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Abstract

Recently, 23 cases of umbral moonshine, relating mock modular forms and finite groups,

have been discovered in the context of the 23 even unimodular Niemeier lattices. One of the

23 cases in fact coincides with the so-called Mathieu moonshine, discovered in the context of

K3 non-linear sigma models. In this paper we establish a uniform relation between all 23 cases

of umbral moonshine and K3 sigma models, and thereby take a first step in placing umbral

moonshine into a geometric and physical context. This is achieved by relating the ADE root

systems of the Niemeier lattices to the ADE du Val singularities that a K3 surface can develop,

and the configuration of smooth rational curves in their resolutions. A geometric interpretation

of our results is given in terms of the marking of K3 surfaces by Niemeier lattices.
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1 Introduction and Summary

Mock modular forms are interesting functions playing an increasingly important role in various

areas of mathematics and theoretical physics. The “Mathieu moonshine” phenomenon relating

certain mock modular forms and the sporadic group M24 was surprising, and its apparent

relation to non-linear sigma models of K3 surfaces even more so. The fundamental role played by

two-dimensional supersymmetric conformal field theories and K3 compactifications makes this

moonshine relation interesting not just for mathematicians but also for string theorists. In 2013

it was realised that this Mathieu moonshine is but just one case out of 23 such relations, called

“umbral moonshine”. The 23 cases admit a uniform construction from the 23 even unimodular

positive-definite lattices of rank 24 labeled by their non-trivial root systems. While the discovery

of these 23 cases of moonshine perhaps adds to the beauty of the Mathieu moonshine relation,

it also adds more mystery. In particular, it was previously entirely unclear what the physical or

geometrical context for these other 22 instances of umbral moonshine could be. In this paper

we establish a relation between K3 sigma models and all 23 cases of umbral moonshine, and

thereby take a first step in incorporating umbral moonshine into the realm of geometry and

theoretical physics.

Background

In mathematics, the term “moonshine” is used to refer to a particular type of relation be-

tween modular objects and finite groups. It was first introduced to describe the remarkable

“monstrous moonshine” phenomenon [1] relating modular functions such as the J-function dis-

cussed below and the “Fischer–Griess monster group” M, the largest of the 26 sporadic groups

in the classification of finite simple groups. The study of this mysterious phenomenon was ini-

tiated by the observation by J. McKay that the second coefficient in the Fourier expansion of

the modular function

J(τ) = J(τ + 1) = J(−1/τ) (1.1)

=
∑
m≥−1

a(m) qm = q−1 + 196884 q + 21493760 q2 + 864299970 q3 + · · ·

with q = e2πiτ satisfies 196884 = 196883+1, and 196883 is precisely the dimension of the smallest

non-trivial representation of M. Note that the J-function has the mathematical significance

as the unique holomorphic function on the upper-half plane H invariant under the natural

action of PSL2(Z) generated by τ → τ + 1 and τ → −1/τ , that moreover has the behaviour

J(τ) = q−1 +O(q) near the cusp τ → i∞. Why and how the specific modular functions and the
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monster group, usually thought of as belonging to two very different branches of mathematics,

are related to each other, remained a puzzle until about a decade after its discovery.

The key structure that unifies the two turns out to be that of a (chiral) 2d conformal field

theory (CFT), or vertex operator algebra in more mathematical terms [2, 3]. The two sides of

moonshine – the modularity and the finite group symmetry – can naturally be viewed as the

manifestation of two kinds of symmetries – the world-sheet and the space-time symmetries– the

CFT possesses. The mathematical proof of monstrous moonshine is achieved by constructing a

generalised Kac–Moody algebra based on the above chiral CFT and utilising the no-ghost theo-

rem of string theory, which roughly corresponds to considering the full 26 dimensions including

the 2 light-cone directions of the bosonic string theory [4]. We refer to, for instance, [5] for an

introduction on the theory of modular forms and to [6] or the introduction of [7] for a summary

of monstrous moonshine.

In 2010, an entirely unexpected new observation, pointing towards a new type of moonshine

relating “mock modular forms” and finite groups, was made in the context of the elliptic genus of

K3 surfaces. Mock modular forms embody a novel variation of the concept of modular forms and

are interesting due to their significance in number theory as well as a wide range of applications

(cf. (3.3)). See, for instance, [8, 9] for an expository account on mock modular forms. From

a physical point of view, as demonstrated in a series of recent works, the “mockness” of mock

modular forms is often related to the non-compactness of relevant spaces in the theory. See, for

instance, [10–13].

As we will discuss in more detail in §4, the elliptic genus EG(K3) of K3 surfaces enumerates

the BPS states of a K3 non-linear sigma model, and by taking the N = 4 superconformal

symmetry of this theory into account, one arrives at a weight 1/2 mock modular form with

Fourier expansion [14–16]

H
X=A24

1
1 (τ) = 2q−1/8(−1 + 45 q + 231 q2 + 770 q3 +O(q4)). (1.2)

The observation by Eguchi–Ooguri–Tachikawa then states that the numbers 45, 231, and 770

are all dimensions of certain irreducible representations of the sporadic Mathieu group M24 [17].

This connection has since been studied, refined, extended, and finally established in [18–28].

From a mathematical point of view, the prospect of a novel type of moonshine for mock modular

forms is extremely exciting. From a physical point of view, the ubiquity of K3 surfaces and

the importance of BPS spectra in the study of string theory makes this “Mathieu moonshine”

potentially much more relevant than the previous monstrous moonshine. See [29] for a review

and [30–34], [35–40] for some of the explorations in string theory and K3 conformal field theories
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inspired by this connection.

In 2013, the above relation was realised to be just the tip of the iceberg, or less metaphorically

just one case out of a series of such relations, called “umbral moonshine” [7, 41]. As will

be reviewed in more detail in §3, to each one of the 23 Niemeier lattices LX – the 23 even

unimodular positive-definite lattices of rank 24 labeled by their non-trivial root systems X –

one can attach on the one hand a finite group GX and on the other hand a vector-valued

mock modular form HX , such that the Fourier coefficients of HX are again suggestive of a

relation to certain representations of GX , analogous to the observation on the functions J(τ)

and H
X=A24

1
1 (τ) in (1.1) and (1.2). Further evidence for this relation was provided by relating

characters of the same GX -representations to the Fourier coefficients of other mock modular

forms HX
g , for each conjugacy class [g] of GX . More precisely, it was conjectured that an

infinite-dimensional GX -module KX reproduces the mock modular forms HX
g as its graded

g-characters. The finite group GX is defined by considering the symmetries of the Niemeier

lattice LX , while the mock modular form is determined by its root system X. The important

role played by the rank 24 root systems X suggests the importance of the corresponding 24-

dimensional representation of GX . For instance, for the Niemeier lattice with the simplest root

system X = A24
1 , the mock modular form HA24

1 is simply given by the function (1.2) above, and

the finite group is GX ∼= M24. In this case the umbral moonshine is the Mathieu moonshine first

observed in the context of the K3 elliptic genus that we described above. Given the uniform

construction of the 23 instances of umbral moonshine from the Niemeier lattices LX , one is

naturally led to the following questions: What about the other 22 cases of umbral moonshine

with X 6= A24
1 ? What, if any, is the physical and geometrical relevance of umbral moonshine?

Are they also related to string or conformal field theories on K3? What is the relation between

K3 and the Niemeier lattices LX? And the group GX? The mock modular form HX and the

underlying GX–module KX?

Summary

In the present paper we propose a first step in answering the above questions. To discuss the

relation between the mock modular form HX and the K3 elliptic genus, we first take a closer

look at the construction of HX from the root system X. For any of the 23 Niemeier lattices, the

root system is a union of simply-laced root systems with an ADE classification with the same

Coxeter number m. As is well-known, a wide variety of elegant structures in mathematics and

physics admit an ADE classification. Apart from the simply-laced root systems, another such

structure that will be important for us is that of modular invariant combinations of characters

of the A
(1)
1 Kac–Moody algebra at level m − 2 [42]. As will be reviewed in more detail in §2,
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this classification leads to the introduction of the so-called Cappelli–Itzykson–Zuber matrices

for every ADE root system, and these matrices in turn determine the relevant mock modular

properties, which uniquely determine HX when combined with a certain analyticity condition.

Hence, the Cappelli–Itzykson–Zuber matrices ΩΦ constitute a key element in the construction

of the 23 instances of umbral moonshine.

By itself, the question of the classification of certain modular invariants seems remote from

any physics or geometry. However, the parafermionic description of the N = 2 minimal models

relates this classification to that of the N = 2 minimal superconformal field theories [43–46].

Moreover, their seemingly mysterious ADE classification can be related to the ADE classification

of du Val (or Kleinian, or rational) surface singularities [45,46], whose minimal resolution gives

rise to smooth rational (genus 0) curves with intersection given by the corresponding ADE

Dynkin diagram. A third way to think about the ADE classification is the fact that these du Val

singularities are isomorphic to the quotient singularity C2/G, with G being the finite subgroup of

SU2(C) with the corresponding ADE classification [47]. Therefore, a perhaps simple-minded but

logical step towards understanding the physical and geometrical context of umbral moonshine

would be to take the ADE origin of the mock modular form HX seriously. In particular we

would like to explore if the ADE-ology in umbral moonshine can be related to that of the du

Val singularities.

Recall that the du Val singularities are precisely the singularities a K3 surface can develop.

After computing the elliptic genus of du Val singularities (see §2), one realises that the K3 elliptic

genus can naturally be split into two parts: one is the contribution from the configuration of

the singularities given by X and the other is the contribution from the mock modular form

HX . Equipped with the mock modular form HX for the other 22 Niemeier root systems X

constructed in umbral moonshine, one finds that the same splitting holds uniformly for all 23

instances of umbral moonshine (cf. (4.9)). Note that this splitting makes no reference to the

N = 4 characters, although for the special case X = A24
1 the two considerations render the same

result.

While the above fact might be surprising and suggestive, one should be careful not to claim

a strong connection between umbral moonshine and K3 string theory too quickly: it’s logically

possible that the above relation is just a consequence of the fact that the space of the relevant

modular objects, the Jacobi forms of weight 0 and index 1 to be more precise, is very constrained

and in fact only one-dimensional. See Appendix B for more details.

To gather more evidence that the umbral moonshine – a conjecture on the existence of a

GX–module KX which (re)produces the mock modular forms HX
g , [g] ⊂ GX as its graded

characters – and the K3 sigma model, one should compare the way GX acts on KX with the
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way the BPS spectrum of the K3 CFT transforms under its finite group symmetry G, when such

a non-trivial G exists. Let us first focus on the geometric symmetries of K3 surfaces (as opposed

to “stringy” CFT symmetries without direct geometric origins). As we will review in more detail

in §5, thanks to the global Torelli theorem for K3, we know that a finite group G is the group

of hyper-Kähler-preserving symmetries of a certain K3 surface M if and only if it acts on the

24-dimensional K3 cohomology lattice H∗(M,Z) in a certain way. Relating this 24-dimensional

representation of G to the natural 24-dimensional representation of GX induced from its action

on the root system X, this translates into a criterion for a conjugacy class [g] ⊂ GX to arise as

a K3 symmetries for each of the 23 GX .

On the one hand, umbral moonshine suggests a “twined” function ZXg for each [g] ⊂ GX ,

where ZXg = EG(K3) for the special case that [g] is the identity class (cf. (4.12)). In particular,

from this consideration we arrive at a conjecture for the elliptic genus of the du Val singularity

twined by its symmetries given by the automorphism of the corresponding Dynkin diagram.

On the other hand, whenever the CFT admits a non-trivial finite automorphism group G, one

can compute the elliptic genus “twined” by any g ∈ G. These twined elliptic genera EGg(K3)

provide information about the Hilbert space as a representation of G. As a result, for a conjugacy

class [g] ⊂ GX arising from K3 symmetries, we have two ways to attach a twined function –

ZXg and EGg(K3) – to such a “geometric” conjugacy class of [g] ⊂ GX . It turns out that

they coincide for all the geometric conjugacy classes [g] of any one of the 23 GX . This identity

clearly provides non-trivial evidence that all 23 instances of umbral moonshine are related to

K3 non-linear sigma models.

Recall that in arriving at the above relation we have interpreted the ADE root systems X

as the configuration of rational curves given by the ADE singularities. The above result hence

suggests that it might be fruitful to study the symmetries of different K3 surfaces with distinct

configurations of rational curves in a different framework corresponding to the 23 cases of umbral

moonshine. In fact, this has been implemented in a recent analysis of the relation between

the K3 Picard lattice, K3 symplectic automorphisms, and the Niemeier lattices, through a

“marking” of a K3 surface M by one of the LX such that the Dynkin diagram obtained from

the smooth rational curves of M is a sub-diagram of X [48, 49]. As will be discussed in more

detail in §5, through this marking by the Niemeier lattice LX , the root system X obtains the

interpretation as the “enveloping configuration of smooth rational curves” while the finite group

GX is naturally interpreted as the “enveloping symmetry group” of the K3 surfaces that can

be marked by the given LX . On the one hand, this provides a geometric interpretation of our

results. On the other hand, one can view our results as a moonshine manifestation and extension

of the geometric analysis in [48].
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The organisation of the paper is as follows. In §2 we compute the elliptic genus of the ADE

du Val singularities that K3 surfaces can develop. In §3 we review the umbral moonshine con-

struction from 23 Niemeier lattices and introduce the necessary ingredients for later calculations.

Utilising the results of §2, in §4 we establish the relation between the (twined) elliptic genus and

the mock modular forms of umbral moonshine. In §5 we provide a geometric interpretation of

this result. In §6 we close this paper by discussing some open questions and point to some pos-

sible future directions. In Appendix A we collect useful definitions. In Appendix B we present

the calculations and proofs, and present our conjectures for the twined (or equivariant) elliptic

genus for the du Val singularities. The explicit results for the twining functions are recorded in

the Appendix C.

2 The Elliptic Genus of Du Val Singularities

The rational singularities in two (complex) dimensions famously admit an ADE classification.

See, for instance, [50]. They are also called the du Val or Kleinian singularities and are iso-

morphic to the quotient singularity C2/G, with G being the finite subgroup of SU2(C) with

the corresponding ADE classification [47]. Any such singularity has a unique minimal reso-

lution. The so-called resolution graph, the graph of the intersections of the smooth rational

(genus 0) curves of the minimal resolution, gives precisely the corresponding ADE Dynkin dia-

gram. We will denote by Φ the corresponding simply-laced irreducible root system. In terms of

hypersurfaces, it is given by W 0
Φ = 0 with

W 0
Am−1

= x2
1 + x2

2 + xm3 (2.1)

W 0
Dm/2+1

= x2
1 + x2

2x3 + x
m/2
3 (2.2)

W 0
E6

= x2
1 + x3

2 + x4
3 (2.3)

W 0
E7

= x2
1 + x3

2 + x2x
3
3 (2.4)

W 0
E8

= x2
1 + x3

2 + x5
3. (2.5)

These singularities show up naturally as singularities of K3 surfaces and play an important role

in various physical setups, such as in heterotic–type II dualities and in geometric engineering,

in string theory compactifications. See, for instance, [51,52] and [53].

The 2d conformal field theory description of these (isolated) singularities was proposed in [54]

to be the product of a non-compact super-coset model SL(2,R)
U(1) (the Kazama–Suzuki model [55])

and an N = 2 minimal model, followed by an orbifoldisation by the discrete group Z/mZ, where
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m is the Coxeter number of the corresponding simply-laced root system (cf. Table 1). In other

words, we consider the super-string background that is schematically given by

Minkowski space-time R5,1 ⊗
(
N = 2 minimal ⊗N = 2

SL(2,R)

U(1)
coset

)
/(Z/mZ). (2.6)

Recall that, when the minimal model is chosen to be the “diagonal” Am−1 theory, the above

theory also describes the near-horizon geometry of m NS five-branes [56]. Note that this point

of view plays an important role in the work of [37, 57], also in the context of discussing the

possible physical context of umbral moonshine.

To resolve the singularity let us consider W 0
Φ = µ. In [54] it was proposed that the sigma

model with the non-compact target space W 0
Φ = µ has an alternative description as the Landau–

Ginsburg model with superpotential

W̃Φ = −µx−m0 +W 0
Φ,

where x0 is an additional chiral superfield and m is again given by the Coxeter number of Φ.

The purpose of the rest of the section is to compute the elliptic genus of (the supersymmetric

sigma model with the target space being) the du Val singularities. First let us focus on the min-

imal model part. The N = 2 minimal models are known to have an ADE classification [43–46]

1, based on an ADE classification of the modular invariant combinations of chiral (holomor-

phic) and anti-chiral (anti-holomorphic) characters of the A
(1)
1 Kac–Moody algebra [42]. In this

language, the ADE classification can be thought of as a classification of the possible ways to

consistently combine left- and right-movers. To be more precise, in [42] it was found that a

physically acceptable and modular invariant combination of characters of the A
(1)
1 Kac–Moody

algebra at level m− 2 is necessarily given by a 2m× 2m matrix ΩΦ corresponding to an ADE

root system Φ, where we say that a modular invariant is physically acceptable if it satisfies

certain integrality, positivity and normalisation conditions. See [42] for more details. The list

of these matrices is given in Table 3. The relation between ΩΦ and the ADE root system Φ

lies in the following two facts. First, ΩΦ is a 2m × 2m matrix where m is the Coxeter number

of Φ. Moreover, ΩΦ
r,r − ΩΦ

r,−r = αΦ
r for r = 1, . . . ,m − 1 coincides with the multiplicity of r

as a Coxeter exponent of Φ (cf. Table 1). Recall that a Coxeter element
∏r
i=1 ri of the Weyl

group of a rank-r root system is the product of reflections with respect to all simple roots (the

order in which the product is taken does not change the conjugacy class of the element), and

1Strictly speaking, this classification applies when one requires the presence of a spectral flow symmetry.
See for instance [58,59] for a discussion on related subtleties.
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the Coxeter number is the order of such a Coxeter element.

Am−1 D1+m/2 E6 E7 E8

Coxeter
m m 12 18 30

number

Coxeter
1, 2, 3, . . . ,m− 1

1, 3, 5, . . . ,m− 1, 1,4,5, 1,5,7,9, 1,7,11,13,
exponents m/2 7, 8, 11 11,13,17 17,19,23,29

Table 1: Simply-laced root systems, Coxeter numbers and Coxeter exponents

A quantity that played an important role in the the CFT/LG correspondence [60] as well

as in the recent developments of mock modular form moonshine is the elliptic genus. From a

physical point of view, the elliptic genus for a 2d N = (2, 2) superconformal field theory T is

defined as [61]

ZT (τ, z) = trHT ,RR

(
(−1)FR+FLyJ0qHL q̄HR

)
(2.7)

where FR,L denotes the right- and left-moving fermion number respectively. Moreover, the

left- (right-) moving Hamiltonian is given by HL = L0 − cL/24 (HR = L̄0 − cR/24 ), where

J0, L0, J̄0, L̄0 are the zero modes of the left- and right-moving copies of the U(1) R-current and

Virasoro parts of the N = 2 superconformal algebra, respectively. HT ,RR denotes the space of

quantum states of theory T in the Ramond–Ramond sector, and cL and cR denote the left- and

right-moving central charge of the SCFT. In the above formula, τ takes values in the upper-half

plane H while z takes values in the complex plane C, and we have written q = e(τ) and y = e(z).

Throughout the paper we use e(x) := e2πix. Because of the insertion (−1)FR , the elliptic genus

only receives contributions from left-moving states that are paired with a right-moving Ramond

ground state and is therefore holomorphic, at least when the spectrum of the theory is discrete.

As such, it is rigid in the sense of being invariant under any continuous deformation of the

theory.

The elliptic genus of the N = 2 minimal model can be computed in various ways. First,

from the relation to the parafermion theory, we obtain that the building block of the elliptic

genus is the function χ̃rs(τ, z), where |s| ≤ r− 1 < m [44,62]. See Appendix B for the definition

of χ̃rs. From the known spectrum of the minimal model given in terms of the matrix ΩΦ and the

identity χ̃rs(τ, 0) = δr,s − δr,−s it is straightforward to see that the elliptic genus of the minimal

model corresponding to the ADE root system Φ is given by [63,64]

ZΦ
minimal(τ, z) =

∑
r,r′∈Z/2mZ

ΩΦ
r,r′ χ̃

r
r′(τ, z) = Tr(ΩΦ · χ̃). (2.8)
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We again refer to Appendix B for more details.

On the other hand, the Landau-Ginzburg description facilitates a free-field computation for

the elliptic genus and one obtains an infinite-product expression for ZΦ
minimal(τ, z) [61]. In terms

of the Jacobi theta function (A.1), the results are [61,64]

ZΦ
minimal =

θ1

(
τ, m−1

m z
)

θ1

(
τ, zm

) for Φ = Am−1 (2.9)

for the A-series where m ≥ 2,

ZΦ
minimal =

θ1

(
τ, m−2

m z
)
θ1

(
τ, m+2

2m z
)

θ1

(
τ, 2z

m

)
θ1

(
τ, m−2

2m z
) for Φ = Dm

2 +1 (2.10)

for the D series where m ≥ 6 and even, and finally

ZE6

minimal =
θ1

(
τ, 3

4z
)
θ1

(
τ, 2

3z
)

θ1

(
τ, z4

)
θ1

(
τ, z3

) (2.11)

ZE7

minimal =
θ1

(
τ, 7

9z
)
θ1

(
τ, 2

3z
)

θ1

(
τ, 2

9z
)
θ1

(
τ, z3

) (2.12)

ZE8

minimal =
θ1

(
τ, 4

5z
)
θ1

(
τ, 2

3z
)

θ1

(
τ, z5

)
θ1

(
τ, z3

) (2.13)

for the E-type cases. The central charge of these minimal models are given by the Coxeter

number m of the corresponding simply-laced root system by

ĉ = c/3 = 1− 2

m
. (2.14)

In order to obtain the elliptic genus of the isolated ADE singularities, another ingredient we

need is the elliptic genus of the SL(2,R)
U(1) super-coset model. The SL(2,R)

U(1) super-coset model is

known to describe the geometry of a semi-infinite cigar (a 2d Euclidean black hole) [65] and is

mirror to the N = 2 super Liouville theory [56,66]. The level of the super-coset model is related

to the mass of the corresponding 2d black hole, and the central charge of the super Liouville

theory. Here, we will consider SL(2,R) super-current algebra of (super) level m. The central

charge of the corresponding super-coset theory is

ĉ = 1 +
2

m
.

Due to the presence of the adjoint fermions, there is a shift between the level of the super

Kac–Moody algebra [ĝ]k and the level of its bosonic sub-algebra ĝk̄ given by the corresponding
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quadratic invariant as

k̄ = k − c2(g) ,

which is given explicitly in terms of structure constants by c2(g)δab = f cd
a fbcd.

The spectrum of the super-coset model and the corresponding torus conformal blocks has

been discussed in [67, 68], following the earlier work [69, 70]. Since the model is non-compact,

the spectrum not surprisingly contains both discrete and continuous states. In the geometric

picture, the discrete states are those localised at the tip of the cigar while the continuous ones

are those states whose wave-functions spread into the infinitely long half-cylinder and are only

present above a “mass gap” 1
4m on the conformal weight [71]. The fact that the torus conformal

blocks of the super-coset theory coincide with the characters of the corresponding highest weight

representations of the N = 2 superconformal algebra constitutes non-trivial evidence for its

equivalence to the N = 2 super Liouville theory. Moreover, the continuous states correspond

to massive (or long) N = 2 highest weight representations while the discrete states correspond

to massless (or short) ones. As such, it is easy to see from the Hilbert space (Hamiltonian)

definition (2.7) of the elliptic genus that it only receives contribution from the discrete part of

the spectrum. Accepting the above argument, the building block of the elliptic genus is the

Ramond character graded by (−1)F

Ch
(R̃)
massless(τ, z; s) =

iθ1(τ, z)

η3(τ)

∑
k∈Z

y2kqmk
2 (yqmk)

s−1
m

1− yqmk

where η(τ) = q1/24
∏
n≥1(1 − qn) is the Dedekind eta function and s/2 is the U(1) charge of

the highest weight. The above formula can also be identified as N = 2 characters extended

by spectral flow. Putting them together, from the spectrum of the super-coset model it is

straightforward to work out the elliptic genus of the theory

ZLm
(τ, z) =

1

2

m∑
s=1

Ch
(R̃)
massless(τ, z;m+2−s)+Ch

(R̃)
massless(τ, z; s) =

1

2
µm,0

(
τ,
z

m

) iθ1(τ, z)

η(τ)3
, (2.15)

where we have used the (specialised) Appell–Lerch sum

µm,0(τ, z) = −
∑
k∈Z

qmk
2

y2km 1 + yqk

1− yqk
. (2.16)

The above partition function has also been calculated in [11] using an alternative free-field

representation of the theory. See also [72,73].

From this we can derive the elliptic genus of the super coset theory coupled to the rational
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theory (
N = 2 minimal ⊗N = 2

SL(2,R)

U(1)
coset

)
/(Z/mZ),

describing the corresponding du Val surface singularities of type Φ, by using the orbifoldisation

formula [63]

ZΦ,S(τ, z) =
1

m

∑
a,b∈Z/mZ

qa
2

y2a ZΦ
minimal(τ, z + aτ + b)ZLm

(τ, z + aτ + b) (2.17)

=
1

2m

iθ1(τ, z)

η3(τ)

∑
a,b∈Z/mZ

(−1)a+bqa
2/2ya ZΦ

minimal(τ, z + aτ + b) µm,0(τ,
z + aτ + b

m
).

(2.18)

Note that the above elliptic genus is not modular, as opposed to the familiar situation with

elliptic genera of a supersymmetric conformal field theory. In fact, it is mock modular in the

following sense [74]. Let the “completion” of µm,0(τ, z) be

µ̂m,0(τ, z) = µm,0(τ, z)− e(− 1
8 )

1√
2m

∑
r∈Z/2mZ

θm,r(τ, z)

∫ i∞

−τ̄
(τ ′ + τ)−1/2Sm,r(−τ̄ ′) dτ ′, (2.19)

then µ̂m,0 transforms like a Jacobi form of weight 1 and index m under the Jacobi group

SL2(Z)nZ2 but is not holomorphic. (See Appendix A for the definition of Jacobi forms.) In the

above formula, Sm = (Sm,r) denotes the vector-valued cusp form for SL2(Z) whose components

are given by the unary theta function (cf. (A.3))

Sm,r(τ) =
∑

k=r (mod 2m)

k qk
2/4m =

1

2πi

∂

∂z
θm,r(τ, z)|z=0. (2.20)

In Appendix B.2, we will also conjecture the answer for the elliptic genera of these ADE-

singularities twined by automorphisms of the corresponding Dynkin diagram, which can be

thought of as permuting the smooth rational curves in the minimal resolution.

This absence of the usual modularity can be attributed to the fact that the target space

of the theory is non-compact and hence the spectrum contains a continuous part [11]. This is

however seemingly in contradiction with the expectation that a path integral formulation of the

elliptic genus should render a function transforming nicely under SL2(Z), corresponding to the

SL2(Z) mapping class group of the world-sheet torus underlying the path integral formulation.

This issue has been recently addressed in [11], and further refined in [75, 76], for the cigar

theory. These authors found that a path integral computation indeed renders an answer that

is modular but non-holomorphic, and the breakdown of holomorphicity is attributed to the
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imperfect cancellation between contributions of the bosonic and fermonic states to the elliptic

genus (2.7) in the continuous part of the spectrum. Analogously, we expect the path integral

formulation of the elliptic genus of the ADE singularities will render as the answer the real

Jacobi form

ẐΦ,S(τ, z) =
1

2m

iθ1(τ, z)

η3(τ)

∑
a,b∈Z/mZ

(−1)a+bqa
2/2ya ZΦ

minimal(τ, z + aτ + b) µ̂m,0(τ,
z + aτ + b

m
).

(2.21)

Finally, we note that there is a different definition of elliptic genus that is purely geometric.

For a compact complex manifold M with dimCM = d0, the elliptic genus is defined as the

character-valued Euler characteristic of the formal vector bundle [61,77–80]

Eq,y = yd/2
∧
−y−1T ∗M

⊗
n≥1

∧
−y−1qnT

∗
M

⊗
n≥1

∧
−yqnTM

⊗
n≥0 Sqn(TM ⊕ T ∗M ),

where TM and T ∗M are the holomorphic tangent bundle and its dual, and we adopt the notation

∧
qV = 1 + qV + q2

∧2
V + . . . , SqV = 1 + qV + q2S2V + · · · · · · ,

with SkV denoting the k-th symmetric power of V . In other words, we have

EG(τ, z;M) =

∫
M

ch(Eq,y)Td(M) (2.22)

where Td(M) is the Todd class of TM . For M a (compact) Calabi–Yau manifold, the above

geometric definition and the conformal field theory definition, when the CFT is taken to be

the 2d non-linear sigma model of M , are believed to give the same function [78, 81]. The fact

that the CFT elliptic genus is rigid corresponds to the geometric fact that EG(τ, z;M) is a

topological invariant. Note that the above definition is manifestly holomorphic. We expect that

a suitable generalisation of the above definition which handles non-compact geometries will lead

to the geometric elliptic genus EG(τ, z; Φ) = ZΦ,S(τ, z) of the du Val singularity. In this paper

we will simply refer to ZΦ,S(τ, z) as the elliptic genus of the ADE singularity of type Φ.

3 Umbral Moonshine and Niemeier Lattices

In this section we will briefly review the umbral moonshine conjecture and its construction from

the 23 Niemeier lattices [41]. The readers are referred to [41] for more details. Let us start by

recalling what the Niemeier lattices are. Consider positive-definite lattices of rank 24, we would
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like to know which of them are even and unimodular. In string theory, one is often interested

in even, unimodular lattices due to the modular invariance of their theta functions. In the

classification of positive-definite even unimodular lattices, a special role will be played by the

root system of the lattice L, given by ∆(L) = {v ∈ L|〈v, v〉 = 2}.
The even unimodular positive-definite lattices of rank 24 were classified by Niemeier [82].

There are 24 of them (up to isomorphisms). The Leech lattice is the unique even, unimodular,

positive-definite lattice of rank 24 with no roots [83], discovered shortly before the classification of

Niemeier [84,85]. Apart from the Leech lattice, there are 23 other inequivalent even unimodular

lattices of rank 24. They are uniquely determined by their root systems ∆(L), that are all unions

of the simply-laced root systems. Moreover, the 23 root systems of the 23 Niemeier lattices are

precisely the 23 unions of ADE root systems satisfying the following two simple conditions: first,

all of the irreducible components have the same Coxeter numbers; second, the total rank is 24.

They are listed in Table 2, where n denotes Z/nZ. Here and in the rest of the paper we will

adopt the shorthand notation AdAm−1D
dD
m/2+1(E(m))dE for the direct sum of dA copies of Am−1,

dD copies of Dm/2+1 and dE copies of

E(m) =

E6, E7, E8 for m = 12, 18, 30

∅ otherwise
. (3.1)

Let X be one of the 23 root systems listed above, and denote by LX the unique (up to

isomorphism) Niemeier lattice with root system X. For each of these 23 LX we will have an

instance of umbral moonshine as we will explain now. First, we need to define the finite group

relevant for this new type of moonshine. Let us consider the automorphism group Aut(LX) of

the lattice LX . Clearly, any element of the Weyl group Weyl(X) generated by reflections with

respect to any root vector leaves the lattice invariant. In fact, Weyl(X) is a normal subgroup

of Aut(LX) and we define the “umbral group” GX to be the corresponding quotient

GX = Aut(LX)/Weyl(X). (3.2)

The list of the 23 GX is given in Table 2.

After defining the relevant finite group GX , we will now define the relevant (vector-valued)

mock modular forms HX
g , [g] ⊂ GX , for the umbral moonshine. As explained in §2, the ADE

classification of the modular invariant combinations of Â
(1)
1 characters is given by a symmetric

matrix ΩΦ of size 2m, where m denotes the Coxeter number of Φ, for every simply-laced root

system Φ. As we have seen, the Cappelli–Itzykson–Zuber matrix ΩΦ also controls the spectrum
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Table 2: Umbral Groups

X A24
1 A12

2 A8
3 A6

4 A4
5D4 A4

6 A2
7D

2
5

GX M24 2.M12 2.AGL3(2) GL2(5)/2 GL2(3) SL2(3) Dih4

ḠX M24 M12 AGL3(2) PGL2(5) PGL2(3) PSL2(3) 22

X A3
8 A2

9D6 A11D7E6 A2
12 A15D9 A17E7 A24

GX Dih6 4 2 4 2 2 2
ḠX Sym3 2 1 2 1 1 1

X D6
4 D4

6 D3
8 D10E

2
7 D2

12 D16E8 D24

GX 3.Sym6 Sym4 Sym3 2 2 1 1
ḠX Sym6 Sym4 Sym3 2 2 1 1

X E4
6 E3

8

GX GL2(3) Sym3

ḠX PGL2(3) Sym3

and hence the elliptic genus (2.9) of the 2d minimal model of type Φ. Now consider any one of

the 23 Niemeier root systems X listed above. Since they are unions X = ∪iΦi of simply-laced

root systems Φi with the same Coxeter number, we can extend the definition of the Ω-matrix

to ΩX =
∑
i ΩΦi . Using these Ω-matrices we can then define for each Niemeier lattice LX the

vector-valued weight 3/2 cusp form

SX = ΩXSm = (SXr ), r ∈ Z/2mZ

with the r-th component given by

SXr =
∑

r′∈Z/2mZ

ΩXr,r′Sm,r′

in terms of the unary theta function (2.20). From (ΩX)r,r′ = (ΩX)−r,−r′ and Sm,r = −Sm,−r
it is easy to see that SXr = −SX−r.

Given the cusp form SX , we can now specify the mock modular form HX by the following

two conditions. First we specify its mock modular property: we require HX to be a weight 1/2



Umbral Moonshine and K3 Surfaces 17

vector-valued mock modular form whose shadow is given by SX . More precisely, let

ĤX
r (τ) = HX

r (τ) + e(− 1
8 )

1√
2m

∫ i∞

−τ̄
(τ ′ + τ)−

1
2 SXr (−τ̄ ′) dτ ′,

then ∑
r∈Z/2mZ

ĤX
r (τ) θm,r(τ, z)

transforms as a Jacobi form of weight 1 and index m under the Jacobi group SL2(Z)nZ2. Recall

that the shadow s(τ) of a mock modular form f(τ) of weight w is the function, a modular form

of weight 2 − w itself for the same Γ < SL2(R), whose integral gives the non-holomorphic

completion

f̂(τ) = f(τ) + e(
w − 1

4
)

∫ i∞

−τ̄
(τ + τ ′)−w s(−τ̄ ′) dτ ′ (3.3)

of f which transforms as a weight w modular form. This definition has a straightforward

generalisation to the vector-valued case which we have employed above.

After specifying the mock modularity, we impose the following analyticity condition : we

require its growth near the cusp to be

q1/4mHX
r (τ) = O(1) as τ → i∞ (3.4)

for every element r ∈ Z/2mZ. The above two conditions turn out to be sufficient to determine

HX uniquely (up to a rescaling), as shown in [12, 41, 86]. We also fix the scaling by requiring

q1/4mHX
1 (τ) = −2 +O(q).

For instance, when considering the Niemeier lattice with the simplest root system, X = A24
1 ,

the unique mock modular form determined by the above condition reads

H
X=A24

1
1 (τ) = −HX=A24

1
−1 (τ) =

−2E2(τ) + 48F
(2)
2 (τ)

η(τ)3
(3.5)

= 2q−1/8(−1 + 45 q + 231 q2 + 770 q3 +O(q4)). (3.6)

where E2(τ) stands for the weight 2 Eisenstein series and

F
(2)
2 (τ) =

∑
r>s>0

r−s=1 mod 2

(−1)r s qrs/2 = q + q2 − q3 + q4 + . . . .

As mentioned in §1, the first observation that led to the recent development in the moonshine

phenomenon for mock modular forms is the fact that the above numbers 45, 231, 770 coincide
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with the dimensions of certain irreducible representations of the corresponding umbral group

GX ∼= M24 for X = A24
1 .

Note that without the non-holomorphic completion, the function

∑
r∈Z/2mZ

HX
r θm,r

does not transform nicely under the modular group; it is a mock Jacobi form according to the

definition given in [12]. In [41], following [12], this mock Jacobi form is interpreted as the finite

part of a meromorphic (as a function of z ) Jacobi form with simple poles at m-torsion points.

For later convenience, we will define another mock Jacobi form

φX(τ, z) =
iθ1(τ,mz)θ1(τ, (m− 1)z)

η3(τ)θ1(τ, z)

∑
r∈Z/2mZ

HX
r (τ) θm,r(τ, z) (3.7)

which contains exactly the same information as the vector-valued mock modular form HX .

In order to relate such functions to representations of the finite group GX that we have

constructed, we need as many vector-valued functions similar to HX as the number of con-

jugacy classes of GX to encode the characters of the underlying representation. Hence, for

every Niemeier lattice X, and for every conjugacy class [g] ⊂ GX we would like to define a

vector-valued mock modular form HX
g . As before, first we need to specify their mock modular

properties. The relevant congruence subgroup Γ0(ng) ⊆ SL2(Z) (see (A.6)), is determined by

ng, the order group element g. This is similar to the situation both in monstrous moonshine [1]

and, not unrelatedly, 2-dimensional CFT.

We need two more pieces of data to completely specify the mock modularity of HX
g . The

first one is the shadow. By studying the action of 〈g〉, the cyclic group generated by g, we can

analogously define a 2m×2m matrix ΩXg and the corresponding cusp form SXg = ΩXg Sm = SXg,r.

See §5.1 of [41] for the list of ΩXg . The second piece of data we need is the multiplier system

system on Γ0(ng), namely a projective representation νg : Γ0(ng)→ GL2m(C) of the congruence

subgroup Γ0(ng). In the case where the specified shadow SXg does not vanish, the definition of

the shadow stipulates the multiplier of the mock modular form to be the inverse of the shadow.

As a result, this second piece of data is implied by the first. If however SXg = 0, namely when

the mock modular form HX
g is in fact modular, one needs to specify the multiplier system

independently. It turns out that νg is identical to the inverse of the multiplier of SX on a group
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Γ0(nghg) < Γ0(ng) for certain integral hg > 1. See [41] for more details. In particular, let

ĤX
g,r(τ) = HX

g,r(τ) + e(− 1
8 )

1√
2m

∫ i∞

−τ̄
(τ ′ + τ)−1/2SXg,r(−τ̄ ′) dτ ′,

then ∑
r∈Z/2mZ

ĤX
g,r(τ) θm,r(τ, z)

transforms like a Jacobi form of weight 1 and index m under the group Γ0(nghg) n Z2. By the

same token, the function
∑
r∈Z/2mZH

X
g,r θm,r is a mock Jacobi form of weight 1 and index m

under Γ0(nghg) n Z2.

As before, after specifying the mock modular property we also need to fix the analyticity

property of HX
g . For Γ0(ng) with ng > 1, there is more than one cusp (representative), namely

more than one Γ0(ng)-orbit among Q ∪ i∞. For the cusp (representative) located at τ → i∞
we require the same growth condition

q1/4mHX
g,r(τ) = O(1) as τ → i∞. (3.8)

for every r ∈ Z/2mZ. Moreover we require the function to be bounded

HX
g,r(τ) = O(1) as τ → α ∈ Q, α 6∈ Γ0(ng)∞. (3.9)

at all other cusps.

After specifying the shadow SXg , the multiplier system νg and the behaviour at the cusps,

a vector-valued mock modular form HX
g of weight 1/2 for Γ0(ng) was then given in [41] for

every [g] ⊂ GX and for all 23 Niemeier lattices LX . See [41] for explicit Fourier coefficients

of the q-expansions of HX
g,r. Finally, it was conjectured in [41] that HX

g is the unique (up to

rescaling) vector-valued mock modular form with the above mock modularity and poles. For

later convenience, we will also define

φXg (τ, z) =
iθ1(τ,mz)θ1(τ, (m− 1)z)

η3(τ)θ1(τ, z)

∑
r∈Z/2mZ

HX
g,r(τ) θm,r(τ, z) (3.10)

Note that we recover HX and φX by putting [g] to be the identity class in the above discussions

on HX
g and φXg .

After constructing the finite group GX and the set of vector-valued mock modular forms

HX
g = (HX

g,r) for each Niemeier lattice LX , we can now formulate the umbral moonshine con-
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jecture [41]. This conjecture states that for every Niemeier lattice X, for every 1 ≤ r ≤ m − 1

we have an infinite-dimensional Z-graded module KX
r = ⊕DKX

r,D for GX such that HX
g,r is

essentially given by the graded characters
∑
D=−r2 (mod 4m),D>0 q

D/4mTrKX
r,D
g, up to the pos-

sible inclusion of a polar term −2q−1/4m and a constant term (as well as an additional factor

of 3 in the case X = A3
8). See §6.1 of [41] for the precise statement of the conjecture. In

summary, umbral moonshine conjectures for each of the 23 Niemeier lattices the existence of a

special module KX of the finite group GX , which underlies the special mock Jacobi forms φXg .

This conjecture has so far been proven for the case X = A24
1 [28], and explicitly verified till

the first hundred terms in the q-expansion for the other 22 cases. In the following section we

will demonstrate the relation between the mock Jacobi forms φXg and the elliptic genus of K3

surfaces. Subsequently we will explore the relation between the Niemeier lattices LX , the finite

group GX , the (conjectural) GX -module KX , and the (stringy) symmetry of K3 surfaces.

4 Umbral Moonshine and the (Twined) K3 Elliptic Genus

In §2 we have computed the elliptic genus of Du Val singularities a K3 surface can develop. In

§3 we have briefly reviewed the umbral moonshine conjecture relating a finite group GX and a

set of mock Jacobi forms φXg for every Niemeier lattice LX via an underlying GX -module KX .

In this section we will see how these two separate topics meet in the framework of (twined)

elliptic genera for K3 surfaces.

Let’s start by briefly reviewing the relation between the elliptic genus of K3 surfaces and

the Mathieu group M24, which is also the umbral group GX for the Niemeier lattice with root

system X = A24
1 . The 2d non-linear sigma model of a K3 surface is a CFT with central charge

c = 6 and with a (small) N = 4 superconformal symmetry. As explained in §2, the elliptic genus

(2.7) is the same for different K3 sigma models and coincides with the geometric elliptic genus

of K3. It is computed to be (cf. (A.1)) [16]

EG(τ, z;K3) = 8
∑

i=2,3,4

(
θi(τ, z)

θi(τ, 0)

)2

. (4.1)

The N = 4 superconformal symmetry of the theory implies that the spectrum is composed of

irreducible representations (“multiplets”) of the N = 4 superconformal algebra, and the elliptic

genus permits a decomposition into their characters.

Recall that the N = 4 superconformal algebra contains subalgebras isomorphic to the affine

Lie algebra ŝl2 and the Virasoro algebra, and in a unitary representation the former of these
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acts with level m − 1 and the latter with central charge c = 6(m − 1) for some integer m > 1.

The unitary irreducible highest weight representations vm;h,j are labelled by the two quantum

numbers h and j which are the eigenvalues of L0 and 1
2J

3
0 of the highest weight state, respectively,

when acting on the highest weight state [15,87]. (We adopt a normalisation of the SU(2) current

J3 such that the zero mode J3
0 has integer eigenvalues. The shift by −1 in the central charge

and the level of the current algebra is due to the −1 difference between the level and the index of

the theta functions underlying the characters, as we will see below.) The algebra has two types

of highest weight representations: the short (or BPS, supersymmetric) ones and the long (or

non-BPS, non-supersymmetric) ones. In the Ramond sector, the former has h = c
24 = m−1

4 and

j ∈ {0, 1
2 , · · · ,

m−1
2 }, while the latter has h > m−1

4 and j ∈ { 1
2 , 1, · · · ,

m−1
2 }. Their (Ramond)

graded characters, defined as

chm;h,j(τ, z) = trvm;h,j

(
(−1)J

3
0 yJ

3
0 qL0−c/24

)
, (4.2)

are given by

chm;h,j(τ, z) =
i θ1(τ, z)2

η3(τ)θ1(τ, 2z)
µm,j(τ, z) (4.3)

and

chm;h,j(τ, z) =
i θ1(τ, z)2

η3(τ)θ1(τ, 2z)
qh−

c
24−

j2

m

(
θm,2j(τ, z)− θm,−2j(τ, z)

)
(4.4)

in the short and long cases, respectively [15]. In the above formulas, µm,j is given by µm,0 (2.16)

and the identity

µm, r2 = (−1)r(r + 1)µm,0 + (−1)r−n+1
r∑

n=1

n q−
(r−n+1)2

4m (θm,r−n+1 − θm,−(r−n+1)).

When applying the above formula to the K3 sigma models which have c = 6 (m = 2), we

obtain the following rewriting of the function in (4.1):

EG(τ, z;K3) = 20 ch2; 14 ,0
− 2 ch2; 14 ,

1
2

+
(
90 ch2; 54 ,

1
2

+ 462 ch2; 94 ,
1
2

+ 1540 ch2; 134 ,
1
2

+ . . .
)

(4.5)

=
i θ1(τ, z)2

η3(τ)θ1(τ, 2z)

{
24µ2,0(τ, z) + (θ2,−1(τ, z)− θ2,1(τ, z))

× (−2q−1/8 + 90q7/8 + 462q15/8 + 1540q23/8 + . . . )
}

(4.6)

where . . . corresponds to terms in EG(τ, z;K3) of the form i θ1(τ,z)2

η3(τ)θ1(τ,2z)q
αyβ with α−β2/8 > 3.

Note that the q-series in the last line is nothing but the umbral mock modular form (3.5)

coresponding to the Niemeier lattice with root system X = A24
1 that we introduced in the
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previous section. As mentioned in §1, it was precisely in this context of decomposing the K3

elliptic genus into N = 4 characters that the first case of moonshine for mock modular forms

was observed [17].

From the above discussion, we see that the two contributions to EG(τ, z;K3), given by

24µ2,0(τ, z)

and

−
∑

r∈Z/4Z

H
X=A24

1
r (τ)θ2,r(τ, z),

in the {} bracket, can roughly be thought of as the contributions from the BPS and non-BPS

N = 4 multiplets respectively2.

However, there is a possible alternative interpretation, thanks to the identity between the

short N = 4 characters and the elliptic genus of an Φ = A1 singularity:

ZA1,S(τ, z) = ch2; 14 ,0
(τ, z), (4.7)

which follows from the identity

1

2

1∑
a,b=0

qa
2

y2aθ1(τ, z + aτ + b)µ2,0(τ,
z + aτ + b

2
) =

θ1(τ, z)2

iθ1(τ, 2z)
µ2,0(τ, z).

In other words, we can re-express the elliptic genus of K3 as

EG(τ, z;K3) = 24ZA1,S(τ, z)− i θ1(τ, z)2

η3(τ)θ1(τ, 2z)

∑
r∈Z/4Z

H
A24

1
r θ2,r(τ, z). (4.8)

Using the identity

θ2,1(τ, z)− θ2,−1(τ, z) = −iθ1(τ, 2z),

and

−q1/2y θ1(τ, z + τ) = θ1(τ, z)

2Strictly speaking, the polar term “−2q−1/8” of H
X=A24

1
1 also corresponds to the contributions from BPS multiplets,

while all the infinitely many other terms are contributions from non-BPS multiplets.
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we can rewrite the above expression as

EG(τ, z;K3) = ZX,S(τ, z) +
1

2m

∑
a,b∈Z/mZ

qa
2

y2a φX
(
τ,
z + aτ + b

m

)
(4.9)

for X = A24
1 , where φX is the function defined in (3.7) that encodes the umbral moonshine

mock modular form HX . In the above, for a root system X that is the union of simply-laced

root systems with the same Coxeter number m (cf. (3.1))

X = AdAm−1D
dD
m/2+1(E(m))dE ,

we write

ZX,S = dAZ
Am−1 + dDZ

Dm/2+1 + dEZ
E(m)

, (4.10)

corresponding to a collection of non-interacting ADE theories with the total Hilbert space given

by the direct sum of the Hilbert spaces of the component theories.

In other words, instead of interpreting the two contributions to the K3 elliptic genus as

that of the BPS and that of the non-BPS N = 4 multiplets, one might interpret them as the

contribution from the 24 copies of A1-type surface singularities and the “umbral moonshine”

contribution given by the umbral moonshine mock modular forms HX with X = A24
1 .

The first surprise we encounter is that such an interpretation actually holds for all 23 cases

of umbral moonshine. In particular, the equality (4.9) is valid not only for the case X = A24
1

but also for all other 22 cases corresponding to all the 23 Niemeier lattices LX . The detailed

proof will be supplied in Appendix B. Put differently, corresponding to the 23 Niemeier lattices

LX we have 23 different ways of separating EG(K3) into two parts. On the one hand, by

replacing the Niemeier root system X with the corresponding configuration of singularities, we

obtain a contribution to the K3 elliptic genus by the singularities. On the other hand, the

umbral moonshine construction attaches a mock Jacobi form φX to every LX , which gives the

rest of EG(K3) after a summation procedure reminiscent of the “orbifoldisation” formula for

the elliptic genus of orbifold SCFTs [63].

Recall that in umbral moonshine for a given Niemeier lattice LX , the mock Jacobi form

φX is conjectured to encode the graded dimension of an infinite-dimensional module KX of the

umbral finite group GX . The existence of such a module is supported by the construction of

the other mock Jacobi forms φXg for the other (non-identity) conjugacy classes [g] of the umbral

group GX (cf. (3.2)), that are conjectured to encode the graded characters of KX . Given the

above relation between the K3 elliptic genus and the mock modular form HX = HX
g for [g]
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being the identity class, a natural question is whether a K3 interpretation also exists for other

mock modular forms HX
g corresponding to other conjugacy classes of the group GX .

To discuss the relation between the graded characters in umbral moonshine and the elliptic

genus of K3, let us first discuss how the equality (4.9) might be “twined” in the presence of a non-

trivial group element. On the left-hand side (the K3 side) of the equation is the elliptic genus,

defined in terms of the Ramond-Ramond Hilbert spaceHT ,RR of the underlying supersymmetric

sigma model T as in (2.7). In the event that every Hilbert subspace Hh,j;T ,RR ⊂ HT ,RR, con-

sisting of states with the same L0, J0 eigenvalues h and j, is a representation of the cyclic group

generated by g, or that g acts on the theory and commutes with the superconformal algebra in

other words, we can define the so-called “twisted elliptic genus” as the graded character

EGg(τ, z;K3) = trHT ,RR

(
g (−1)FR+FLyJ0qHL q̄HR

)
. (4.11)

Let us now turn to the right-hand side (the umbral moonshine side) of the equation. Assum-

ing the (linear) relevance of the umbral moonshine module KX for the calculation of EG(K3),

the unique way to twine the second term

∑
a,b∈Z/mZ

qa
2

y2a φX
(
τ,
z + aτ + b

m

)
is to replace it with ∑

a,b∈Z/mZ

qa
2

y2a φXg
(
τ,
z + aτ + b

m

)
where φXg is defined in (3.10). This is equivalent to replacing the graded dimension of the

module KX with its graded character. What remains to be twined is the first term in (4.9),

the contribution from the configuration of singularities stipulated by the root system X of the

Niemeier lattice LX . For an element g of the umbral group GX , consider its action on the rank

24 root system X. In the case that g simply permutes the different irreducible components of

its root system, it is easy to write down the twining of the singularity part ZX,S of EG(K3):

ZX,Sg is simply given by the contribution from the irreducible components of X that are left

invariant by the action of g. For instance, for X = A24
1 , consider the order 2 element g of the

umbral group GX = M24 whose action on LX is to exchange 8 pairs of A1 root systems and leave

the other 8 copies of A1 invariant when restricted to the root vectors of LX . In this case the

twined singularity part of the elliptic genus is simply ZX,Sg = 8ZA1,S . It can also happen that

g also involves a non-trivial automorphism of the individual irreducible components of the root

system, such as the Z/2Z symmetry of the An, n > 1 Dynkin diagram and the Z/3Z symmetry
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of the D4 Dynkin diagram. In this case the computation for ZX,Sg is more involved and will be

discussed in Appendix B.2. Combining the two parts, we can now define the twining for the

right-hand side (the umbral moonshine side) (4.9) which we denote by

ZXg (τ, z) = ZX,Sg (τ, z) +
1

2m

∑
a,b∈Z/mZ

qa
2

y2a φXg
(
τ,
z + aτ + b

m

)
. (4.12)

The second surprise is that these twining functions given by umbral moonshine precisely

reproduce the elliptic genus twined by a geometric symmetry of the underlying K3 surface

whenever the latter interpretation is available, a fact we will now explain. The symmetries

of a K3 surface M that are of interest for the purpose of studying the elliptic genus are the

so-called finite symplectic automorphisms of M , as we need to require the symmetry to preserve

the hyper-Kähler structure in order for it to commute with the N = 4 superconformal algebra.

As we will discuss in §5, a necessary condition for a subgroup G ⊆ GX to admit such an

interpretation as the group of finite symplectic automorphisms of a certain K3 surface is that

it has at least 5 orbits and 1 fixed point on the 24-dimensional representation of GX . See [88]

for a proof by S. Kondō utilising the previous results by V. Nikulin [89,90], and [48] for a more

refined analysis.

For convenience, above and in the rest of the paper we will simply refer to the 24-dimensional

representation that encodes the action of GX on X as “the 24-dimensional representation” of

GX . As above and in §5, this representation is also the relevant one when describing the action

of various subgroups of GX on the K3 cohomology lattice, via the embedding of its sub-lattice

into LX . The action of an element g ∈ GX on the 24-dimensional representation is encoded in

the 24 eigenvalues, or equivalently its “24-dimensional cycle shape”

ΠX
g =

k∏
i

`mi
i , where mi ∈ Z>0, 0 < `1 < · · · < `k and

k∑
i

mi`i = 24, (4.13)

where the relation between the cycle shape and the eigenvalues λ1, . . . , λ24 is given by

k∏
i

(x`i − 1)mi = (x− λ1) · · · (x− λ24). (4.14)

We will say that an element g ∈ GX satisfies the “geometric condition” if it satisfies the criterium

of Mukai, namely when it has at least 5 orbits (
∑k
i mi ≥ 5) and one fixed point (`1 = 1) on the

24-dimensional representation.

Moreover, this implies that G must be (isomorphic to) a subgroup of one of the 11 maxi-
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mal subgroups of M23 listed in [91] and provides an alternative proof of Mukai’s theorem [91].

Conversely, given any GX among the 23 umbral groups and for any element g ∈ GX satisfying

the geometric condition, there exists a K3 surface M whose finite group of symplectic automor-

phisms has a subgroup isomorphic to 〈g〉. This can be shown using the global Torelli theorem

and in fact holds not just for the Abelian groups but also for all 11 maximal subgroups of M23.

See the Appendix by S. Mukai in [88].

As a result, for any of the 23 GX for any element g ∈ GX satisfying the geometric condition,

one can compute EGg(K3) geometrically by considering the supersymmetric sigma model on

a K3 surface with 〈g〉 symmetry. Note that the latter is well-defined because of the uniqueness

of the 〈g〉 action. To be more precise, it was shown in [92] that if Gi ∼= 〈g〉 acts on a K3

surface Mi faithfully and symplectically (i = 1, 2), then there exists a lattice isomorphism

α : H2(M1,Z) → H2(M2,Z) preserving the intersection forms such that α · G1 · α−1 = G2 in

H2(M2,Z) (see [93] for a generalisation of this result to many non-Abelian groups). Together

with the global Torelli theorem, which states that any lattice isomorphism ϕ∗ : H2(M,Z) →
H2(M ′,Z) between the second cohomology groups of two K3 surfaces that preserves the Hodge

structure and the effectiveness of the cycles is induced by a unique isomorphism ϕ : M → M ′,

this shows the uniqueness of the symplectic action of 〈g〉 on K3 and thereby that of EGg(K3).

On the other hand, using the prescription of umbral moonshine (4.12) one can compute ZXg .

The first non-trivial fact is that, whenever g1 ∈ GX1 and g2 ∈ GX2 both satisfy the geometric

condition and moreover have the same 24-dimensional cycle shape ΠX1
g1 = ΠX2

g2 , we obtain

ZX1
g1 = ZX2

g2 (4.15)

despite the fact that they are defined in a very different way and each consists of two very

different contributions (cf. (4.12)). Second, the result also coincides with the geometrically

twined elliptic genus for a K3 admitting 〈g〉-symmetry

ZXg = EGg(K3) (4.16)

whose induced action on 24-dimensional representation is isomorphic to that of g ∈ GX .

For the conjugacy classes g ∈ GX that do not satisfy the geometric condition, the interpreta-

tion of the function ZXg is much less clear, similar to the situation in the M24-moonshine. Just

like the more familiar case when X = A24
1 [32], some of them correspond to SCA-preserving

symmetries of certain SCFT T in the same moduli space as that of K3 sigma model, while some

of them don’t. We will discuss their interpretation in §6. The explicit formulas for the ZXg for
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all the conjugacy classes [g] ⊂ GX for all 23 X can be found in Appendix C.

5 Geometric Interpretation

The result of the previous section suggests that it can be fruitful to study the symmetries of

(the non-linear sigma models on) different K3 surfaces with different configurations of rational

curves in a different framework corresponding to the 23 different cases of umbral moonshine. In

this section we will see how, on the geometric side, this has in fact been implemented in a recent

analysis of the relation between the K3 Picard lattice, K3 symplectic automorphisms, and the

Niemeier lattices [48, 49]. On the one hand, this provides a geometric interpretation of the

results in this paper. On the other hand, one can view our results as a moonshine manifestation

and extension of the geometric analysis in [48].

To discuss this interpretation, let us first briefly review the result in [48], in which Nikulin

advocates a more refined study of the geometric and arithmetic properties of K3 surfaces by

introducing an additional marking using Niemeier lattices. Usually, to specify a “marking” of

a K3 surface M is to specify an isomorphism between the rank 22 lattice H2(M,Z) and the

unique (up to isomorphism) even unimodular lattice Γ3,19
∼= 2E8(−1)⊕ 3U of signature (3,19),

where U is the hyperbolic lattice U =
(

0 1
1 0

)
3. To introduce an additional marking by Niemeier

lattices, on top of the marking described above, an important ingredient is the Picard lattice

Pic(M) = H2(M,Z) ∩H1,1(M)

of M . The real space H1,1(M,R) has signature (1, 19) and the Picard lattice is either: a.

negative definite with 0 ≤ rk (Pic(M)) ≤ 19 ; b. hyperbolic of signature (1, rk (Pic(M)) − 1)

and with 1 ≤ rk (Pic(M)) ≤ 20; c. semi-negative definite with a null direction and with

1 ≤ rk (Pic(M)) ≤ 19. The condition b. holds if and only if M is algebraic. On the other hand,

a generic non-algebraic K3 suface satisfies the first condition. Unless differently stated, we will

focus on these two, the “generic” (a.) and the “algebraic” (b.), cases.

To obtain an additional marking of M by a Niemeier lattice, consider the maximal negative

definite sublattice of the Picard lattice, denoted by SM (−1) ⊆ Pic(M). To be more explicit,

in the generic case we have simply SM (−1) = Pic(M), while in the algebraic case SM (−1) =

h⊥Pic(M) is the orthogonal complement in the Picard lattice of the one-dimensional sublattice

3The “(−1)” means that we multiply the lattice bilinear form by a factor of −1. This (−1) comes from the fact
that the signature of the K3 cohomology lattice is mostly negative while the usual convention for the signature of
the simply-laced root system and hence the Niemeier lattices is positive definite. The same goes for the (−1) factor
in the definition of SM below.
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generated by the primitive h ∈ Pic(M) with h2 > 0 corresponding to a nef divisor on M . Using

the properties of the Torelli period map, one can show that a lattice SM may arise in the above

way from a K3 surface M if and only if SM (−1) admits a primitive embedding into Γ3,19, a

condition that can be further translated into more concrete terms using the lattice embedding

results in [89].

We say ιM,X is a marking of the K3 surface M by the Niemeier lattice LX if ιM,X : SM → LX

is a primitive embedding of SM into LX . The first result of [48] states that every K3 surface

admits a marking by (at least) one of the 23 Niemeier lattices. This can be shown using the

fact that SM (−1) admits a primitive embedding into Γ3,19 and the embedding theorem in [89]4.

We will denote by S̃M the image of SM , and (S̃M )⊥LX by its orthonormal complement in LX .

The second result, demonstrating the importance of all 23 Niemeier lattices for the study

K3 surfaces, proves that for every LX with the exception of X = A24 and X = A2
12, there

exists a K3 surface that can only be marked using LX and not by any other Niemeier lattice.

It was also conjectured in [48] that the same statement also holds for X = A24 and X = A2
12.

In particular, from this point of view the case X = A24
1 is not more special than any other of

the 22 cases. The third result on the additional Niemeier marking states that, for any LX , any

primitive sublattice of LX which can be primitively embedded into Γ3,19(−1) arises from the

Picard lattice Pic(M) in the way described above for a certain K3 surface M .

The above three results show that the additional marking of K3 lattices is general and

universally applicable. Now we will see that such an extra marking is also useful. In [48], two

applications of the Niemeier marking are discussed. As we will see, both are crucial for the

geometric interpretation of our results. The first application is to use the Niemeier marking to

constrain the configuration of smooth rational curves in a K3 surface: for the generic cases, a K3

surface M that can be marked by LX has the configuration of all smooth rational curves given

by X ∩ SM ; for the algebraic cases, this holds modulo multiples of the primitive nef element.

In particular, if one thinks of the rational curves as arising from the minimal resolutions of the

du Val singularities, then the singularities have to be given by a sub-diagram of the Dynkin

diagram corresponding to X. The second application involves studying the symmetries of K3.

If M is a K3 surface of the generic or the algebraic type and M admits a marking by LX , then

the finite symplectic automorphism group GM of M is a subgroup of GX . More precisely, we

have

GM = {g ∈ GX |gv = v for all v ∈ (S̃M )⊥LX}.
4The trick of considering SM ⊕ A1, also used in [88] to prove Mukai’s theorem, is employed here to exclude the

Leech lattice.
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In the other direction, G ⊂ GX is the finite symplectic automorphism group of someK3 surface if

the orthonormal complement (LX)G ⊂ LX of the fixed point lattice {v ∈ LX |gv = v for all g ∈
G} can be primitively embedded into Γ3,19(−1). Such G ⊂ GX that arise from K3 symmetries

have been computed in [48] for all 23 LX . In particular, it is easy to see that they indeed satisfy

the geometric condition mentioned in §4: they must have at least 5 orbits on the 24-dimensional

representation and at least 1 fixed point.

From the above two applications, we see that the marking by Niemeier lattices facilitates a

more refined study of K3 geometry by labelling a K3 surface by one of the Niemeier lattices

LX via marking. This labelling is, as explained above, sometimes unique and sometimes not.

It tends to be unique when the K3 surface has very large symmetry – the type of K3 surfaces

especially of interest to us. In the above two applications, the two most important pieces of data

associated to the Niemeier lattice LX for the construction of umbral moonshine – the root system

X and the umbral group GX – acquire the meaning of the “enveloping smooth rational curve

configuration” and the “enveloping symmetry group” respectively, for all the K3 surfaces that

can be labelled by LX . Employing this obvious interpretation for X and GX , the contribution

from the ADE singularities to the (twined) K3 elliptic genus (cf. (4.9) and (4.12)) acquires the

interpretation of the contribution from the “enveloping smooth rational curve configuration” of

the (class of) K3 surface, while the twining given by umbral moonshine is to be interpreted as

encoding the action of the “enveloping symmetry group” on the non-linear sigma model.

Before closing the section, let us give a few examples to illustrate the above discussion.

Consider a K3 surface M with 16 smooth rational curves giving the root system A16
1 , generating

a primitive sublattice ΠK of Pic(M). It is known that such a K3 surface is a Kummer surface,

i.e. a resolution of T 4/Z2 by replacing the 16 A1 du Val singularities with 16 rational curves [94].

Note that the K3 is not necessarily algebraic since the T 4 can be non-algebraic. From the above

discussion we see that M can only be marked by the Niemeier lattice LX with X = A24
1 and

hence its finite symplectic automorphism group is a subgroup of M24. More precisely, it is

a subgroup of {g ∈ M24|g(ΠK) = ΠK}. Similarly, let’s consider as the second example a K3

surface M with 18 smooth rational curves giving the root system A9
2. It can arise in the Kummer-

type construction, where we consider the minimal resolution of the nine A2 type singularities of

T 4/Z3 (for a certain type of T 4 and a certain Z3). Similarly, M can only marked by the Niemeier

lattice LX with X = A12
2 and hence its finite symplectic automorphism group is a subgroup of

GX ∼= 2.M12. For a certain T 4/Z6 model, by resolving the singularities of type A5 ⊕ A4
2 ⊕ A5

1

we obtain a K3 surface that can be marked by LX with X = A2
7D

2
5. See [95,96] for the detailed

description of these K3 at the orbifold limit. From the above analysis the symmetry of this K3

lies in GX ∼= Dih4.
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6 Discussion

In this paper we established a relation between umbral moonshine and the K3 elliptic genus,

thereby taking a first step in placing umbral moonshine into a geometric and physical context.

However, many questions remain unanswered and much work still needs to be done before one

can solve the mystery of umbral moonshine. In this section we discuss some of the open questions

and future directions.

• In §5 we have provided an interpretation of the umbral group GX as the “enveloping

symmetry group” of the (sigma model of) K3 surfaces that can be marked by the given

Niemeier lattice LX . It would be interesting to investigate to what extent this general idea

of “enveloping symmetry group” can be made precise and can be confirmed by combining

geometric symmetries at different points in the moduli space, similar to the idea explored

in [35]. Abstractly, it seems rather clear that varying the moduli induces a varying primitive

embedding of SM into LX and can generate a subgroup of GX that doesn’t necessarily

admit an interpretation as a group of geometric symmetries of any specific K3 surface. As

a concrete example, one family of K3 surfaces that that might be amenable to an explicit

analysis is the torus orbifold T 4/Z3, where one can easily vary the moduli of the T 4. As

discussed in §5, the umbral group relevant for this family is GX ∼= 2.M12 with X = A12
2 ,

analogous to the M24 case for the torus orbifold T 4/Z2 studied in [35].

• Another obvious possible interpretation for the conjugacy classes [g] that do not admit a

geometric interpretation in the present context is as stringy symmetries of certainK3 sigma

models preserving the N = (4, 4) superconformal symmetries that have no counterpart in

classical geometry. Note that they must have at least 4 orbits in the 24-dimensional

representation in order for this interpretation to be possible [32,97]. As a result, it is clear

that not all conjugacy classes of all of the 23 GX admit such a possible interpretation.

When a conjugacy class [g] does have at least 4 orbits, often the resulting umbral moonshine

twining ZXg is observed to coincide with a known elliptic genus EGg′(K3) twined by

a certain symmetry g′ of the non-linear sigma model whose induced action on the 24-

dimensional representation is isomorphic to that of g, i.e. they have the same cycle shape.

However, we have not been able to match all ZXg with some known CFT twining results

for all [g] ⊂ GX with at least 4 orbits. Moreover, for non-geometric classes g the twining

ZXg is not uniquely determined by the cycle shape ΠX
g and it can occur that ZXg 6= ZX

′

g′

even when ΠX
g = ΠX′

g′ . See the following point for a closely-related discussion.

Curiously, various twining functions ZXg coincide with those obtained in the work of [40].

It will be interesting to understand better the relation of the two analysis.
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• It seems possible and natural to generalise the analysis in §5 beyond the realm of geometric

symmetries to include the CFT symmetries. To do so, one should consider the “quantum

Picard lattice” Pic(M) ⊕ U instead of Pic(M) and consider its embedding into Γ4,20 =

Γ3,19⊕U instead of Γ3,19. The relevant symmetry groups are again subgroups of GX , now

with at least 4 orbits on the 24-dimensional representation. The analysis should amount to

a combination of that in [48] and in [32]. However, a lack of a Torelli type theorem means

some of the very strong results in [48] will not necessarily hold for the CFT generalisation.

Finally, given a fixed Niemeier marking one may also generalise the “symmetry surfing”

analysis (see above) into the realm of CFT symmetries.

• It would be illuminating to provide the CFT underpinning of the separation of EG(K3)

into the contribution from the singularities and the rest (4.9), by for instance analysing

the twisted and untwisted fields in the orbifold K3 models.

• It would be interesting to extend the geometrical definition of elliptic genus (2.22) to non-

compact spaces and obtain a geometric derivation of the CFT result (2.17). Similarly, one

should compute the geometrical twined (or equivariant) elliptic genera and compare them

with the conjecture in Appendix B.2.

• The map (4.12) from the umbral moonshine function HX
g (or equivalently φXg ) to the

weak Jacobi form ZXg is a projection: the summing over the torsion points projects out

terms that would have corresponded to states with fractional U(1) charges. In particular,

determining a GX -module for the set of weak Jacobi forms ZXg is in general not sufficient

to construct the GX -module KX underlying HX
g . It is hence important to gain a better

understanding about the physical origin of this projection. Its form is very reminiscent

of the Landau–Ginzburg description of the non-linear sigma model and we are currently

investigating the relation between umbral moonshine and Landau–Ginzburg type theories.

• The above fact suggests that the full content of umbral moonshine might go well beyond

the realm of K3 sigma models, and to explain the origin of umbral moonshine we might

need to go beyond CFT. It has been suggested that Mathieu moonshine has imprints in

a variety of string theory setups (see for instance [18, 26, 34, 36, 37, 57]). Analogously, for

all 23 cases of umbral moonshine, it would be interesting to explore the possible string

theoretic extension of the current result.
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A Special Functions

First, we define the Jacboi theta functions θi(τ, z) as follows.

θ1(τ, z) = −iq1/8y1/2
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1) (A.1)

θ2(τ, z) = q1/8y1/2
∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn−1)

θ3(τ, z) =

∞∏
n=1

(1− qn)(1 + y qn−1/2)(1 + y−1qn−1/2)

θ4(τ, z) =

∞∏
n=1

(1− qn)(1− y qn−1/2)(1− y−1qn−1/2)

In particular we will use the transformation of θ1 under the Jacobi group

θ1(τ, z) = −θ1(τ,−z)

= e(− 1
2
z2

τ )(iτ)−1/2θ1(− 1
τ ,

z
τ )

= e(−1/8) θ1(τ + 1, z)

= (−1)λ+µe( 1
2 (λ2τ + 2λz))θ1(τ, z + λτ + µ). (A.2)

Second, we introduce the theta functions

θm,r(τ, z) =
∑

k=r (mod 2m)

qk
2/4myk. (A.3)

for m ∈ Z>0 which satisfy

θm,r(τ, z) = θm,r+2m(τ, z) = θm,−r(τ,−z).
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The theta function θm = (θm,r), r ∈ Z/2mZ, is a vector-valued Jacobi form of weight 1/2 and

index m satisfying

θm(τ, z) =

√
1

2m

√
i

τ
e(−mτ z

2)Sθ.θm(− 1
τ ,

z
τ )

= Tθ.θm(τ + 1, z)

= θm(τ, z + 1) = e(m(τ + 2z))θm(τ, z + τ), (A.4)

where the Sθ and Tθ matrices are 2m× 2m matrices with entries

(Sθ)r,r′ = e( rr
′

2m ) e(−r+r
′

2 ) , (Tθ)r,r′ = e(− r2

4m ) δr,r′ . (A.5)

For later use we also introduce some weight two modular forms for the Hecke congruence

subgroups

Γ0(N) =


 a b

cN d

 | a, b, c, d ∈ Z, ad− bcN = 1,

 . (A.6)

including ΛN ∈M2(Γ0(N)) for all N ∈ Z>0

ΛN (τ) = N q∂q log

(
η(Nτ)

η(τ)

)
(A.7)

=
N(N − 1)

24

(
1 +

24

N − 1

∑
k>0

σ(k)(qk −NqNk)

)
,

where σ(k) is the divisor function σ(k) =
∑
d|k d. For N = 44 we will need the unique weight

two newform

f44
new = q + q3 − 3q5 + 2q7 − 2q9 − q11 − 4q13 − 3q15 + 6q17 + . . .

Finally we discuss Jacobi forms following [98]. For every pair of integers k and m, we say a

holomorphic function φ : H× C→ C is an (unrestricted) Jacobi form of weight k and index m

for the Jacobi group SL2(Z) n Z2 if it satisfies

φ(τ, z) = e(m(λ2τ + 2λz))φ(τ, z + λτ + µ) (A.8)

= e(−m cz2

cτ+d ) (cτ + d)−kφ(aτ+b
cτ+d ,

z
cτ+d ). (A.9)
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Φ ΩΦ

Am−1 Ωm(1)

Dm/2+1 Ωm(1) + Ωm(m/2)

E6 Ω12(1) + Ω12(4) + Ω12(6)

E7 Ω18(1) + Ω18(6) + Ω18(9)

E8 Ω30(1) + Ω30(6) + Ω30(10) + Ω30(15)

Table 3: The ADE matrices Ω of Cappelli–Itzykson–Zuber [42].

The invariance of φ(τ, z) under τ → τ + 1 and z → z + 1 implies a Fourier expansion

φ(τ, z) =
∑
n,r∈Z

c(n, r)qnyr (A.10)

for q = e(τ) and y = e(z), and the elliptic transformation can be used to show that c(n, r)

depends only on the discriminant D = r2 − 4mn and on r mod 2m. An unrestricted Jacobi

form is called a weak Jacobi form when the Fourier coefficients satisfy c(n, r) = 0 whenever

n < 0. See, for instance, [41] for an introduction of Jacobi forms following [98].

B Calculations and Proofs

B.1 Proof of (4.9)

The aim of this subsection is to provide more details on the elliptic genus computed in §2 and

to prove the identity (4.9) for all 23 Niemeier lattices LX .

As we mentioned in the main text, the Cappelli–Itzykson–Zuber matrices govern the spec-

trum of N = 2 minimal models as well as the mock modularity of mock modular forms featuring

in umbral moonshine. Explicitly, the matrices ΩΦ labelled by the root system Φ is given in Table

3, where we have introduced for each divisor n of m the following matrices

Ωm(n)r,r′ =

1 if r + r′ = 0 mod 2n and r − r′ = 0 mod 2m/n,

0 otherwise,
(B.1)

One significance of the Cappelli–Itzykson–Zuber matrices in our context is that it captures

the action of the so-called Eichler–Zagier operator Wm(n), defined for every divisor n of m
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acting on a function f : H× C→ C as [98]

(f |Wm(n)) (τ, z) =
1

n

n−1∑
a,b=0

e
(
m
(
a2

n2 τ + 2 anz + ab
n2

))
f
(
τ, z + a

nτ + b
n

)
. (B.2)

To be more precise, acting on the theta function (A.3) it satisfies

θm|Wm(n) = Ωm(n) · θm . (B.3)

In order to exploit this equality in the calculation, we define the operatorWΦ by replacing Ωm(n)

with Wm(n) in the definition of ΩΦ (cf. Table 3), with the understanding that f |
∑
iWm(ni) =∑

i f |Wm(ni). Similarly, we define WΦ′ =
∑
iWΦi for a union of the simply-laced root systems

Φ′ = ∪iΦi where all Φi have the same Coxeter number. For later convenience, analogous to

(3.7) we will also define

φΦ′,P (τ, z) =
−iθ1(τ,mz)θ1(τ, (m− 1)z)

η3(τ)θ1(τ, z)
(µm,0|WΦ′(τ, z)) (B.4)

where m denotes the Coxeter number of Φ as usual.

In [41] a meromorphic function

ψX,P = µm,0|WX

was defined for every Niemeier root system X, where µm,0 is given by the Appell–Lerch sum

as in (2.16) and WX is defined as above. Note that ψX as a function of z has in general poles

at z ∈ Z
m + Z

mτ . In [41], following [12] this meromorphic function has the interpretation as the

polar part of the meromorphic Jacobi form

ψX = µm,0|WX −
∑

r∈Z/2mZ

HX
r θm,r

of weight 1 and index m.

First, we would like to prove

ZΦ,S(τ, z) =
1

2m

∑
a,b∈Z/mZ

qa
2

y2a φΦ,P
(
τ,
z + aτ + b

m

)
. (B.5)

We will start by providing more details on the expression (2.8) of the minimal model elliptic

genus, which is a building block of the elliptic genus of the ADE singularities (2.17).
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Fix m and let m̄ = m − 2. The Â1 string functions (chiral parafermion partition function

times η(τ), see [44]) are given by crs = 0 if r = s (mod 2) and otherwise

crs(τ) =
1

η3(τ)

∑
−|α|<β≤|α|

(α,β) or (
1
2−α,

1
2 +β)=(

r
2m,

s
2m̄ ) modZ2

sgn(α) qmα
2−m̄β2

Note that we have shifted r by one compared to the convention in, for instance, [44], [63].

Clearly, r ∈ Z/2mZ and s ∈ Z/2m̄Z, and crs(τ) = −c−rs (τ) = cr−s(τ). They can also be defined

through the branching relation

∑
s∈Z/2m̄Z

crsθm̄,s =
θm,r − θm,−r
θ2,1 − θ2,−1

,

where we have used the theta function defined in (A.3). Define

χrs,ε(τ, z) =
∑

k∈Z/m̄Z

crs−ε+4k(τ) θ2mm̄,2s+(4k−ε)m
(
τ,

z

2m

)
.

We have ε ∈ Z/4Z, from which ε = 0, 2 correspond to the NS and ε = 1, 3 to the Ramond sector.

Note that now both r and s in χrs,ε take value in Z/2mZ.

Now let

χ̃rs(τ, z) = χrs,1(τ, z)− χrs,−1(τ, z).

It is easy to check that it transforms under the elliptic transformation as

χ̃rs(τ, z + aτ + b) = (−1)a+b e( sbm ) e(− ĉ
2 (a2τ + 2az))χ̃rs−2a(τ, z). (B.6)

They are the Ramond sector superconformal blocks relevant for the N = 2 minimal models with

c = 3m−2
m .

Using these building blocks, the elliptic genus of the minimal model corresponding to the

simply-laced root system Φ is then given by

ZΦ
minimal(τ, z) =

1

2

∑
0<r,r′<m

(ΩΦ
r,r′ − ΩΦ

r,−r′)
∑

s∈Z/2mZ

χ̃rs(τ, z)χ̃
r′

s (τ̄ , 0).
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Using ΩΦ
r,r′ = ΩΦ

−r,−r′ , χ̃
r
r′(τ, z) = −χ̃−rr′ (τ, z) and χ̃rs(τ, 0) = δr,s − δr,−s, we arrive at

ZΦ
minimal(τ, z) =

1

2

∑
r,r′∈Z/2mZ

ΩΦ
r,r′ χ̃

r
r′(τ, z) =

1

2
Tr(ΩΦ · χ̃).

Now we define for any nñ = m, n, ñ ∈ Z and operator acting on a function f : H × C → C

as

f
∣∣W̃m(n)(τ, z) =

1

n

∑
a,b∈Z/mZ
a,b=0 (ñ)

(−1)a+b+ab e
(
m−2
2m (a2τ + 2az + ab)

)
f(τ, z + aτ + b)

Using (B.6) it is easy to check that

χ̃rs
∣∣W̃m(n) = (Ωm(n) · χ̃)rs =

∑
s′∈Z/2mZ

δs−s′,0 (2ñ)δs+s′,0 (2n)χ̃
r
s′

Finally, one can verify that

m−1∑
α,β=0

(−1)α+βqα
2/2yα

(
χ̃rs
∣∣W̃m(n)

)
(τ, z + ατ + β)µ

(
τ,
z + ατ + β

m

)
=

m−1∑
α,β=0

(−1)α+βqα
2/2yαχ̃rs(τ, z + ατ + β)

(
µ
∣∣Wm(n)

)(
τ,
z + ατ + β

m

)
.

Subsequently, the identity (B.5) follows from the above equality and

Z
Am−1

minimal(τ, z) = 1
2 Trχ̃ =

θ1(t, z/m)

θ1(t, z(m− 1)/m)
.

Finally we are ready to prove (4.9), which can be re-expressed as

EG(τ, z;K3) =
1

2m

∑
a,b∈Z/mZ

qa
2

y2a φX,T
(
τ,
z + aτ + b

m

)
(B.7)

when combined with the identity (B.5) that we just verified and when we use the definition

φX,T (τ, z) = (φX,P + φX)(τ, z) =
−iθ1(τ,mz)θ1(τ, (m− 1)z)

η3(τ)θ1(τ, z)
ψX(τ, z).

From the fact that ψX transforms as a weight 1, index m Jacobi form and using the transfor-

mation (A.2) of the Jacobi theta function, it is straightforward to show that the RHS of (B.7)

transforms as a weight 0, index 1 Jacobi form. Moreover, the poles of ψX at m-torsion points

are combined with the zeros of θ1(τ,mz) and as a result φX,T is a holomorphic function on H×C
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admitting a double-expansion in powers of q and y. In order to show that the RHS of (B.7)

is a weight 0, index 1 weak Jacobi form, we need to prove that there is no term in its Fourier

expansion with qn, n < 0. This can be shown by using the explicit formulas involving µm,0 and

θ1, combining with the fact that HX
r = O(q−r

2/4m) and the fact that the sum over b projects

out all terms with fractional powers of y. After showing that both sides of (B.7) are weight 0,

index 1 weak Jacobi forms, using the fact that the space of such functions is one-dimensional,

the equality is proven by comparing both sides at, say, z = 0.

B.2 Computing ZX
g

In this subsection we compute the twining function ZXg in (4.12). The results of the computation

are recorded in Appendix C. In particular, we will give the details of the computation of ZX,Sg .

As a part of the computation, we also make conjectures for the elliptic genus ZΦ,S
h of du Val

singularities twined by certain automorphisms 〈h〉 of the corresponding Dynkin diagram Φ.

From the action of g ∈ GX on the Niemeier root latticeX, we can divide the conjugacy classes

[g] into the following two types. In the first type, there exists an element in the conjugacy class

that only permutes the irreducible components of X. More precisely, there exists an element g

in the class that descends from an element in ḠX ⊆ GX , where ḠX is a quotient of GX and is

defined by

ḠX = Aut(LX)/ŴX ,

where ŴX < Aut(LX) is the subgroup of lattice automorphisms that stabilize the irreducible

components of X. See Table 2 for the list of ḠX . In the second type, the action of an element in

[g] necessarily involves certain non-trivial automorphisms of some of the irreducible components

in X. See [41] for a more detailed discussion.

As mentioned in §4, the twined function ZX,Sg for a conjugacy class [g] of the first type, point-

wise fixing a (not necessarily non-empty) union Xg = ∪iΦi ⊂ X of the irreducible components

Φi, is simply given by

ZX,Sg =
∑
i

ZΦi,S .

In order to compute the twined function ZX,Sg for [g] for the second type of conjugacy

classes, we need to twine the elliptic genus of the (irreducible) ADE singularities by symmetries

corresponding to the automorphisms of the Dynkin diagram Φ. In the rest of this appendix we

will propose a conjectural answer.

For the Am−1 singularity with m > 2 we have the Z2 automorphism exchanging the simple
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Figure 1: The ADE Dynkin diagrams

root fi with fm−i, in the notation shown in Figure 1. We conjecture that the corresponding

twined elliptic genus is

ZΦ,S
Z2

= ZΦ,S |W(−) , Φ = Am−1,

where we have defined the operator acting on a function f : H× C→ C as

f |W(−)(τ, z) = −f(τ, z + 1
2 ).

In fact, the above expression for ZΦ,S
Z2

can be deduced from the action of Z2 on the eigen-

vectors of the appropriate Coxeter element, and similarly for the twined elliptic genus of the D-

and E-type singularities discussed below.

For later use we also define the operators

f |W(3)(τ, z) =
1

3

2∑
a=0

f(τ, z + a
3 )

f |W(6)(τ, z) =
1

6

5∑
a=0

f(τ, z + a
6 ).

We remark that the above conjecture, if proven, provides a geometrical explanation of the
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following interesting property of the GX -module KX . It was observed and conjectured in [7,41]

that in the cases where X has only A-type components (i.e. when m − 1|24), the GX -module

KX
r underlying the even components of the mock modular form HX

g,r (r even), are composed of

irreducible faithful representations of GX . On the other hand, the module KX
r underlying the

odd components of the mock modular form HX
g,r (r odd), are composed of GX -representations

that factor through ḠX . Similar considerations also apply to the cases when X contains also

D- and E-type components.

For the D-type singularity different from D4, we have the Z2 automorphism exchanging

the simple root fm/2 with f1+m/2, in the notation shown in Figure 1. We conjecture that the

corresponding twined elliptic genus is

ZΦ,S
Z2

(τ, z) =
1

m

∑
a,b∈Z/mZ

qa
2

y2a φΦ,P
Z2

(
τ,
z + aτ + b

m

)
for D1+m/2 for m 6= 6, where

φΦ,P
Z2

(τ, z) =
−iθ1(τ,mz)θ1(τ, (m− 1)z)

η3(τ)θ1(τ, z)

(
− µm,0|Wm(m/2) + µm,0|W(−)

)
(τ, z). (B.8)

The Φ = D4 Dynkin diagram permits a S3 symmetry on the roots {f1, f3, f4}. We conjecture

that the corresponding twined elliptic genera are given by

ZΦ,S
Z2

(τ, z) =
1

6

∑
a,b∈Z/6Z

qa
2

y2a φΦ,P
Z2

(
τ,
z + aτ + b

6

)
ZΦ,S
Z3

(τ, z) =
1

6

∑
a,b∈Z/6Z

qa
2

y2a φΦ,P
Z3

(
τ,
z + aτ + b

6

)
where

φΦ,P
Z2

(τ, z) =
−iθ1(τ, 6z)θ1(τ, 5z)

η3(τ)θ1(τ, z)
µ6,0|WD4,Z2

(τ, z)

φΦ,P
Z3

(τ, z) =
−iθ1(τ, 6z)θ1(τ, 5z)

η3(τ)θ1(τ, z)
µ6,0|WD4,Z3

(τ, z)

and

WD4,Z2
= −W6(3) +W(−) + 2W(6)

WD4,Z3
=WD4 − 3W(3).

The only E-type diagram with non-trivial automorphism is the Z2 generated by the action
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fi 7→ f6−i of E6, for 1 ≤ i ≤ 5. We conjecture that corresponding twined elliptic genus is

ZE6,S
Z2

(τ, z) =
1

12

∑
a,b∈Z/12Z

qa
2

y2a φE6,P
Z2

(
τ,
z + aτ + b

12

)
where

φE6,P
Z2

(τ, z) =
−iθ1(τ, 12z)θ1(τ, 11z)

η3(τ)θ1(τ, z)

(
µ12,0|W12(6) + µ12,0|W(−) + µ12,0|W12(4)|W(−)

)
(τ, z).

(B.9)

After giving the conjectural answer for the building blocks ZΦ,S
h of the twining of ZX,Sg , we

need to know how such a g ∈ GX acts on the Niemeier root system X. This is encoded in the

twisted Euler characters χ̄XA , χXA , χ̄XD , χXD . . . attached to the A-, D-, and E-components of

each X. See §2.4 of [41] for details and see Appendix B.2 of the same reference for the values of

such twisted Euler characters for all 23 X. Combining these ingredients leads to the answer for

ZX,Sg for all conjugacy classes [g] for all the umbral groups GX . This completes our computation

of ZXg (4.12).

C The Twining Functions

In this appendix we provide the expression of ZXg (τ, z) (cf. (4.12)) in terms of the function hXg :

ZXg (τ, z) =
iθ1(τ, z)2

θ1(τ, 2z)η3(τ)

{
cXg µ2,0(t, z) + hXg (τ)(θ2,−1(τ, z)− θ2,1(τ, z))

}
where cXg is the number of fixed point in the 24-dimensional representation of GX . In other

words, for the cycle shape ΠX
g defined in (4.13), we have cXg = m1 if `1 = 1 and cXg = 0

otherwise. For instance, for X = A24
1 and [g] the identity class, the above formula gives the

N = 4 character decomposition of EG(K3) in (4.6).

For X = A24
1 , the functions hXg (τ) for all [g] ⊂ GX ∼= M24 have been worked out in [18–21].

We refer to these papers, or the summary in [7,29]. For convenience we will denote h
A24

1
g simply

by Hg for [g] ⊂M24. Recall that Hg is nothing but the function discussed in (1.2) when [g] = 1A

is the identity class of M24. There are two cases, corresponding to X = D24 and X = D16E8,

with trivial GX . As a result they are not included in the present appendix.

When hXg coincides with Hg′ for a certain g′, we will simply use this identity to define hXg .
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When there does not exist such a [g′] ⊂M24, we write

hXg (τ) =
cXg
24
H1A(τ)−

T̃Xg (τ)

η(τ)3
(C.1)

and we will give the explicit expression for T̃Xg in the following tables using the functions given

in Appendix A. We also use the short hand notation (n)k := ηk(nτ).

Table 4: X = A12
2

[g] ΠX
g hXg

1A 124 H1A

2A 212 H2B

4A 46 H4C

2B 1828 H2A

2C 212 H2B

3A 1636 H3A

6A 2363 T̃X
6A = 3Λ2 + 2Λ3 − Λ4 − 3Λ6 + Λ12

3B 38 T̃X
3B = 2(−4Λ3 + Λ9 − (1)6/(3)2)

6B 64 T̃X
6B = 2 (1)5(3)

(2)(6)

4B 2444 H4A

4C 142244 H4B

5A 1454 H5A

10A 22102 H10A

12A 122 T̃X
12A = 2 (1)(2)5(3)

(4)2(6)

6C 12223262 H6A

6D 2363 hX6D = hX6A
8AB 4282 T̃X

8AB = 2(2)4(4)2/(8)2

8CD 12214182 H8A

20AB 41201 T̃X
20AB = 2 (2)7(5)

(1)(4)2(10)

11AB 12112 T̃X
11AB = (2Λ11(τ) + 33(1)2(11)2)/5

22AB 21221 T̃X
22AB = (3Λ2 − Λ4 + 2Λ11 − 3Λ22 + Λ44)/15− 22

3 f
44
new + 11

5 (1)2(11)2

+ 44
5 (2)2(22)2 + 88

5 (4)2(44)2
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Table 5: X = A8
3

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A

2B 212 H2B

4A 2444 H4A

4B 46 T̃X
4B = 2Λ4 − 3Λ8 + Λ16 − 2(1)4(2)2/(4)2

2C 1828 H2A

3A 1636 H3A

6A 12223262 H6A

6BC 2363 hX6BC = hY6A, Y = A12
2

8A 4282 T̃X
8A = (2Λ8 − 3Λ16 + Λ32)/8 + 8(4)4(16)4/(8)4 − 8(4)2(8)2

4C 142244 H4B

7AB 1373 H7AB

14AB 112171141 T̃X
14AB = (−Λ2 − Λ7 + Λ14 + 28(1)(2)(7)(14))/3

Table 6: X = A6
4

[g] ΠX
g hXg

1A 124 H1A

2A 212 H2B

2B 212 H2B

2C 1828 H2A

3A 38 H3B

6A 64 H6B

5A 1454 H5A

10A 22102 T̃X
10A = (3Λ2 − Λ4 + 2Λ5 − 3Λ10 + Λ20 + 40(2)2(10)2)/3

4AB 46 hX4AB = hY4B, Y = A8
3

4CD 142244 H4B

12AB 122 T̃X
12AB = 2 (2)2(6)4(1)2

(3)2(12)2

Table 7: X = A4
5D4

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A

2B 1828 H2A

4A 142244 H4B

3A 1636 H3A

6A 12223262 H6A

8AB 12214182 H8A
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Table 8: X = D6
4

[g] ΠX
g hXg

1A 124 H1A

3A 1636 H3A

2A 1828 H2A

6A 12223262 H6A

3B 1636 H3A

3C 38 hX3C = hY3B, Y = A12
2

4A 2444 H4A

12A 214161121 T̃X
12A = (−2Λ2 + 3Λ4 + 2Λ6 − Λ8 − 3Λ12 + Λ24)/4 + 18(2)(4)(6)(12)

5A 1454 H5A

15AB 113151151 T̃X
15AB = (−Λ3 − Λ5 + Λ15 + 45(1)(3)(5)(15))/4

2B 1828 H2A

2C 212 H2B

4B 142244 H4B

6B 12223262 H6A

6C 64 hX6C = hY6B, Y = A12
2

Table 9: X = A4
6

[g] ΠX
g hXg

1A 124 H1A

2A 212 H2B

4A 46 H4C

3AB 1636 H3A

6AB 2363 hX6AB = hY6A = hZ6BC , Y = A12
2 , Z = A8

3

Table 10: X = A2
7D

2
5

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A

2B 1828 H2A

2C 1828 H2A

4A 2444 H4A
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Table 11: X = A3
8

[g] ΠX
g hXg

1A 124 H1A

2A 212 H2B

2B 1828 H2A

2C 212 H2B

3A 38 hX3A = hY3B , Y = A12
2

6A 64 T̃X
6A = 2 (1)5(3)

(2)(6) + 24(6)4

Table 12: X = A2
9D6

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A

4AB 142244 H4B

Table 13: X = D4
6

[g] ΠX
g hXg

1A 124 H1A

2A 212 H2B

3A 1636 H3A

2B 1828 H2A

4A 46 H4C

Table 14: X = A11D7E6

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A
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Table 15: X = E4
6

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A

2B 1828 H2A

4A 2444 H4A

3A 1636 H3A

6A 12223262 H6A

8AB 4282 T̃X
8AB = (2Λ8 − 3Λ16 + Λ32)/8 + 24(4)2(8)2 + 8(4)4(16)4/(8)4

Table 16: X = A2
12

[g] ΠX
g hXg

1A 124 H1A

2A 212 H2B

4AB 46 hX4AB = hY4B = hZ4AB , Y = A8
3, Z = A6

4

Table 17: X = D3
8

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A

3A 38 H3B

Table 18: X = A15D9

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A
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Table 19: X = A17E7

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A

Table 20: X = D10E
2
7

[g] ΠX
g hXg

1A 124 H1A

2A 1828 H2A

Table 21: X = D2
12

[g] ΠX
g hXg

1A 124 H1A

2A 212 H2B

Table 22: X = A24

[g] ΠX
g hXg

1A 124 H1A

2A 212 H2B

Table 23: X = E3
8

[g] Π̃g Zg

1A 124 H1A

2A 1828 H2A

3A 38 hX3B = hY3B, Y = A12
2
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