Fig. 7, with the numerical results given in blue, and

the analytical ones by red dashes. (Note that the curves for wyda
3 have been

shifted up in the plot, by 0.02 units, to improve the visibility.) We see that

the agreement in both cases is very good. Finally, in Figs. 8, 9, we compare

the analytical quad and dipole bunch wakes for a σz = 10 µm Gaussian beam

in the RadiaBeam/LCLS dechirper with ECHO(2D) numerical calculations.

Again we see that the agreement with the analytical model (“first order”) is

very good.

Transverse Wake Away from Axis

There is interest in using a dechirper as a fast kicker by passing the beam

near to one of the jaws. For a beam passing close to one jaw, the bunch head

receives no kick while the tail receives a large transverse kick; in between, for
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FIG. 7. Quad and dipole wakes on axis for the RadiaBeam/LCLS dechirper nominal

parameters, comparing the numerical inverse Fourier transform of the impedance

equations, Eqs. 19, 24 (blue curves), with the approximations, Eqs. 22, 23, 27 (the

dashes). Note that the curves for wyda
3 have been shifted up by 0.02 units to

improve visibility.

the normal uniform bunch distribution, the kick varies quadratically with dis-

tance from the head. Thus, we are interested in knowing the vertical wake kick

far from the axis, and we are also interested in knowing the wake defocusing

effect there.

We can extend the concepts of the dipole and quad wakes and impedances

near the axis to beams that are off axis. Consider driving and test particles

that have nearly the same offset y, in a vertical dechirper unit. For a driving

particle at (0, y), and a test particle at (x, y+∆y), with (x,∆y)� y, the total

transverse impedances can be written to leading orders as

Z̃y(y) = Z̃yd(y) + ∆yZyq(y) , Z̃x(y) = −xZyq(y) , (28)

(and similar for the corresponding wakes). The dipole impedance defined here,

Z̃yd(y), is different from that defined near the axis, Zyd (see Eq. 17): it is still
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FIG. 8. Quad bunch wake for a Gaussian beam on axis, with σz = 10 µm, in the

RadiaBeam/LCLS dechirper. Given are the numerical results of ECHO(2D) (blue),

and the analytical zeroth order (red) and 1st order results (green). The bunch shape

λ(s) with the head to the left is shown in black.

independent of test particle deviation (∆y); however, it is a function of the

nominal offset of both particles (y), and it is not normalized to an offset.

For a driving particle at (x0, y0) and test particle at (x, y) the generalized

vertical impedance is given by [23]

Z̃y(k, y) = −2ζ

ck

∫ ∞
−∞

dq q2 csch3(2qa)g(q, y)e−iq(x−x0) , (29)

where g(q, y) = N ′/D, with

N ′ = q(sinh[q(2a− y − y0)]+2 sinh[q(y − y0)]− sinh[q(2a+ y + y0)])

−ikζ(cosh[q(2a− y − y0)]− cosh[q(2a+ y + y0)]) ,

D = [q sech(qa)− ikζcsch(qa)][q csch(qa)− ikζsech(qa)] . (30)

For the transverse dipole impedance Z̃yd(k, y) for a pencil beam, we set x0 = x

and y0 = y. We then multiply the impedance by (−ik), which gives the
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FIG. 9. Dipole bunch wake for a Gaussian beam on axis, with σz = 10 µm, in the

RadiaBeam/LCLS dechirper. Given are the numerical results of ECHO(2D) (blue),

and the analytical zeroth order (red) and 1st order results (green). The bunch shape

λ(s) with the head to the left is shown in black.

impedance corresponding to the slope of the vertical impedance, and substitute

for ζ(k) (Eq. 8); then we expand in 1/k and keep the first two terms; we arrive

at

−ikZ̃yd(k, y) =
1

kca3

∫ ∞
−∞

dx
[
2x2csch(2x) sinh(2xy/a) (31)

− (1 + i)√
2s0rk

x3coth(2x)csch(2x) sinh(2xy/a)
]
.

The integrals can be performed analytically, and after rearranging terms we

find

−ikZ̃yd(k, y) =
π3

8kca3
sec2

(πy
2a

)
tan
(πy

2a

)(
1 (32)

− (1 + i)√
8s0rk

[
3

2
+
πy

a
csc(

πy

a
)− πy

2a
cot(

πy

a
)

])
.

Comparing this expansion with that for the round case (Eq. 5), we see that

the slope of the wake, w′yd(s) ∼ e−
√
s/s0y , with the equivalent distance scale
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factor given by

s0yd = 4s0r

[
3

2
+
πy

a
csc(

πy

a
)− πy

2a
cot(

πy

a
)

]−2
. (33)

Integrating w′y over s, we find that the short-range vertical wake is given by

wyd(s) ≈
π3

4a3
sec2

(πy
2a

)
tan
(πy

2a

)
s0yd

[
1−

(
1 +

√
s

s0yd

)
e−
√
s/s0yd

]
. (34)

For the quad impedance for arbitrary offset, we take ∂Z̃y(k, y)/∂y using

Eq. 29, and then let x0 = x and y0 = y to obtain:

Zyq(k, y) =
2ζ

ck

∫ ∞
−∞

dq q3 csch3(2qa)f(q, y) , (35)

where f(q, y) = N/D, with N , D, defined in Eq. 11. Multiplying by (−ik),

expanding to second order, and integrating as before, we find that the quad

wake with the beam offset from the axis is given by

wyq(s) ≈
π4

16a4

[
2− cos

(πy
a

)]
sec4

(πy
2a

)
s0yq

[
1−

(
1 +

√
s

s0yq

)
e−
√
s/s0yq

]
,

(36)

with

s0yq = 4s0r

(
56− cos 2θ

30
+

3
10

+ θ sin 2θ

2− cos 2θ
+ 2θ tan θ

)−2
(37)

and θ = πy/(2a). Note that for y = 0 the result agrees with Eq. 22.

For the RadiaBeam/LCLS dechirper nominal parameters, for the quad and

dipole wakes for a beam offset by y = 0.5 mm in the vertical unit, we compared

the numerical inverse Fourier transform of the impedance equations, Eq. 29

with x0 = x and y0 = y for the dipole case, and Eq. 35 for the quad case, with

the approximations, Eqs. 34 and 36. The results are shown in Fig. 10 and 11,

with the numerical results given in blue, and the analytical ones by red dashes.

In both cases we start to see significant deviation for s & 0.15s0r. Finally, in

Figs. 12, 13, we compare the analytical dipole and quad bunch wakes for a

σz = 10 µm Gaussian beam with ECHO(2D) numerical calculations. We see

that the agreement with the analytical model (“first order”) is very good.
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FIG. 10. Dipole wake at offset y = 0.5 mm for the RadiaBeam/LCLS dechirper,

comparing the numerical inverse Fourier transform of the impedance equation,

Eq. 29 with x0 = x, y0 = y (blue curve), with the approximation, Eq. 34 (the

dashes).

LCLS Example Calculations

In Table II a typical combination of LCLS beam and machine parameters is

given. The beam is approximately uniform, with charge Q = 150 pC, current

I = 1.5 kA, and full bunch length ` = 30 µm. The bunch wake for a uniform

distribution is related to the point charge wake by

Wλ(s) =
1

`

∫ s

0

ds′w(s′) , (38)

with the beam head at s = 0. The voltage induced in the bunch is (in MKS

units)

V (s) = −
(
Z0c

4π

)
QLWλl(s) . (39)

For the zeroth order calculation, with the beam on axis, the voltage induced

in the bunch tail V (`) = −πZ0cQL/(16a2); in a 2-m section of dechirper

at nominal setting (see Table I) this equals −13.6 MV; for both dechirper
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FIG. 11. Quad wake at offset y = 0.5 mm for the RadiaBeam/LCLS dechirper, com-

paring the numerical inverse Fourier transform of the impedance equation, Eq. 35

(blue curve), with the approximation, Eq. 36 (the dashes).

sections combined, the induced voltage will be −27.2 MV. However, because

of the droop of the wake, the induced chirp will not be linear, and the relative

induced chirp within the bunch is reduced by the factor (see Eq. 15)

δV (s) = 2
s0l
s

[
1− e−

√
s/s0l

(
1 +

√
s

s0l

)]
. (40)

Substituting fom Eqs. 4, 14, we find that s0l = 430 µm, and at the tail of the

bunch δV (`) = 0.84. The induced voltage in the tail (for the two dechiper

sections combined) is −22.8 MV.

For the on-axis quad wake, note that the bunch quad wake gives the inverse

focal length,

f−1q (s) = ∓
(
Z0c

4π

)
eQLWλq(s)

E
, (41)

which represents focusing in x and defocusing in y (assuming the corrugated

plates are aligned horizontally). The quantity βx,yf
−1
q (s), with βx,y the lattice

beta function, is a measure of the lattice mismatch; if (in absolute value) it
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FIG. 12. Dipole bunch wake for a Gaussian beam with σz = 10 µm offset in the

RadiaBeam/LCLS dechirper. The offset is y = 0.5 mm and the half-aperture is the

nominal a = 0.7 mm. Given are the numerical results of ECHO(2D) (blue), and the

analytical zeroth order (red) and 1st order results (green). The bunch shape λ(s)

with the head to the left is shown in black.

is large compared to 1, then the beam slice at s will tend to be significantly

mismatched. For the zeroth order wake approximation [let s0q →∞ in Eq. 22

and insert into Eq. 38]

Wλq(s) =

(
π4

64a4

)
s2

`
. (42)

According to the zeroth order calculation, at the tail of the bunch, βxf
−1
q (`) =

−0.35 and βyf
−1
q (`) = 1.84. The relative droop in the bunch wake, which we

define as the bunch wake divided by its zeroth order approximation, is (see

Eqs. 22, 38)

δVq(s) = 4(s0q/s)
2

[
2e−
√
s/s0q

(
3

[
1 +

√
s/s0q

]
+ s/s0q

)
+ s/s0q − 6

]
. (43)

Here s0q = 170 µm, and the wake droop is δVq(`) = 0.80. Thus βxf
−1
q (`) =

−0.28 and βyf
−1
q (`) = 1.47; the mismatch in y at the bunch tail is significant.
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FIG. 13. Vertical quad bunch wake for a Gaussian beam with σz = 10 µm offset in

the RadiaBeam/LCLS dechirper. The offset is y = 0.5 mm and the half-aperture is

the nominal a = 0.7 mm. Given are the numerical results of ECHO(2D) (blue), and

the analytical zeroth order (red) and 1st order results (green). The bunch shape

λ(s) with the head to the left is shown in black.

There is interest in passing the beam close to one dechirper jaw, to induce a

strong kick variation along the beam. With the beam offset from the y-axis in

the vertical unit, the transverse voltage at position s within a uniform bunch,

in the zeroth order approximation, is (in [V], see Eq. 34)

Vyd(s) =
π2

64
Z0c

QLs2

a3`
sec2(

πy

2a
) tan(

πy

2a
) . (44)

Note that the kick varies quadratically, not linearly, with s. For our example

parameters, with the beam offset by y = 0.5 mm, we find that, in the tail of

the bunch and in the zeroth order approximation, the kick is Vyd(`) = 5.0 MV.

The relative droop in the wake of the uniform bunch is given by Eq. 43, but

using s0yd (Eq. 33) as the scale factor. Here s0yd = 28 µm and the relative

droop δVyd = 0.59. Thus the kick at the tail of the bunch is Vyd(`) = 3.0 MV.

Note that to achieve a 3 MV voltage differential over a length of 30 µm with
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TABLE II. Selected LCLS beam and machine properties (at the dechirper) used in

example calculations. This is a typical combination of parameters found in Ref. [12].

Parameter name Value Unit

Beam energy, E 6.6 GeV

Charge per bunch, Q 150 pC

Beam current, I 1.5 kA

Full bunch length, ` 30 µm

Normalized emittance, εxn / εyn 0.77 / 0.39 µm

Beta function, βx / βy 4.5 / 23.7 m

Beam size, σx / σy 16 / 27 µm

an X-band transverse cavity (of frequency 11.4 GHz), would require a peak

voltage of 420 MV.

As the beam moves off axis, the dipole kick increases but so will the quad

wake; in fact, it increases more rapidly. In this case, the quad bunch wake,

according to the zeroth order approximation, is given by (see Eq. 36)

Wλq(s) =
π4

64

s2

a4`

[
2− cos(

πy

a
)
]

sec4(
πy

2a
) . (45)

Consider again the beam offset by y = 0.5 mm. Combining the above equa-

tion with Eq. 41, we find that, at the tail of the bunch in the zeroth order

approximation, βxf
−1
q (`) = −26 and βyf

−1
q (`) = 136. The relative droop in

the bunch wake is given by Eq. 43, but using as scale factor s0yq (Eq. 37). Here

s0yq = 16 µm, and the wake droop is δVq = 0.50. Thus βxf
−1
q (`) = −13 and

βyf
−1
q (`) = 68. These numbers still represent large optics mismatch. One can

obtain partial compensation by also passing the beam through the horizon-

tal dechirper unit—with half gap set to a = 0.7 mm—at offset x = 0.5 mm,

though, with such large mismatch, substantial compensation will likely be
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difficult to achieve.

Discussion/Conclusions

Flat corrugated structures, to be used as “dechirpers” in linac-based X-ray

FELs, have been built and tested at several laboratories around the world.

Recently, interest has grown in using these devices also as fast kickers, by

passing the beam close to one jaw of a dechirper section, in order to excite

strong transverse wakefields to kick the beam tail. In this report we develop

analytical models of the longitudinal and transverse wakes, on and off axis for

realistic structures, and then compare them with two numerical calculations:

(i) numerical integration of the general impedance formulas that assumed a

surface impedance, and (ii) time domain, finite difference calculation using

ECHO(2D). We generally find good agreement. These analytical models (that

we call “first order” formulas) approximate the droop at the origin of the

longitudinal wake and of the slope of the transverse wakes; they represent an

improvement in accuracy over earlier, “zeroth order” formulas given in [17].

The formulas developed here can be useful for parameter studies and beam

dynamics simulations. They seem to be quite accurate near the dechirper axis,

for distances s . 0.25s0r, where s0r is a scale factor for the structure. But

as the beam moves off axis, the range over which the formulas are accurate

becomes shorter.

In this report we, in addition, performed example calculations for the Radi-

aBeam/LCLS dechirper that has been recently installed in LCLS. The bunch

distribution was taken to be uniform with full length ` = 30 µm, charge

Q = 150 pC, and energy E = 6.6 GeV. With dechirper half-gap a = 0.7 mm

and the beam on axis, the energy loss at the bunch tail (for the two dechirper

sections combined) is reduced from 27 MeV to 23 MeV (a drop of 16%) by the
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wake droop. With the beam moved to y = 0.5 mm in the vertical dechirper

unit, the kick at the bunch head is zero and at the bunch tail is 3 MV, which is a

large differential over a 30 µm length. The mismatch caused by the quad wake,

however, is also large: at the bunch tail βxf
−1
q (`) = −13 and βyf

−1
q (`) = 68.

One can obtain partial compensation by also passing the beam through the

horizontal unit at offset x = 0.5 mm, though substantial compensation will

likely be difficult to achieve.
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