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The measured soft X-ray, self-seeding spectrum at the LCLS free-electron laser (FEL)
often has a pedestal-like distribution around the seeded wavelength, which limits the spec-
tral purity and can negatively affect some user applications not employing a post-undulator
monochromator. In this paper, we study the origins of such pedestals, focusing on longitu-
dinal phase space modulations produced by the microbunching instability upstream of the
FEL undulator. We show from theory and numerical simulation that both energy and den-
sity modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength
typically grows as the square of the undulator length. The results place a tight constraint
on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly
requiring the amplitude of long-wavelength modulations to be much smaller than the typical
incoherent energy spread if the output sideband power is to remain only a couple percent or
less of the amplified seed power.

I. INTRODUCTION

Many efforts have been devoted to improve
the longitudinal coherence and spectral pu-
rity of X-ray free-electron lasers (FELs) since
the unequivocal success of facilities such as
FLASH [1], LCLS [2], and SACLA [3] that em-
ploy high gain, self-amplified spontaneous emis-
sion (SASE). While the normalized output band-
widths of SASE FELs typically exceed values
of 10−3 or larger, one can decrease the band-
width and increase the longitudinal coherence
by initiating the FEL process with a coherent
seed [4–7], or by imprinting the electron beam
with a coherent density modulation (bunching)
at the wavelength of interest [8–15]. Under ideal
circumstances (i.e., a high-quality external seed
of sufficient power, essentially uniform longitudi-
nal electron beam properties, etc.), one can ob-
tain essentially completely coherent, high-power
X-ray pulses whose bandwidths approach the
Fourier transform limit.

However, imperfections of the electron beam
and/or of the seed will reduce the quality of
the seeded FEL output [16–19]. Measurements
of the self-seeded, soft X-ray radiation spec-
trum at the LCLS [7] often show a pedestal-
like distribution around the seeded frequency.
In the absence of a post-undulator monochro-

mator, this contamination limits the spectral
purity and may degrade certain user applica-
tions. Further studies have ruled out the pos-
sibility that the pedestals originate from spec-
trometer noise or the monochromator optics.
There are strong indications that microbunch-
ing instability growth of the electron beam prior
to the undulator, mostly induced by longitudi-
nal space charge forces within the long-distance
acceleration and drift sections [20, 21] and di-
rectly observed at the LCLS recently [22], could
be one of the main sources for these spectral
pedestals. We also note that a recent experi-
ment carried out at the FERMI facility has in-
tentionally seeded microbunching in the low en-
ergy, laser heater region of the linac in order
to generate sidebands that lead to multicolor,
extreme-ultraviolet FEL pulses [23].

In this paper we show that both energy and
density modulations on the electron beam at the
undulator entrance can induce sidebands in a
high-gain, seeded FEL amplifier configuration.
Both theory and simulations are used to analyze
the sideband content and show that its strength
relative to the desired, amplified seeded signal
grows quadratically with undulator length. Our
results place a tight constraint on the needed
longitudinal phase space uniformity in a seeded
FEL to generate a very high quality spectral out-
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put.

II. THEORETICAL ANALYSIS

To understand the basic physics of the spec-
tral pedestal formation, we consider a two-
frequency system: the seed and the sideband.
The FEL is seeded by a monochromatic radi-
ation whose frequency is at or near the nat-
ural FEL resonant frequency ω1 and the elec-
tron beam initially has a longitudinal long-
wavelength modulation at frequency ωs. We
describe the longitudinal phase space of the
electron beam with the electron ponderomotive
phase θ ≡ (k1+ku)z−ω1t and normalized energy
deviation from resonance η ≡ (γ−γ0)/γ0, where
k1 = ω1/c and ku are the wave numbers of the
seed radiation and undulator, respectively. We
find the following dimensionless variables to be
useful in the analysis:

ẑ ≡ 2kuρz , (1)

η̂ ≡ η

ρ
, (2)

aν ≡
eK[JJ ]

8γ2
0mc

2kuρ2
Eν , (3)

where the normalized frequency ν = 1 + ∆ν ≡
ω/ω1 and ν = 1 corresponds to the resonant fre-
quency. Here K is the normalized field strength
of the undulator, ρ is the FEL Pierce parame-
ter [24] and [JJ ] is the Bessel function coupling
factor. With these dimensionless variables, the
pendulum equations of the two-frequency system
can be written as

dθ

dẑ
= η̂ , (4)

dη̂

dẑ
= a1e

iθ + ase
iνθ + c.c. , (5)

da1

dẑ
= −b1 , (6)

das
dẑ

+ i
∆ν

2ρ
as = −bs , (7)

with the bunching parameters at the seed and
the sideband frequency given by

b1 ≡ 〈e−iθ〉 , (8)

bs ≡ 〈e−iνθ〉 . (9)

We use subscripts “1” and “s” to denote vari-
ables corresponding to the seed and the side-
band, respectively. We also introduce the col-
lective momentum variables as

p1 ≡ 〈η̂e−iθ〉 , (10)

ps ≡ 〈η̂e−iνθ〉 . (11)

A. Initial energy modulation

Let us first consider an initial beam energy
modulation A(ζ) = A0 cos(ksζ) = ∆γ

γ cos(ksζ)
where ζ measures the distance from the electron
beam head. Using the scaled energy variable, we
have

η̂0 =
Â

2
ei∆νθ + complex conjugate , (12)

where the normalized modulation amplitude
Â = A0/ρ and ks = ωs/c = ω1∆ν/c is the wave
number of the modulation. We will study small
amplitude modulations with Â < 1.

With the assumptions that |as| � |a1|, |bs| �
|b1| and |ps| � |p1|, we can obtain the equations
of the field amplitudes as

d3a1

dẑ3
≈ ia1 , (13)

d3as
dẑ3

+ i
∆ν

2ρ

d2as
dẑ2

≈ iνas + ν2Âp1 . (14)

Eq. (13) is the well-known FEL cubic equa-
tion [24, 25] with an inhomogenous solution

a1(ẑ) =
3∑
l=1

Dle
−iµlẑ , (15)

where D1,2,3 are the coefficients determined by
the initial conditions and µ1,2,3 are the roots of
the cubic equation

µ1 = 1, µ2 =
−1−

√
3i

2
, µ3 =

−1 +
√

3i

2
.

(16)

If we consider the high-gain regime (eẑ � 1),
a1(ẑ) is dominated by the growing mode and we
can take the simple asymptotic form of

a1(ẑ) ≈ D3e
−iµ3ẑ . (17)
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For small energy detuning |∆ν| < ρ (i.e., the
sideband frequency shift is small compared to
the FEL gain bandwidth), the sideband equa-
tion (14) is simplified to

d3as
dẑ3

≈ ias + iÂD3µ
2
3e
−iµ3ẑ . (18)

The solution of Eq. (18) in the high-gain regime
for as(0) = 0 is

as(ẑ) = − iÂD3

3
ẑe−iµ3ẑ = − iÂ

3
ẑa1 . (19)

Consequently, the power ratio between the side-
band and the amplified seed radiation along the
undulator is

Ps(ẑ)

P1(ẑ)
=
Â2

9
ẑ2 =

4

9
A2

0 k
2
uz

2 . (20)

Eq. (20) applies to both the lower and upper
sidebands for frequency shifts much less than the
FEL gain bandwidth in the high-gain regime.
If we take FEL power saturation to occur at
2kuρz = 9, Eq. (20) states that A0 <

1
3ρ is re-

quired in order for the sideband to not exceed
the seed power at saturation. We will give a nu-
merical estimation of this requirement in §IV.

The lack of a ∆ν dependence in Eq. (20) in-
dicates that this single-frequency sideband anal-
ysis can be easily generalized to a broadband
sideband spectrum driven by modulations whose
scale lengths are all very much longer than the
coherence length lc ≈ λ1/4πρ by

Ps(ẑ)

P1(ẑ)
=
Â2

9
ẑ2 =

(2kuρz)
2

9

∫ lb

0

A2(ζ)

ρ2

dζ

lb
. (21)

Here we have presumed a flat-top current profile
with A(ζ) being the energy centroid modulation
along the bunch coordinate ζ and lb is the elec-
tron beam bunch length.

To obtain a more general solution for arbi-
trary detuning, the cubic dispersion relation be-
comes

µ2

(
µ− ∆ν

2ρ

)
= 1 , (22)

whose solutions we denote as µ̄1, µ̄2, µ̄3. A use-
ful approximation is

µ̄i ≈ µi +
1

3

∆ν

2ρ
+

1

9µi

(
∆ν

2ρ

)2

. (23)

where µi refers to the solutions given in Eq. (16).
The linear term in ∆ν produces a simple

eikonal phase shift while the quadratic term re-
duces the exponential growth rate and gives a ẑ-
dependent, effective gain bandwidth ∆νFWHM

of ≈ 7.6ρẑ−1/2, symmetric around ∆ν = 0. For
the particular situation where initially there is a
broadband, noise-like excitation whose angular
frequency cutoff significantly exceeds ≈ 10ρω1,
Eq. (21) should be modified and will show a z3/2

dependence due to the gain narrowing. In prin-
ciple, both the observed sideband spectral width
and the Ps to P1 ratio as a function of undula-
tor length could be used to infer several spectral
properties of the initial sideband modulation.

For initial conditions where all beam pertur-
bation quantities are initially zero at ẑ = 0 ex-
cept the seed field a1(0), the growing sideband
mode as(ẑ) is approximately given by

as(ẑ) ≈iÂ

[
e−iµ3ẑ/(∆ν/2ρ)

(µ3 − µ2)(µ3 − µ1)µ3

− e−iµ̄3ẑ/(∆ν/2ρ)

(µ̄3 − µ̄2)(µ̄3 − µ̄1)µ̄3

]
a1(0) . (24)

The power ratio of the sideband to the seed can
be obtained by factoring out e−iµ̄3ẑ. Expanding
the remaining terms to second order in ∆ν/2ρ
results in

Ps
P1
≈ Â2

9

[
1−
√

3ẑ + ẑ2 −
(

∆ν

2ρ

)
2− 2

√
3ẑ + ẑ2

6
+

(
∆ν

2ρ

)2 12− 16
√

3ẑ + 22ẑ2 − 4
√

3ẑ3 − ẑ4

108

]
.

(25)

The above expression asymptotically approaches that of Eq. (20) for eẑ � 1 and ∆ν � ρ.
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The above analysis is based on the stan-
dard FEL pendulum equations. The same
conclusions can be obtained from applying a
Maxwell-Vlasov approach to the coupled radi-
ation/electron beam system. A detailed deriva-
tion for this alternate approach, valid both for
arbitrary sideband frequency and FEL start-up
parameters, has been worked out in Ref. [26].

In the Appendix, we present an alternate
time-domain treatment that considers the spec-
tral effects of a variation in the temporally-local,
complex gain length that might arise from a
long wavelength modulation in one or more elec-
tron beam properties. The analysis shows that
not only an energy modulation, but also similar,
long-wavelength variations in quantities such as
emittance, slice energy spread, and current all
can induce sidebands in seeded FELs whose nor-
malized strength grows quadratically with undu-
lator length.

B. Initial density modulation

The above analysis can be applied in a
straightforward manner to consider modula-
tions in current. Let us introduce an initial,
monochromatic bunching modulation at a dis-
crete sideband frequency ωs = ∆νω1:

B = 〈e−i∆νθ〉 . (26)

The sideband field equation for a density modu-
lation excitation is then

d3as
dẑ3

+ i
∆ν

2ρ

d2as
dẑ2

≈ iνas + iνa1B . (27)

Presuming a small detuning shift and using simi-
lar procedures as for the case of an energy modu-
lation, we obtain a power ratio between the side-
band and the seeding signal

Ps(ẑ)

P1(ẑ)
=
|B|2

9
ẑ2 =

(2kuρz)
2

9
|B|2 , (28)

that also grows quadratically with both the ini-
tial density modulation amplitude and the un-
dulator length.

Usually the longitudinal microbunching in-
stability develops both energy and density mod-
ulations on the electron beam. The final side-
band amplitudes are the superposition of both

effects. Combining Eqs. (14) and (27), we find
the equation for a sideband driven by both long
wavelength energy and density modulations

d3as
dẑ3

≈ ias + Âp1 + iBa1 . (29)

Then using the asymptotic limit of p1 ≈ iµ2
3a1,

the sideband radiation field can be formulated
as

as(ẑ) ≈ −
i

3

(
Â+

(
−1

2
+

√
3

2
i

)
B

)
ẑa1(ẑ) ,

(30)

and the power ratio to the seed is

Ps(ẑ)

P1(ẑ)
≈ 1

9

∣∣∣∣∣Â+

(
−1

2
+

√
3

2
i

)
B

∣∣∣∣∣
2

ẑ2 . (31)

The final sideband power depends on the ampli-
tude and phase difference between the two mod-
ulations, Â and B. In a situation where an elec-
tron beam approaches the undulator region with
a low frequency energy modulation (e.g., arising
from longitudinal wake fields present in the fi-
nal linac sections) and there also exists a moder-
ately strong chromatic dispersion section, (e.g.,
a dipole chicane used to allow the introduction of
an external radiation seed), the combination will
produce a density modulation with the same fre-
quency. According to the definition of bunching
factor in Eq. (26), the phase difference between
the energy and induced density modulations for
the upper sideband frequency (∆ν > 0) is 90◦,
while for lower sideband frequency (∆ν < 0) is
−90◦. Examination of Eq. (30) shows that the
net effect of the dispersion section is additional
growth at the lower sideband and, in general,
partial suppression of the upper sideband.

III. SIMULATION RESULTS

To verify the previous analytical consider-
ations, we have numerically solved the time-
dependent 1-D FEL equations for a number
of initial modulation conditions to study the
growth of the sideband power. Here we adopt
the parameters (see Table I) of a very recent, soft
X-ray (540 eV) self-seeding study [27] conducted
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at the LCLS [7]. The numerical simulations treat
an idealized electron beam with a temporally
uniform current distribution and zero slice en-
ergy spread. The initial seed power distribution
is also temporally uniform. We choose sinusoidal
energy modulations with wavelengths ranging
from 2 to 10µm; these lie within the range of the
microbunching instability wavelengths observed
in the experiment [22]. The initial modulation
amplitudes range from 0.1 to 0.6 MeV, equiva-
lent to Â extending from 0.03 to 0.2. The input
seeding power of 20 kW leads to radiation power
saturation at ẑ ≈ 9.

TABLE I. Simulation parameters in 1-D FEL code

Parameter Value Unit

Beam energy E 3.48 GeV

Slice energy spread 0 MeV

Normalized emittance εN 0.9 µm

Current I 1.4 kA

Average β 30 m

Undulator period λu 3 cm

FEL parameter ρ 8.6× 10−4

Gain length LG 1.6 m

Seeding wavelength λ1 2.29 nm

Seeding power 20 kW

The total FEL field amplitude a and bunch-
ing factor b1 at the seed frequency for different
energy modulation amplitudes are plotted ver-
sus ẑ in Fig. 1. The total radiation power, which
is proportional to a2, is almost completely in-
dependent of the energy modulation amplitude.
However, the bunching factor b1 is reduced near
saturation for large energy modulation ampli-
tude.

The FEL spectra along the undulator shown
in Fig. 2 illustrate the growth of the sideband
power. The spectra are normalized by the power
of the amplified seed (main peak). There are two
sideband peaks near the seed and their normal-
ized power increase along the undulator. The
difference between the lower and upper sideband
peaks is probably due to the smaller gain at up-
per sideband (see Eq. (25)) and the density mod-
ulation developed as the power increases. Note
that when the sideband strength becomes suffi-
ciently large, second harmonics become evident
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FIG. 1. The total normalized field amplitude a and
bunching factor b1 along the undulator for various
energy modulation amplitudes Â. The modulation
wavelength is 8µm, corresponding to |∆ν/2ρ| ≈ 0.16
The inset displays the same quantities on a logarithm
scale.
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ẑ = 3.6
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FIG. 2. Spectra along the undulator length to illus-
trate the growth of the sideband power. The spectra
are normalized by the amplified seed intensity a1(ẑ)
and the spectral unit is photon energy (∆E = ~ωs).
The electron beam energy modulation wavelength
is 8µm while the normalized modulation amplitude
Â = 0.13.

with twice the energy offset but much smaller
power. Here we only consider the first-order
sideband as the higher harmonics are always
very small in our cases of interest.

We also find that the energy offsets of the two
sideband peaks to the seed peak are the same
and proportional to the inverse of the modula-
tion wavelength as predicted. Simulation results
show that the energy offset is independent of the
modulation amplitude and undulator length.
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Â = 0.13
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FIG. 3. The predicted power ratio of the lower
sideband to the seed along the undulator for dif-
ferent energy modulation amplitudes in 1-D simula-
tions (squares). The energy modulation wavelength
is 8µm and the corresponding ∆ν/2ρ = −0.16. All
dashed lines are theory predictions from Eq. (25).

The power ratio of the lower sideband to the
seed peak along the undulator for different mod-
ulation amplitudes are shown in Fig. 3. The
theoretical predictions of Eq. (25) are also given
in the figure, which indicate that the sideband
power ratio grows quadratically with ẑ and Â in
the high-gain regime. The 1-D simulations agree
quite well with the theory predictions, especially
when the power ratio is small.

Figure 4 presents the power ratio between the
two sidebands for different detunings at the same
energy modulation amplitude as predicted by 1-
D simulations. For |∆ν/2ρ| & 0.5 , the sideband
growth is sensitive to ∆ν so we use the theory
predictions obtained from Eq. 24 for compari-
son with the simulation results. For ẑ < 8 (i.e.,
still well before saturation), the simulations are
in very good agreement with the theory predic-
tions for both sidebands. However, deviations
begin to appear for larger ẑ values. The power of
upper sideband increases more slowly and even
begins to decrease as the fundamental enters the
saturation regime. The deviations result in part
from the reduction in electron beam energy and
also from the density modulation that develops
on the beam as the sideband power increases. As
discussed in the previous section, the net effect
of a sideband density modulation is to give addi-
tional growth for the lower sideband and partial
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FIG. 4. The power ratio of the lower (top) and
upper (middle) sidebands, and their sum (bottom)
to the amplified seed along the undulator for dif-
ferent detunings (electron beam energy modulation
wavelengths) according to 1-D numerical simulations
(solid lines). All dashed lines are the theory pre-
dictions of Eq. (24). The initial normalized energy
modulation amplitude is Â = 0.13.

suppression for the upper sideband. The total
power of the two sidebands does remain consis-
tent with the analytic theory predictions (also
shown in Fig. 4).

We also performed Genesis [28] simulations to
validate the 1-D theory and simulations in the
presence of 2-D emittance, refractive and diffrac-
tive effects. We again adopt the electron beam
and seed parameters of Table I, but now include
the drift sections between adjacent LCLS undu-
lator segments. The Rayleigh length of the in-
put seed is about twice that of the FEL gain
length, suggesting the 1- and 2-D gain lengths
will be quite similar. The energy offset of the
sidebands are the same as found previously in
the 1-D simulations. Figure 5 displays the pre-
dicted sideband/seed power ratio versus undu-
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FIG. 5. The power ratio of the lower sideband to
the amplified seed along the undulator for different
modulation amplitude as predicted 3-D Genesis sim-
ulations. The inset figure plots the power ratio versus
the square of the undulator length.

lator length; the figure’s inset plots this ratio
against the length squared, showing a clear z2

dependence. Also note that the power ratio has
a small drop at the beginning of each new undu-
lator section. This occurs because the undulator
break lengths are matched to the vacuum phase
slippage occurring at the seed wavelength, thus
leading to a net phase mismatch at the sideband
radiation wavelengths.

The good agreement between the analytical
predictions for sideband growth and those of the
1- and 2-D numerical simulations suggests that
the observed pedestal growth in the LCLS self-
seeding experiments may well be due to long
wavelength energy modulations. If so, the nu-
merical limits corresponding to Eq. (20) place
quite strict limits on the allowable modulation
amplitude A for those user applications (e.g.,
resonant inelastic x-ray scattering) that might
require pedestal levels below a few percent of
the amplified seed power. For example, obtain-
ing a 1% or less pedestal fraction for a case
with one-thousand-fold net seed amplification
(i.e., ẑ ≈ 5.3 when including launching losses)
limits A(ζ) to ≈ 200 keV amplitude for a 3.4-
GeV electron beam energy for an FEL parame-
ter ρ = 10−3. Given that the typical operational
value at the LCLS undulator entrance of the in-
coherent energy spread σE is of order 500 keV
or greater, a 200 keV limit on long wavelength
energy modulations is not only extremely tight

but also difficult to measure with normal elec-
tron beam spectrometer methods.

IV. CONCLUSIONS

In the previous sections, we have investi-
gated the effects of long wavelength residual en-
ergy and density modulations on the output of
a seeded FEL. We have shown such modula-
tions can generate sidebands of the seeded radi-
ation if their frequency lies within the FEL gain
bandwidth. A simple 1D theory is developed
to estimate the sideband growth rate and agrees
well with 2D numerical simulations that include
emittance and diffraction effects. For sidebands
whose frequencies lie very close to that of the
seed (i.e., ∆ω . ρω1/4), their power fraction in
the exponential growth regime grows quadrat-
ically with the initial modulation amplitude
and undulator length. Our analysis suggests
that broadband modulations, such as might re-
sult from longitudinal microbunching instability
growth, will result in a low amplitude “pedestal”
in the output spectrum similar to that observed
in self-seeding experiments at the LCLS [27]. We
note that pedestals induced by long-wavelength
modulations will most likely appear in other
seeding approaches that rely upon significant ex-
ponential growth, such as high gain, harmonic
generation schemes [8, 10] and also “advanced”
SASE-configuration schemes that aim to narrow
the output spectral bandwidth [29–31]. User ap-
plications that require a small ratio of pedestal
power to amplified seed power may require the
amplitude of long-wavelength modulations at
undulator entrance to be much smaller than the
typical incoherent energy spread. Pedestal for-
mation may also affect the efficiency of post-
saturation undulator tapering as has been dis-
cussed previously in [26]; this particular subject
likely merits further study given the strong in-
terest in increasing the extraction efficiency of
x-ray FELs.
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Appendix A: Using the Local Complex
Exponential Growth Rate to Determine

Sideband Growth in a High-Gain Seeded FEL

In contrast to §II that used a discrete fre-
quency approach to calculate the the spectral
broadening effects of long wavelength variations
of electron beam parameters, here we calculate
such effects using a time-domain analysis. This
alternate approach in principle allows for situ-
ations where one or more other electron beam
properties such as current, emittance, energy
spread might also simultaneously vary with ζ on
scale lengths much greater than the coherence
length lc. These variations too can lead to sim-
ilarly slow temporal changes of the FEL Pierce
parameter ρ, therefore perturbing both the in-
stantaneous gain and gain bandwidth.

As before, we consider a situation where a
relatively strong (as compared to the effective
shot noise power), monochromatic radiation seed
acts upon an intense, highly relativistic electron
beam with nominal Lorentz factor γ0 in a undu-
lator whose magnetic strength KRMS is tuned
for FEL resonance with the seed wavelength λ1.
We presume that the input seed power is much
below the FEL saturation power and thus there
will be exponential growth along the undula-
tor. However, in contrast to the assumptions
of §II, for the case of an energy modulation
we allow for both temporally local variations of
γ(ζ) (e.g., a wakefield-induced energy chirp or
a microbunching-induced sinusoidal energy vari-
ation) and shot-to-shot variability of the pulse-
averaged γ so that exact FEL resonance with the
seed λ1 may not apply neither locally in ζ nor,
for a given shot, in a time-averaged sense. For
the moment, we further assume that bulk diffrac-
tion, emittance and incoherent energy spread ef-
fects are sufficiently small that the 1D limit for
the linearized FEL equations is an excellent ap-
proximation.

1. Long Wavelength Energy Modulation

Turning first to the case of a temporally vary-
ing γ within an individual pulse and presuming
γ0 is in proper FEL resonance with λ1, the local
detuning ∆κ(ζ) is given by

∆κ(ζ) ≡ ku −
k1

2γ2(ζ)

(
1 +K2

RMS + 〈γ2β2
⊥〉
)

≈ +2ku ∆γ(ζ)/γ0 (A1)

where the 〈γ2β2
⊥〉 term accounts for emittance

effects. Let us make make the standard eikonal
approximation and express the total electric field
as the product of a slowly-varying term Ẽ(z, t)
times a rapidly varying quantity exp i(k1z−ω1t)
with k1 ≡ ω1/c = 2π/λ1. For non-zero ∆κ,
the cubic eigenvalue equation for exponentially
growing modes, Ẽ(z, t) ∼ exp(−iΓ(ζ)z), be-
comes

Γ3 − 2 ∆κΓ2 + ∆κ2Γ + λ3 = 0 (A2)

where λ ≡ 2kuρ , ∆κ and thus Γ are all possibly
slowly varying functions of ζ.

We may rewrite this as(
Γ− 2

3
∆κ

)3

+ λ3 −∆κ2Γ +
8

27
∆κ3 = 0 (A3)

If we presume |∆κ| � 2kuρ, the last two
terms may be neglected and one sees that the
cubic roots Γ1,2,3 ≈ 2kuρ(ζ)µ1,2,3 as given in
Eq. (16). To lowest order in ∆κ and presum-
ing a constant ρ, a variable energy modulation
causes a shift in the z-derivative of the eikonal
phase

d

dz
∆φ(z, ζ) ≈ −2∆κ(ζ)/3 = −4ku∆γ(ζ)/3γ0 .

(A4)

For a simple sinusoidal energy variation
∆γ(ζ)/γ0 = A cos ksζ with kslc � 1, the eikonal
phase at a fixed z may be expanded as

exp [i∆φ(z, ζ)] = J0(x) + 2

∞∑
n=1

in Jn(x) cosnksζ ,

(A5)
with x ≡ −4Akuz/3. The n = 1, J1 term cor-
responds to a sideband pair that are offset by
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wavenumber ±ks from k1; the terms for n ≥ 2
are higher integral harmonics.

For x small, the J1(x) ≈ x/2 term is the dom-
inant contributor giving

exp [i∆φ(z, ζ)] ≈ 1 + ix× 1

2

(
exp [+inksζ]

+ exp [−inksζ]
)

. (A6)

where the first and second terms in parenthe-
ses may be identified as the lower and upper
sideband, respectively. Relative to the amplified
seed component at wavelength λ1, the sideband
pair have identical normalized powers of

Ps(ẑ)

P1(ẑ)
=

4

9
A2k2

uz
2 (A7)

in exact agreement with the Eq. (20) of the fre-
quency space analysis presented in §II.

The temporally local angular frequency shift
is simply −dφ(z, ζ)/dζ. On sees that for a situa-
tion where ∆γ has a linear chirp in time, the ∆ω
shift is constant over the pulse with a magnitude
that linearly increases with z. A quadratic chirp
similarly gives a linear frequency chirp, also in-
creasing linearly with z. However, the effective
dispersion parameter

|R56| =
4

3

ku
k1
z (A8)

is only two-thirds the value typically associated
with an undulator of length z. A possible expla-
nation for this discrepancy is that it is directly
related to the same gain effect that lowers the ef-
fective group velocity of an exponentially grow-
ing mode such that its difference from the speed
of light c is two-thirds the ballistic slippage ve-
locity c× ku/(ku + k1).

For the case of LCLS with its warm linac con-
figuration, there can be significant (when com-
pared to ρ) shot-to-shot, fractional jitter in the
mean electron energy at the undulator entrance.
Unlike the situation for pure SASE configura-
tions in which there is no constant, preselected
wavelength associated with the input shot noise
microbunching, a self-seeded scheme employing
a monochromator does preselect such a constant

wavelength λ1. In this latter case, relatively
strong energy jitter will on the average some-
what increase the gain length and thus require
a slightly longer undulator length to reach a
given average output power level. This effect
is in addition to the well-known one associated
with the statistical radiation power fluctuations
immediately following narrow-band monochrom-
atization of the SASE spectrum. In the case
of sideband growth of the type studied here,
a mean energy deviation on a given shot will
lead to sidebands to one side of λ1 having rela-
tively stronger growth than those on the other
side. Since presumably the coarse-average elec-
tron beam energy is chosen operationally to be
in exact FEL resonance with the undulator K,
λu, and monochromator-selected λ1, the statis-
tical effects of energy jitter will somewhat in-
crease width of the pedestal but, presuming the
fractional jitter level remains below 2ρ, are un-
likely to significantly increase the total sideband
power. These issues will be discussed further in
the experimental analysis to be given in a future
paper [27].

2. Long Wavelength Current Modulation

To lowest order, a long wavelength current
modulation is just a simple scaling of the tem-
porally local gain. For the case of a simple sinu-
soidal modulation

I(ζ) = I0 (1 +B cos ksζ) , (A9)

the local gain ρ(ζ) ≈ ρ0(1 + 1
3B cos ksζ). Con-

sequently, the asymptotic radiation electric field
for large ẑ ≡ 2kuρ0z but Bẑ . 1 becomes

a(ẑ, ζ) ≈ a1(ẑ)

[
1− iB

3

(
−1

2
+

√
3

2
i

)
ẑ cos ksζ

]
(A10)

where a1(ẑ) is given by Eq. (17). This result re-
covers that of Eq. (28) when allowance is made
that the Eq. (A9) perturbation is purely real
while in the analysis of §II it was complex.
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